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Abstract: Neuronal synapses are functional nodes in neural circuits. Their organization and activity define an individual’s 
level of intelligence, emotional state and mental health. Changes in the structure and efficacy of synapses are the biologi-
cal basis of learning and memory. However, investigation of the molecular architecture of synapses has been impeded by 
the lack of efficient techniques with sufficient resolution. Recent developments in state-of-the-art nano-imaging techniques 
have opened up a new window for dissecting the molecular organization of neuronal synapses with unprecedented resolu-
tion. Here, we review recent technological advances in nano-imaging techniques as well as their applications to the study 
of synapses, emphasizing super-resolution light microscopy and 3-dimensional electron tomography.
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1    Introduction: a brief history of synapse 
imaging

Since the beginning of modern neuroscience when 
Cajal’s vivid drawings revealed neurons and their connections 
in the nervous system, synapses have been regarded as the 
key nodes for neuronal communication[1,2]. It is now be-
lieved that structural and functional changes in these nodes 
form the cellular substrate of learning and memory, as well 
as various neurological and psychiatric disorders[3,4]. 

Microscopic imaging techniques have always played 
prominent roles in our understanding of neurons and syn-
apses. Historically, light microscopy (LM) with Golgi 
staining allowed morphological analysis as well as func-
tional interpretation of neurons and neuronal circuits[2,5]. 
Based on anatomical observations under LM, Cajal rea-
soned more than a century ago that there are “more or less 
intimate contacts” formed between the nerve arborizations 
(i.e. axons) and the body and protoplasmic processes (i.e. 
dendrites) that serve for transmitting signals[2,5]. Such a 
“contact” indeed turned out to be a specialized communication 
device, later termed “synapse” by Foster and Sherrington[6,7]. 
The key elements of Cajal’s successes, besides his personal 
genius, were the improved LM of his time and the unique 
Golgi staining method where silver salt labeled only a 
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small fraction of the neurons but outlined the elaborate 
processes of single neurons in their entirety. The silver-im-
pregnated neurons, seen through chromatically corrected 
optics and Cajal’ artistic eyes, provided the first view of 
the organization of the nervous system[1,8]. 

The direct demonstration of synapses and their fine 
structural details awaited the emergence of electron mi-
croscopy (EM) in the 1950s. Taking advantage of the 
exquisite spatial resolution of transmission electron mi-
croscopy (TEM), Palay and Gray gave the first systemic 
description of the fine details of the synapse[9-12]: a presyn-
aptic terminal filled with synaptic vesicles, a postsynaptic 
terminal lined with an electron dense thickening called the 
postsynaptic density (PSD), and the gap separating the two 
terminals, the synaptic cleft. In 1973, Heuser and Reese 
reported evidence of fusion and recycling of synaptic ves-
icles in the neuromuscular junction under various stimulus 
conditions, thus revealing the nature of synaptic transmis-
sion[13]. Since the 1980s, serial section TEM (ssTEM) 
involving reconstruction of serial sections of neuronal 
processes and synapses with high spatial resolution, has 
enabled 3-dimensional (3D) imaging of entire dendritic 
arbors, synapses, as well as detailed organelles at the syn-
apses such as synaptic vesicles and PSDs[14]. 

In the past decades, molecular and biochemical analyses 
contributed tremendously to our understanding of the 
synapse by identifying a growing set of molecular com-
ponents and signaling pathways[15]. Meanwhile, modern 
neuroscience has flourished with fluorescence microscopy. 
The multitude of labeling methods, including targeting 
specific proteins with different fluorophore-tagged antibod-
ies and expressing fluorescent fusion proteins of various 
colors, has allowed specific and precise assessment of gene 
expression and protein localization in both fixed and live 
cells and synapses[16,17]. However, our knowledge of the 
architecture of synapses and the molecular organization 
of synaptic proteins has been limited to coarse qualitative 
descriptions[18]. The small size of the synapse is the major 
technological bottleneck. Conventional LM, including 
fluorescent microscopy, limited by the ~200 nm resolu-
tion set by diffraction[19], can determine the presence of 

certain synaptic proteins in a synapse, but not their spatial 
relationships. In conventional EM that is of much higher 
resolution, biological samples usually undergo sample 
preparation procedures, including chemical fixation, dehy-
dration, embedding, and heavy metal salt staining, which 
often compromise the native ultrastructure and produce 
artifacts[20].

