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Abstract: The somatic sensory system includes a variety of sensory modalities, such as touch, pain, itch, and temperature 
sensitivity. The coding of these modalities appears to be best explained by the population-coding theory, which is com-
posed of the following features. First, an individual somatic sensory afferent is connected with a specific neural circuit or 
network (for simplicity, a sensory-labeled line), whose isolated activation is sufficient to generate one specific sensation 
under normal conditions. Second, labeled lines are interconnected through local excitatory and inhibitory interneurons. As 
a result, activation of one labeled line could modulate, or provide gate control of, another labeled line. Third, most sensory 
fibers are polymodal, such that a given stimulus placed onto the skin often activates two or multiple sensory-labeled lines; 
crosstalk among them is needed to generate one dominant sensation. Fourth and under pathological conditions, a disruption of 
the antagonistic interaction among labeled lines could open normally masked neuronal pathways, and allow a given 
sensory stimulus to evoke a new sensation, such as pain evoked by innocuous mechanical or thermal stimuli and itch 
evoked by painful stimuli. As a result of this, some sensory fibers operate along distinct labeled lines under normal versus 
pathological conditions. Thus, a better understanding of the neural network underlying labeled line crosstalk may provide 
new strategies to treat chronic pain and itch.
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1    Introduction

In the 1880s, independent studies by Blix, Goldscheider 
and Donaldson led to the discovery of specific skin spots 
for cold, warm, or touch/pain sensation[1]. Donaldson fur-
ther showed that topical applications of cocaine onto the 
cornea eliminated touch/pain, but not temperature sensitivity[1]. 
Human microneurographic studies in the 1970s and 1980s 
further demonstrated that activation of individual sensory 
fibers is sufficient to evoke a specific somatic sensation[2-4]. 

These lines of work firmly suggest the existence of spe-
cific neural circuits or labeled lines that transmit specific 
sensory modalities from the skin to the brain, analogous 
to the “law of specific nerve energies” proposed by Muller 
in 1826 in explaining other types of sensory coding[1]. The 
elegance and simplicity of this specificity theory of somatic 
sensory coding, however, quickly faced complexities by other 
observations. First, it is not uncommon to observe a mis-
match between the nature of sensory stimuli and the actual 
perception. For example, cold sensation can be evoked 
from some skin spots by both cold and heat stimuli[5-7]. 
Similarly, both pain-related and itch-related neurons are 
able to respond to capsaicin, the pungent ingredient from 
the chilli pepper, even though intradermal injection of a 
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large amount of capsaicin evokes only burning pain[8-11]. 
Second, it is difficult for the specificity theory to explain 
why a given sensory stimulus could evoke distinct sensa-
tions under normal versus pathological conditions. For 
example, in patients suffering chronic pain following 
nerve lesions, innocuous mechanical and/or cold stimuli 
can evoke pain[12,13]. Similarly, in patients suffering chronic 
itch, capsaicin injection evokes itch, as opposed to pain[14-16]. 
Several theories have been proposed to explain this coding 
dilemma[17], and one of them, the population-coding theory, 
appears to have a lot of support[18-20]. This theory essen-
tially evolved from the pattern theory or the gate control 
theory proposed since 1898 by many investigators[5,6,21-26], 
which highlights the interactions of different sensory fibers 
in generating or reshaping somatic sensations. While the 
gate control theory of pain proposed by Melzack and Wall 
initially argued against the existence of specific labeled 
lines[24,25], the modified population-coding hypothesis em-
phasizes both the existence of specific labeled lines and 
the crosstalk among these lines[20], as described below. 

2    Population coding of thermal sensations 

A population coding of thermal sensations was first 
indicated by two independent studies reported in 1896[27]. 
Thunberg discovered the “thermal grill illusion” phenomenon, 
in which stimulation of adjacent skin areas with innocuous 
cold and warm led to a hot or burning sensation[27]. Alrutz 
also found that concurrent activation of cold and warm 
spots in the skin led to a hot or burning sensation[5,27]. In 
1921, Head also reported paradoxical thermal sensations 
when different parts of the penis were activated alone or 
together[6]: a strong cold sensation was evoked when the 
end of the penis was dipped into 45°C water, but an exqui-
site heat sensation was evoked if it was dipped deeper into 
the water, covering the corona area without reaching the 
foreskin. This remarkable observation suggests the exis-
tence of different types of sensory afferents that respond to 
45°C stimuli, and their isolated versus concurrent activa-
tion evokes distinct thermal sensations.

