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Abstract: Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components, 
such as long-lived proteins and organelles. In neurons, autophagy is important for homeostasis and protein quality 
control and is maintained at relatively low levels under normal conditions, while it is upregulated in response to 
pathophysiological conditions, such as cerebral ischemic injury. However, the role of autophagy is more complex. 
It depends on age or brain maturity, region, severity of insult, and the stage of ischemia. Whether autophagy plays a 
beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions. In this review, we 
elucidate the role of neuronal autophagy in cerebral ischemia. 
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1    Introduction

There are three types of autophagy: macroautophagy, 
microautophagy[1], and chaperone-mediated autophagy[2]. 
Macroautophagy is the major form, has been most widely 
studied, and is best characterized. Therefore, we refer to 
macroautophagy simply as “autophagy”, emphasizing 
its roles in the survival or death of neurons. Autophagy 
involves the sequestration of cytosolic components into 
autophagosomes. Autophagosomes fuse with lysosomes to 
form autolysosomes, delivering cytosolic contents to the 
lysosomal lumen, where they are degraded and recycled.

Autophagy plays an important role in the central ner-

vous system, especially in neurons[3-5]. For example, it is 
important for maintaining homeostasis and protein quality 
control in the neuron[6]. There is an emerging consensus 
that the induction of autophagy in neurodegenerative dis-
orders is a neuroprotective response. Inadequate or defec-
tive autophagy, rather than excessive autophagy, promotes 
neuronal death[6-9]. Recently, increased autophagy has been 
reported in cerebral ischemic injury, including hypoxia-
ischemia (HI)[10-19], global[20,21] and focal ischemia[22-30]. 
However, its role in neuronal death is controversial and 
it is unclear whether it is beneficial or detrimental. In this 
review, we summarize the role of autophagy in neuronal 
death after cerebral ischemia. 

2    The autophagic process

To understand the molecular mechanisms underlying 
ischemia-induced autophagy in neurons, it is crucial to 
review the details of the regulatory processes. In mam-
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mals, they consist of four principal steps: initiation, vesicle 
nucleation, vesicle expansion and completion, and vesicle 
fusion and autophagosome degradation[31].
2.1  Initiation  The yeast serine/threonine protein kinase 
Atg1 and its mammalian homologs ULK1 and ULK2 play 
critical roles in the initiation of autophagy. ULK1 and 
ULK2 form a complex with mammalian homolog of Atg13 
(mAtg13), the scaffold protein FIP200 (the functional ana-
log of yeast Atg17)[32-34], and Atg101 (an Atg13-binding 
protein)[35]. Under nutrient-rich conditions, the mammalian 
target of rapamycin (mTOR) complex 1 (mTORC1) binds 
to the ULK complex (ULK1/2-mAtg13-FIP200-Atg101). 
By phosphorylating ULK1 (or ULK2) and hyperphos-
phorylating mAtg13, mTORC1 inhibits the initiation of 
autophagy. Under nutrient-deprived conditions, mTORC1 
dissociates from the ULK1 complex, freeing it to induce 
autophagy[32,34]. The inactivation of mTORC1 dephospho-
rylates mAtg13 and ULK1 (or ULK2), whereas ULK1 and 
ULK2 still phosphorylate mAtg3 and themselves, and hy-
perphosphorylate FIP200.
2.2  Vesicle nucleation  The activation of the phospha-
tidylinositol 3-kinase (PI3K) complex is an essential step 
in vesicle nucleation. In mammals, the PI3K complex is 
divided into three classes (I, II and III). The class I and III 
PI3K complexes function as negative and positive regula-
tors of autophagy, respectively. The class III PI3K complex 
consists of Beclin 1 (a homolog of Atg6), class III PI3K 
(hereafter referred to as hVps34), and p150 (a homolog 
of Vps15)[36,37]. Atg14-like protein (Atg14L)[38,39], activating 
molecule in Beclin-1-regulated autophagy (AMBRA1)[40,41], 
UV radiation resistance-associated gene (UVRAG) 
pro  tein[42], and Bax-interacting factor 1 (Bif1)[43] posi-
tively regulate autophagy, whereas the RUN domain and 
cysteine-rich domain containing Beclin-1-interacting pro-
tein (rubicon)[38,39] negatively regulate it through the class 
III PI3K. UVRAG and rubicon also regulate endosome 
maturation.
2.3  Vesicle expansion and completion  Two ubiquitin-
like conjugation systems, the Atg12-Atg5-Atg16L1 complex 
and the LC3 (Atg8 homolog)-phosphatidylethanolamine 
(PE) conjugate, play important roles in vesicle expan-