In recent years, the rapid development of new bio-
physical methods and powerful image-processing algo-
rithms has opened a new page in nano-imaging. In particu-
lar, super-resolution fluorescence LM, including stimulated 
emission depletion (STED) microscopy[21], reversible saturable 
optically linear fluorescence transitions (RESOLFT)[22], 
saturated structured-illumination microscopy (SSIM)[23], 
stochastic optical reconstruction microscopy (STORM)[24], 
photo-activated localization microscopy (PALM)[25], and 
fluorescence photo-activation localization microscopy 
(FPALM)[26], has broken the diffraction limit and the reso-
lution can be tens of nanometers. Meanwhile, electron to-
mography (ET)[27] combined with cryo-sample preparation 
techniques[20] has provided ultrastructural 3D information 
at nanometer resolution of biological targets in their near-
native state. In this article, we review recent technological 
advances in both super-resolution fluorescence microscopy 
and 3D ET, highlighting their current and potential appli-
cations in the study of synaptic structure and function.

2    Super-resolution fluorescence microscopy

From the naked eye to LM, to EM, the history of mi-
croscopic biology is accompanied by resolution improve-
ment. Conventional fluorescence LM is the most widely-
used imaging technique in cellular studies because it can 
achieve high sensitivity, high contrast, multi-color labeling 
and live imaging[28]. Nevertheless, its resolution is limited 
by the diffraction property of light, such that the image 
of a single point light source becomes a disk called the 
Airy disk, or more generally the point-spread function. 
The resolution limit is often described by the Abbe limit, 
d = λ/2NA (where d is the smallest distance between two 
particles that can be resolved, λ is the wavelength of light, 
and NA is the numerical aperture of the objective lens)[19].  
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For visible light (λ ~500 nm) and a good microscope lens 
(NA ~1.2), the resolution limit is ~200 nm. With an elec-
tron beam (usually λe<<1 nm), EM can easily achieve 
nanometer resolution. However, compared to LM, conven-
tional EM is limited to fixed samples and a lack of specific 
labeling of different target molecules at high-density with 
various colors. Therefore, it is desirable to improve the 
resolution of fluorescence LM.

Super-resolution fluorescence microscopy techniques 
can be divided into two types according to the principles 
they use to break the diffraction limit. In the first type, 
including STED microscopy and its generalized form 
of RESOLFT microscopy developed by Hell and col-
leagues[21,22], and SSIM developed by Gustafsson and col-
leagues[23], nonlinear optical effects are used to sharpen the 
point-spread function of the microscope system. The other 
type, including STORM developed by Zhuang and col-
leagues[24], PALM developed by Betzig and colleagues[25] 
and fPALM developed by Mason and colleagues[26], is 
based on the computed localization of individual fluores-
cent molecules from their diffraction limited non-overlapping 
images. 

The optical configuration of STED microscopy is sim-
ilar to that of confocal laser scanning microscopy, but with 
an extra donut-shaped STED light pattern that causes stim-
ulated fluorescence emission of illuminated fluorophores[21,22].  
When the STED light intensity is strong, the stimulated 
emission brings all excited fluorophores down to the 
ground state (stimulated emission depletion)[21]. Thus, only 
the center of the donut ring, where STED light intensity is 
low enough, can emit fluorescence spontaneously, usually 
at wavelengths slightly different from the STED light (Fig. 
1A, B). Theoretically, STED microscopy can attain unlimited 
resolution by using an infinitely intense depletion light 
source. However, fluorescence bleaching as well as aberra-
tions in the optics and scattering from the sample limit the 
resolution of STED microscopy to tens of nanometers[29]. 
When combined with 4Pi microscopy[30], isoSTED[31] can 
achieve ~30 nm resolution in all three axes[32]. The newer 
RESOLFT microscopy based on saturated transitions was 
developed to alleviate fluorophore bleaching and sample 
damage in STED microscopy[33]. 