A series of subsequent human studies then provided 
key insights into the coding of thermal sensations. From 

1975 to 1990, Mackenzie and others found that following 
a selective blockade of myelinated fibers (A-fibers) by 
ischemia or compression, innocuous cold stimuli were 
able to activate unmyelinated C-fibers to evoke burning 
sensations[28-31]. This finding suggests that (1) cooling sen-
sation is transmitted by cold-sensitive A-fibers (thereby 
associated with a cold-labeled line), and (2) cold-sensitive 
C-fibers are associated with a distinct neural circuit whose 
activation evokes burning pain (a pain-labeled line), but 
this sensation is dominantly masked by the concurrent 
activation of the cold-labeled line (Fig. 1A). 

Electrophysiological studies carried out by the 
Craig group then explained how the thermal grill illusion 
works[32]. They first found that an innocuous cold stimulus  
can activate two groups of spinal neurons: (1) COLD neurons 
responding selectively to innocuous cold, thereby likely 
involved with cooling sensation, and (2) CPH neurons 
responding to both innocuous Cold and noxious Pinch and 
Heat, and therefore likely involved with burning sensation. 
The fact that innocuous cold can concurrently activate these 
two populations of spinal neurons also suggests that cold-
mediated masking of burning pain might operate in the 
brain, rather than in the spinal cord. They then found that 
upon thermal grill stimulation, activation of warm fibers in 
the adjacent skin area prevents the innocuous cold stimulus 
from activating COLD spinal neurons, without affecting 
the activation of CPH spinal neurons. In other words, the 
thermal grill essentially mimics the transduction blockade 
of cold-sensitive A-fibers by ischemia-compression; as 
a result, C-fibers responding to innocuous cold are now 
capable of activating a normally “masked” pain-labeled 
line to evoke a burning sensation (summarized in Fig. 1A). 
Thus, through antagonistic interactions among three distinct 
thermo-sensitive labeled lines (mediated by cold-sensitive 
A-cold, cold-sensitive C-pain, and C-warm fibers), the 
same cold stimulus can evoke either cold or burning pain 
sensation under different conditions. Electrophysiological 
characterization of other thermosensitive primary sensory 
afferents, including those responding to noxious cold and 
heat, further supports a population-coding theory in 
explaining thermoreception and perception[19,20,27,33,34].
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Fig. 1.	 Crosstalk among sensory-labeled lines. A: Interaction of three innocuous thermosensitive sensory-labeled lines. The pain-labeled line mediated by 
C-cold fibers is inhibited by the activation of the Aδ-cold labeled line, and the inhibition may occur in the brain. The activity of the Aδ-cold labeled 
line can be suppressed by the activation of C-warm fibers from the adjacent skin area, and this inhibition starts at the spinal level[32]. Blockade 
of Aδ-cold fiber activity by the thermal grill or ischemia-pressure, or through central disinhibition following nerve lesions, allows C-cold fibers 
to activate the normally masked burning pain-labeled line. B: The neural circuits linking low-threshold mechanoreceptors (LTMRs) to pain out-
put neurons (modified from Takazawa et al. Ann N Y Acad Sci 2010[39]). Aβ-LTMRs participate in three pathways. Pathway “1” is composed of 
polysynaptic connections of local excitatory interneurons (“a” and “b”) in laminae III and II onto a pain output neuron (“d”) in lamina I. Pathway 
“2” is connected to a local excitatory neuron (“c”), which is synaptically connected to an inhibitory neuron (“inhib.”) that provides potential inhib-
itory inputs onto neurons in pathway “1”. Pathway “3” represents an ascending pathway for normal touch percepts. Following central disinhibi-
tion induced by nerve lesions, LTMRs can directly activate pain through pathway “1”, leading to the development of mechanical allodynia. C: Itch 
inhibition by pain (modified from Ma QF. J Clin Invest 2010[20]). Pain and itch are processed along two different labeled lines. VGLUT2-dependent 
glutamate release from Nav1.8+ neurons is required for pain sensation, and these pain-processing neurons might form, directly or indirectly, syn-
aptic connections with Bhlhb5-expressing inhibitory neurons in the superficial laminae of the dorsal spinal cord, which in turn suppresses itch-
related gastrin-releasing peptide receptor (GRPR)-expressing spinal neurons. It should be noted that although the schematics point out potential 
labeled line crosstalk in the spinal cord, this could in principle occur in the brain.
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3    Cross talk between low-threshold mecha-
noreceptors (LTMRs) and pain-processing 
neurons