One highlight of STED microscopy is its ability to 
achieve imaging depth. Combined with two-photon excita-

Fig. 1. Stimulated emission depletion (STED) microscopy. A: Energy level diagram illustrating the principle of STED: when the fluorophore absorbs 
excitation light and transitions to the excited state, it can spontaneously transition back to the ground state while emitting lower-energy fluores-
cence light. However, in the presence of a stimulation light, stimulated emission can occur and deplete the fluorophore from the excited state, thus 
reducing the amount of spontaneous fluorescence emission. B: In STED microscopy, the excitation laser spot (green, top layer) overlaps with a 
concentric donut-shaped depletion laser light pattern (red, second layer) generated by a spatial light modulator. The depletion light brings all 
excited-state fluorophores in the “donut” to the ground state and prevents fluorescence emission except for the center spot (orange, bottom layer). 
Depending on the intensity of the depletion light, the size of the center spot that can emit fluorescence can be substantially smaller than the origi-
nal excitation spot, thus achieving high image resolution beyond the optical diffraction limit. C: A dendritic process within the molecular layer of 
the somatosensory cortex of a Thy1-EYFP mouse, imaged by an upright scanning STED fluorescence microscope. D: Zoom-in view of a dendritic 
spine (white arrow in C), showing the temporal dynamics of spine morphology (Scale bar, 1 μm). (B adapted from Huang et al., 2010[29] with per-
mission; C and D adapted from Berning et al., 2012[36] with permission).
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tion, STED was used to image dendritic spines ~100 μm 
below the surface of brain slices[34]. By using aberration-
reducing optics, STED microscopy achieved a resolution 
of 60–80 nm, 120 μm deep inside scattering biological 
tissue[35]. More recently, STED microscopy has been used 
to image spine dynamics in the cerebral cortex of a living 
mouse (Fig. 1C, D)[36]. In other applications, two-color 
STED images of Drosophila Rab3-interacting molecule-
binding protein (DRBP) and Bruchpilot at Drosophila 
neuromuscular junctions demonstrated the relative spatial 
locations and shapes of these two proteins, and revealed 
that DRBP is essential for neurotransmitter release[37]. 
3D dual-color isoSTED nanoscopy of Syt1 and RRetP in 
presynaptic boutons of cultured hippocampal neurons sug-
gested preferential recruitment of a surface pool of synap-
tic vesicle proteins[38]. STED has also been used to visualize 
the reserve pool of synaptic vesicles[39].

The principle of STORM/PALM is based on high 

accuracy in locating single molecules that emit strong 
fluorescence. Using switchable fluorescence probes that 
can be activated one (or a few) at a time, it is possible to 
image individual probe molecules without spatial overlap, 
thus avoiding the diffraction limit[40]. By calculating the 
locations of activated molecules iteratively, the spatial 
distribution of a large number of probes can be obtained to 
reconstruct a super-resolution image of the probed struc-
ture (Fig. 2A). With dual-objective STORM, better than 
10-nm lateral resolution and 20-nm axial resolution have 
been obtained to resolve the distribution of actin filaments 
in various cell lines[41]. Access to various photoactivatable 
proteins and a large number of photoswitchable fluoro-
phore configurations enables STORM/PALM to easily 
achieve multicolor imaging[42-44].

Because the detection of single molecule fluorescence 
requires a very low background, STORM/PALM is cur-
rently limited to thin samples and is hard to apply to tis-

Fig. 2. Super-resolution imaging of synaptic scaffolding proteins by stochastic optical reconstruction microscopy (STORM). A: Schematic diagram showing 
the principle of STORM imaging. In conventional fluorescence microscopy, the image of a putative postsynaptic protein is blurry due to optical 
diffraction (A1). In STORM imaging, most fluorescent probes labeling individual protein molecules are switched to a dark state; only a sparse 
subset of molecules is activated and optically resolved at one time. The location of each molecule is then computed as the center of the corresponding 
Airy disk (A2, A3). After many iterations of this process, a super-resolution image of the target protein can be reconstructed from thousands of 
frames of qualified localization data (A4). B: Optical localization of presynaptic protein Bassoon (red) and postsynaptic protein Homer1 (green) 
in the mouse main olfactory bulb glomeruli by immunohistochemistry using Cy3-Alexa647- and Alexa405-Alexa647-conjugated antibodies. Left: 
Conventional fluorescence image; right: STORM image (Scale bars, 1 μm). C: Zoom-in view of a small area in B (Scale bars, 200 nm). (B and C 
adapted from Dani et al., 2009[47] with permission).
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sue slices or live animals. When imaging live samples, 
STORM is relatively slow due to the necessity of accumu-
lating a large number of single-molecule images to obtain 
a super-resolution reconstruction. Compared to STED, 
STORM is slower when imaging a small region[40].  For 
larger fields of view, however, 3D STORM based on wide-
field imaging can be faster than STED that is based on 
point laser scanning. In a live neuron imaging study with a 
2.5 × 1.8 μm2 field of view, STED imaging achieved a video-
rate of 28 frames per second (fps) at 62 nm spatial resolu-
tion[45]. Meanwhile, 3D STORM imaging of live cells in a 
field of view of up to 30 × 15 μm2 achieved a rate of 0.5–1 
fps with ~30 nm lateral and ~50 nm axial resolution[46].

STORM imaging has been used to analyze the or-
ganization of ten synaptic proteins in the presynaptic ac-
tive zone and the PSD (Fig. 2B, C)[47]: Bassoon, Homer1, 
Shank1, Piccolo, PSD95, GluR1, NR2B, CaMK II, RIM1 
and GABABR1. The numbers and relative locations of 
these molecules were characterized by quantitative analy-
sis. Even the orientation of Homer1 was determined based 
on the location of its N- and C-terminus-specific antibodies. 
In addition, STORM imaging can clearly reveal changes 
in the number of NR2B relative to GluR1 molecules in a 
synapse following light stimulation[47]. 

Similar to STORM/PALM that take advantages of sin-
gle-molecule fluorescence imaging, single-particle tracking 
(SPT) has been used to monitor the motion of individual 
protein molecules in living cells. With this approach, it was 
found that the polymerization rate of PA-GFP-labeled actin 
molecules in the postsynaptic compartment differs from 
that in the nearby endocytic zone[48]. Analysis of the mo-
bility of individual AMPA receptors (AMPARs) with SPT 
revealed that the ratio of mobile to immobile AMPARs 
changes with glutamate application or blockade of inhibi-
tory transmission to favor excitatory synaptic activity[49]. 
In addition, results from SPT of AMPARs within or near 
the PSD suggested that the lateral diffusion of AMPARs 
might permit the desensitized receptors to be rapidly ex-
changed for functional ones, thus pointing to a postsynap-
tic regulatory mechanism of synaptic transmission[50]. On 
the other hand, a more recent study using photobleaching 

and fluorescence correlation analysis suggested that the 
postsynaptic scaffold is largely responsible for clustering 
AMPARs[51].

3    Cellular ET

The latest super-resolution techniques of fluorescence 
imaging have greatly enhanced our ability to probe the mo-
lecular organization and dynamics in cells and synapses. 
However, the flip-side of the specificity of fluorescence 
imaging is that unlabeled proteins, presumably constituting 
the majority of any cellular compartment under investiga-
tion, simply cannot be seen. Besides the few labeled “trees”, 
it is often desirable to also see the unlabeled “forest” to 
understand the complex architecture of macromolecules 
and cellular organelles inside a synapse. EM, especially 
the newly improved 3D ET[27], is a powerful tool for this 
purpose.

Different from fluorescent microscopy, where the 
contrast arises from the specific fluorescence excitation 
and emission properties of different fluorophores, the main 
contrast in EM comes from electron scattering, which is 
uniformly low for molecules in biological specimens, such 
as a cell. Therefore, heavy metal elements which scatter 
electrons strongly and often bind to proteins are added to 
stain biological samples. Alternatively, weak scattering of 
incoming electron beams by the specimen modulates their 
phases. By defocusing the electron microscope or using a 
phase plate, the phase differences can be converted to am-
plitude differences in the image plane, generating “phase-
contrast” images of biological molecules and cellular or-
ganelles without staining.

ET is based on the 3D reconstruction theory of EM 
proposed by Derosier and Klug in the 1960s[52]. The prin-
ciple is that a 3D ultrastructure of the sample can be ob-
tained at nanometer resolution by back-projecting a set of 
tilt series of high-resolution 2D TEM projections of the 
target into a 3D map[27] (Fig. 3). Another key component 
for successful high-resolution ET is cryo-fixation that bet-
ter preserves the native ultrastructure during specimen 
preparation[20,27]. In cryo-fixation, biological samples in 
their native buffer environment are rapidly cooled to about 
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−180ºC or below in cryogens (e.g. liquid ethane) within 
milliseconds. In this process, water molecules in the sam-
ple are fixed in a non-crystalline vitreous state. In contrast 
to chemical fixation, cryo-fixation is fast, does not intro-
duce changes in the state of the specimen, and is capable of 
preserving biological ultrastructure at the atomic scale[53-55]. 
Common cryo-fixation methodology has two approaches, 

plunge-freezing for thin samples (up to 20 μm thick) and 
high-pressure freezing for bulk samples (as thick as 200 
μm)[20,56]. However, because of the deterioration of imaging 
quality caused by inelastic scattering and multiple scatter-
ing that is more significant in thicker samples[27], the effec-
tive thickness of organic samples for high-resolution ET is 
limited to ~500 nm[57]. Thicker samples must be sectioned 