Neurons in the dorsal root ganglia (DRGs) and the 
trigeminal ganglia also include a variety of LTMRs that are 
critical for touch-related percepts, such as texture, shape, 
pressure, and vibration. LTMRs are divided into heavily-
myelinated Aβ, thinly-myelinated Aδ, and unmyelinated C 
subtypes[35,36], which terminate in distinct laminae within 
the deep dorsal horn[37]. The linkage of LTMRs with pain 
is suggested from two fronts. First, under normal situa-
tions, inputs from LTMRs can inhibit pain, and this forms 
the key basis for the gate control theory of pain[24,25]. In 
fact, Head already proposed in 1905 the theory of “pro-
topathic (for pain)” versus “epicritic (for touch, cold, and 
others)” systems, with the former inhibited by the latter[21]. 
Electrophysiological studies show that lamina I spinal 
neurons responding to noxious stimuli can be inhibited by 
the concurrent activation of large myelinated LTMRs[38]. 
Second, under pathological conditions, pain can be evoked 
by LTMRs, a phenomenon called mechanical allodynia (see 
below). 

Recent electrophysiological studies have now revealed 
quite complex neural circuits linking Aβ LTMRs to puta-
tive pain output neurons in the dorsal spinal cord, as il-
lustrated in Fig. 1B[39]. First, LTMRs form a polysynaptic 
excitatory circuit to connect with putative high-threshold 
pain output neurons in lamina I (pathway “1” in Fig. 
1B)[40-43]. This pathway is normally masked due to concurrent 
activation of a separate inhibitory circuit (pathway “2” 
in Fig. 1B). Electrophysiological recordings show that 
under normal conditions, stimulation of Aβ fibers fails to 
activate pathway 1 neurons, but does so after application 
of GABA or glycine receptor antagonists to block inhibi-
tory input[40,41,44]. The polysynaptic nature of pathway “1” 
is indicated by the finding that Aβ fiber input exhibits 
both failures and variable latency when lamina I output 
neurons are recorded at high stimulation frequencies[41]. 
The activation of the inhibitory neurons by Aβ fibers in 
pathway “2” is indirect, requiring activation of a local 

excitatory neuron[39,45]. It was proposed that the inhibitory 
input may suppress the activity of a lamina II interneuron 
in pathway “1”[39] (Fig. 1B). However, other studies show 
that inputs of LTMRs are able to inhibit spinal neurons 
normally responding to noxious stimuli[38], suggesting that 
the LTMR-mediated inhibitory pathway might additionally 
and directly suppress pain-processing output neurons in 
lamina I (Fig. 1B). Finally, it should be noted that neurons 
forming either pathway “1” or pathway “2” can be hetero-
geneous, indicating the existence of multiple excitatory 
and inhibitory pathways activated by LTMRs in the dorsal 
horn[39,41,43,44]. In summary, the above discussion highlights 
the existence of preexisting pain pathways that respond to 
innocuous thermal (Fig. 1A) or mechanical stimuli (Fig. 
1B), and their activity is normally masked by the concur-
rent activation of anti-pain systems. As discussed below, 
following central disinhibition induced by nerve lesions, 
these masked pain pathways would become open, thereby 
contributing to the development of pathological pain. 

4    Population coding of pain versus itch

Itch and pain are two distinct modalities of nocicep-
tion, evoking withdrawal and scratching responses, respec-
tively, and the molecular and anatomical basis of itch has 
been extensively reviewed[46-51]. Many theories had been 
proposed to explain the coding of pain versus itch[17,46,52,53], 
but in recent years the population coding theory has 
gained considerable support[18,20,49,54]. The discovery of 
primary and relay sensory neurons responding selectively 
to noxious stimuli suggests the existence of a pain-related 
circuitry[55-58]. Itch-selective neurons or pruriceptors also 
exist. Using the microneurographic technique, Schmelz et 
al. reported the existence of histamine-sensitive mechano-
insensitive primary afferents whose activation is correlated 
with the itch sensation in humans[59], and in cats there are 
histamine-sensitive neurons in the dorsal horn that do not 
respond to mechanical or thermal stimuli[60]. Cell ablation 
experiments in mice show that spinal neurons expressing 
the gastrin-releasing peptide receptor (GRPR) are required 
to sense itch, but not pain[61,62]. Furthermore, a very small 
subset of DRG neurons marked by the expression of the 
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Mrgpr family of G protein-coupled receptors, such as MrgprA3 
and MrgprC11, are promising candidates of pruriceptive 
neurons[63-65]. 