Fig. 3. Flowchart of electron tomography. The specimen is tilted incrementally along an axis perpendicular to the electron beam (preferentially supplied 
by a field emission gun). Tilt increments are typically 1–2° and the tilt range is approximately ± 60–70°. 2D projections of the same specimen area 
are imaged one at a time. After precise mutual alignment, these projection images are synthesized into a 3D density map by the ‘weighted back 
projection’ procedure. A more visually explicit 3D model of specific targets in the density map is often created by segmentation and rendering in 
order to facilitate measurement and interpretation.
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by cryo-ultramicrotomy[58], or sectioned at room tempera-
ture after freeze-substitution and embedding[59,60]. 

ET has now been widely used to solve, at nanometer 
resolution, the 3D structures of dynamic or pleomorphic 
objects, such as macromolecular complexes[61], viruses[62], 
bacteria[63], cellular organelles[64], whole cells[65], and tissue 
slices[66], preserved in a close-to-life state[27]. With rapid 
cryo-fixation, ET can be used to take snapshots of dynamic 
processes in biological systems[67], achieving a resolution 
of 1–6 nm. In practice, ET can be used in combination 
with LM, X-ray crystallography and other structural biol-
ogy approaches[68,69] to provide structural insights into large 
molecular complexes in cells and to facilitate the analysis 
of structure-function relationships.

The common length scale studied under high-magnification 
ET is usually a couple of micrometers, ideally matching 
the size of a synapse. Because of the depth limitation of 
electron penetration, four types of synaptic preparations 
have been used in ET studies: synaptosomes[65,66,70], mono-
layer primary neuronal cultures[65,69,71], cryo-sections of 
brain tissues after high-pressure freezing[65], and freeze-
substitution of neuronal cultures or brain tissues followed 
by embedding and regular sectioning[59,60]. With these ap-
proaches, fascinating details of the synapse have begun to 
be uncovered, as described below.
3.1  Organization of synaptic vesicles in the presynaptic 
cytomatrix  There are hundreds of neurotransmitter-filled 
synaptic vesicles in a presynaptic terminal. These vesicles 
are thought to be embedded in a filamentous network 
called the presynaptic cytomatrix, which plays essential 
roles in mediating vesicle trafficking. However, the precise 
organization and regulation of synaptic vesicles are still 
not understood. Studies using conventional EM suggested 
that vesicles are linked together by short connectors and to 
longer actin filaments through other short connectors[72,73]. 
Recent cryoET analysis of frozen-hydrated synaptosomes 
and hippocampal slices[65,66] showed that most synaptic 
vesicles are linked by short (<40 nm) filaments (connec-
tors). However, longer actin filaments are rarely seen in 
the presynaptic cytomatrix. Our observations on frozen-
hydrated neuronal cultures (Fig. 4) are consistent with the 

latter. These results argue against a major role of actin fila-
ments in vesicle clustering under native conditions. At the 
active zone, vesicles are linked to the presynaptic mem-
brane by tethers (Fig. 4B), consistent with the results from 
frozen-hydrated synaptosomes and hippocampal slices[65,66]. 
Although their molecular identities are still unknown, these 
connectors and tethers are likely to play important roles in 
vesicle recycling as well as docking and fusion events.
3.2  Molecular organization of the synaptic cleft  In a 
chemical synapse, the synaptic cleft is a 20–25-nm gap 
between the presynaptic and postsynaptic cells. Several 
families of cell adhesion molecules are located in the cleft, 
and are thought to regulate synaptic development, synaptic 
plasticity and signal transduction between pre- and post-
synaptic compartments[74,75]. CryoEM analysis of synapses 
in vitreous sections of rat hippocampal slices showed that 
the material in the synaptic cleft is electron-dense, and the 
trans-cleft complexes are organized with a periodicity of 8.2 
nm[58]. CryoET analysis of frozen-hydrated synaptosomes 
showed that the density of the material in the synaptic cleft 
is the highest in the central region of the cleft[70]. A 3-nm 
tomographic section from frozen-hydrated neuronal cul-
ture (21 days in vitro) from our data confirmed the above 
observations (Fig. 4).
3.3  Organization of the core structure of the PSD  The 
PSD was first recognized by EM as a band of electron-
dense material anchored to the cytoplasmic side of the 
postsynaptic membrane, about 30 nm thick and 300 nm 
long[9,12]. It is now known to consist of complex signaling 
machinery containing receptors, signaling molecules, and 
scaffolding complexes[76]. A dense network of vertical and 
horizontal filaments was revealed in tomograms of hydrated-
frozen synaptosomes and neuronal cultures[65,66,69]. In 
freeze-substituted sections of rat hippocampal cultures, the 
organization of the PSD of the glutamatergic synapse has 
been further delineated by ET, with putative NMDA- and 
AMPA-type glutamate receptors identified (Fig. 5)[59,60]. 
Interestingly, NMDA receptors were found to be located in 
the central part of the PSD and were contacted by one or 
two vertical filaments, whereas AMPARs were distributed 
around the periphery of the PSD, consistent with many 
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observations from immuno-EM[77,78]. Two types of hori-
zontal filaments were identified: the shorter type is 4–5 nm 
in diameter and about 20 nm long, and the longer type is 
5–6 nm in diameter and 30–35 nm long. The shorter fila-
ments link both NMDA receptors and AMPARs, whereas 
the longer horizontal filaments link adjacent NMDA recep-
tors. This organization indicates the instability of AMPARs 
relative to NMDA receptors, consistent with their roles in 
the expression of synaptic plasticity.

4    Where the future lies…

After over a hundred years of investigation, we un-
derstand a great deal about the complexity of the synapse, 
though often as a tiny black box[3]. Now, with the emer-
gence of nano-imaging techniques that promise to open the 

black box, the organization and operation of the delicate 
nano-machinery inside can be revealed. Our understanding 
of this key communication device is poised to enter a new 
era. Surely, many obstacles still exist: STORM imaging is 
relatively slow and limited to thin specimens; STED mi-
croscopy is limited by fluorophore selection and often suf-
fers from photobleaching; and cryoET is low-throughput, 
low-contrast, and cannot directly identify protein targets. 
Still higher resolution is required. Last but not least, there 
is no universal computational framework that can put the 
myriad of data together. 

Nevertheless, the technological front of nano-imaging 
is moving (and accelerating) so rapidly that it is time for 
synaptic biologists and biophysicists to seriously consider 
using these new approaches in their research and to iden-

Fig. 4. Ultrastructural dissection of synapses by cryo electron tomography. A: A 3-nm tomographic section through an identified synapse in hippocampal 
culture frozen-hydrated at 21 days in vitro (DIV). Arrows indicate putative actin filaments (red) and ribosomes (yellow). Other identifiable struc-
tures include synaptic vesicles (sv), microtubules (mt), synaptic cleft (sc), and postsynaptic density (psd). A zoom-in view of the boxed region is 
shown in A1. Putative connectors (blue arrows) can be seen to link vesicles together. B: A 3-nm tomographic section through another synapse (16 
DIV). The boxed region is magnified in B1, where tethers linking vesicles to the presynaptic membrane (green arrows) and a connector (blue 
arrow) linking another vesicle to one of the docked vesicles can be identified. Also seen are transcleft complexes (pink arrows). Scale bars for A and B, 
200 nm; A1 and B1, 50 nm.
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tify, and perhaps help overcome new technical bottlenecks 
in the meantime. Indeed, brighter fluorescent dyes, faster 
cameras and new optical methods are being developed to 
further improve fluorescence nanoscopy[29,79]. New EM 
hardware such as Cs-corrector[80], phase-plate[81,82] and 
direct detection device[83], together with new software like 
CTF correction[84], template-match[85] and sub-average[61],  
promises to improve the contrast and resolution of cryo-
tomograms. Furthermore, along the line of correlative 
microscopy, and by taking advantages of LM-EM protein 
tags such as miniSOG[86], combining super-resolution fluo-
rescence LM with cryoET would likely bring about major 
advances in synaptic neuroscience and biomedical research 
in general. With these advances, a future is foreseeable 
where we may unravel the mysteries of the synapse, and in 
a bottom-up fashion, neural circuits and the brain.
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