However, itch fibers are polymodal and respond to 
stimuli that normally generate pain, such as capsaicin, 
which activates the transient receptor potential channel 
TRPV1 (vanilloid)[66-69], and/or mustard oil that activates 
TRPA1 (ankyrin)[63-65]. Nonetheless, intradermal injec-
tion of a high dosage of capsaicin or mustard oil evokes 
burning pain[70]. This coding puzzle is explained by a sup-
pression of itch by pain (Fig. 1C)[18,71-76]. Accordingly, itch 
is evoked if a stimulus selectively activates itch-related 
fibers. If a stimulus activates both pain and itch fibers, pure 
pain sensation can emerge if the evoked pain is sufficient 
to mask itch, as occurs with intradermal capsaicin injec-
tion. However, if the amount of pain is insufficient to mask 
itch, both pain and itch sensations can be evoked. Indeed, 
delivering a small amount of capsaicin into the epidermis, 
in a region likely enriched in itch fibers[51], can evoke both 
itch and nociceptive sensations[76,77]. 

The neural basis of itch inhibition by pain is beginning  
to be understood. Two studies show that VGLUT2-dependent 
glutamate release from a group of primary sensory 
afferents marked by the expression of the Nav1.8 sodium 
channel is required to sense pain and suppress itch in 
mice[75,78]. Removal of VGLUT2 from these neurons leads 
to pain attenuation, itch sensitization, and the spontaneous 
development of excessive scratching and skin lesions. 
More strikingly, with an apparent loss of itch inhibition 
by pain, injection of capsaicin is now switched to activate 
a normally “masked” itching pathway in these knockout 
mice[75]. Interestingly, Nav1.8-expressing neurons include 
both pain-related and itch-related neurons[75], suggesting 
that with a loss of pain, glutamate release from itch fibers 
is dispensable for the transmission of itch-related infor-
mation, although in wild-type mice, synaptic glutamate 
release from itch fibers could play a modulatory role, 
such as removing tonic itch inhibition from pain-related 
neurons[75,79]. The next question is to understand where 
itch inhibition by pain occurs in the nervous system. 
Electrophysiological studies in cats and primates suggest 

that itch inhibition by pain-processing neurons starts to  
occur in the dorsal spinal cord or in the spinal trigeminal  
nuclei[60,80]. For example, histamine-sensitive spinal neu-
rons are normally silent[60], and scratching can directly  
inhibit histamine-evoked firing by these neurons[80]. Ross et 
al. then showed that a group of spinal/hindbrain inhibitory 
neurons, whose development is dependent on the bHLHb5 
transcription factor, is essential for itch inhibition[81]. Con-
ceivably, VGLUT2-dependent glutamate release from pain-
processing sensory fibers could activate Bhlhb5-dependent 
inhibitory neurons to suppress itch (Fig. 1C). 

5    Changes in labeled line crosstalk could 
lead to neuropathic pain and itch 

One hallmark of neuropathic pain symptoms is pain 
evoked by innocuous mechanical or cold stimuli, referred 
to as mechanical or cold allodynia[12,13,82]. The underlying 
mechanisms are quite complex, as described in recent  
reviews[12,13,83-86]. Here we only discuss one of those mecha-
nisms: disruption of labeled line crosstalk caused by injury-
induced central disinhibition.

In terms of mechanical allodynia, human psychophys-
ical studies demonstrated that myelinated A-fibers are 
required for the readout of dynamic mechanical allo-
dynia[87-90], suggesting that activation of LTMRs is switched 
to promote rather than inhibit pain. This switch is at least 
partly caused by a loss of central inhibition through mul-
tiple mechanisms[12,39,82,91,92]. One is a direct loss of inhibi-
tory neurons in the dorsal spinal cord, but controversies re-
main[93,94]. The other is that nerve lesions induce the release 
of brain-derived growth factor from activated microglia, 
which in turn causes (1) down-regulation of the expression 
of the potassium-chloride co-transporter KCC2 channel, 
(2) a change in the anion equilibrium potential, and (3) 
a loss of GABA- or glycine-mediated inhibition in post-
synaptic neurons[91,95,96]. In an extreme situation, the loss of 
KCC2 could reach a degree that allows GABA or glycine 
to drive excitation, rather than inhibition[91]. As a result of 
this disinhibition, Aβ LTMRs are now able to activate the 
normally masked pre-existing neural circuit linked to pain-
processing neurons in superficial laminae (pathway “1” in 
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Fig. 1B). Consistent with this model, intrathecal injection 
of GABA or glycine receptor antagonists is sufficient to 
generate mechanical allodynia in animals[91,97-99]. 

Besides mechanical allodynia, human patients suf-
fering neuropathic pain also complain of burning pain in 
response to innocuous cold stimuli, such as grabbing a cup 
containing ice water or placing a spoonful of ice cream 
onto the tongue. In Fig. 1A, we show a mechanism by 
which activation of the Aδ cold-labeled line can dominantly 
mask a C-fiber pain-labeled line that also responds to in-
nocuous cold. Apparently, the masking of pain by the Aδ 
cold-labeled line is abolished in patients with neuropathic 
pain. This in principle could be caused by the selective 
degeneration of Aδ cold fibers, or by central disinhibition  
induced by nerve lesions, as in the development of mechanical 
allodynia. Other mechanisms involving sensitization of 
nociceptors have also been proposed[100].

A failed labeled line crosstalk is also seen in patients 
suffering chronic itch. Scratching and other painful stimuli 
do not just fail to suppress itch, but are switched to pro-
mote it in these patients[14-16,46]. The simplest interpretation 
is that the circuits involved with pain-induced itch inhibi-
tion might be impaired in patients with chronic itch. Be-
cause itch fibers are polymodal, capable of responding to 
painful and mechanical stimuli, central disinhibition might 
allow painful stimuli to activate the normally masked itch 
pathways (Fig. 1C). This central disinhibition mechanism 
is indirectly supported by animal studies, showing that 
a loss, or failed activation, of inhibitory neurons in the 
mouse dorsal spinal cord results in the development of 
chronic neurogenic itch that shares the symptoms seen in 
human patients, including the promotion of itch by painful 
stimuli[75,81]. In summary, one of the common themes asso-
ciated with chronic pain and itch is the failed antagonistic 
interactions among sensory-labeled lines, which allows anti-
pain and anti-itch systems to activate normally masked 
pro-pain and pro-itch pathways, respectively. 

6    Conclusion

The coding of somatic sensory information might be 
best explained by the population-coding theory that high-
lights the existence of distinct sensory-labeled lines, the 

polymodal nature of most sensory fibers, and antagonistic 
interactions among different sensory-labeled lines, such as 
pain suppression by Aδ cool fibers and LTMRs, cool sup-
pression by C-warm fibers, and itch suppression by pain. 
Because of the polymodal nature of most sensory fibers, 
a given stimulus often activates multiple labeled lines, 
and antagonistic interactions among these labeled lines 
are required to generate a dominant sensation. Following 
central disinhibition induced by nerve injury, the coding 
of somatic sensation can be changed, such that pain can be 
evoked by innocuous cold and mechanical stimuli through 
pre-existing neural circuits. These observations suggest the 
existence of multiple “pre-assembled” pain-labeled lines 
that are mediated by low or high threshold primary sensory 
neurons. Some sensory fibers, such as LTMRs, could then 
operate along different labeled lines (touch versus pain) 
under normal and pathological conditions, respectively 
(Fig. 1C, pathways “1” versus “3”). Finally, one of the key 
features of neuropathic pain and chronic itch is the failed 
antagonistic interaction of sensory-labeled lines, with anti-
pain or anti-itch systems switched to become pro-pain 
or pro-itch. Future characterization of the neural circuits 
involved with labeled line crosstalk may therefore provide 
new thinking for chronic pain and itch treatment, such as 
by restoring the lost anti-pain or anti-itch systems. 
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