sion and completion[44,45]. Atg12 is conjugated to Atg5 by 
the E1-like protein Atg7 and the E2-like protein Atg10. 
The Atg12-Atg5 conjugate further interacts with Atg16L, 
which oligomerizes to form a large complex called the 
Atg16L complex[45]. LC3 is first cleaved at its C-terminus 
by the cysteine protease Atg4 to generate cytosolic LC3-I 
with a C-terminal glycine residue. LC3-I is then activated 
by the E1-like protein Atg7, and then transferred to Atg3, 
an E2-like protein specific for LC3, which conjugates LC3 
to PE. The lipidated form of LC (LC3-II) is subsequently 
recruited to the phagophore membrane, whereas the At-
g16L complex might act as an E3-like enzyme to catalyze 
the conjugation[46,47].
2.4  Vesicle fusion and autophagosome degradation  
Vesicle fusion requires the lysosomal membrane proteins 
lysosomal-associated membrane protein 1 (LAMP-1), 
LAMP-2 and the small GTPase Rab7, but the mechanism 
is less well-characterized[48,49]. After fusion, autophago-
some degradation depends on a series of lysosomal/vacu-
olar acid hydrolases including cathepsins B, D and L. The 
breakdown products are released back into the cytosol 
through lysosomal permeases. 

3    Autophagy in the brain under basal condi-
tions and during development

In the mammalian brain, there is very little detectable 
autophagy[50]. Under normal or nutrient-deprivation condi-
tions, the brain is well protected by adaptive mechanisms 
and glial cells. Therefore, a high level of constitutive au-
tophagy in neurons may not be necessary to maintain the 
cellular energy needs; indeed, autophagy is not observed in 
the brain of mice deprived of food for 48 h[50].

Instead, autophagy is critical in the maintenance of 
neuronal homeostatic functions such as protein and organ-
elle turnover[6]. Insufficient or defective autophagy may 
be critical in neurodegenerative diseases. Neuron-specific 
Atg5 or Atg7 knockout causes neuronal degeneration, with 
accumulation of cytoplasmic inclusion bodies that contain 
protein aggregates[51,52]. Moreover, autophagy is essential 
for neuronal development and remodeling; it may support 
neurite and growth cone remodeling and clear defective 
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structures in axons and dendrites[41,53,54]. Taken together, 
these results suggest that constitutively active autophagy 
at low levels is required to maintain homeostasis and func-
tion in the neuron.

4    Autophagy in cerebral ischemia

The first report to demonstrate increased autophagy after 
cerebral ischemia was that of Nitatori and colleagues[20], 
who showed that the increased cathepsin B-immunopos-
itive lysosomes in neurons after transient global cerebral 
ischemia are mostly autolysosomes. Furthermore, the de-
layed death of CA1 pyramidal neurons after brief ischemia 
is not necrotic but apoptotic. Since well-established markers 
for autophagy have not been available, relatively few ex-
amples of neuronal death met the necessary morphological 
criteria of autophagy until recently. 

In 2005, Zhu et al.[10] were the first to examine the in-
fluence of age on apoptotic and autophagic cell death after 
cerebral HI. These authors showed that the basal level of 
autophagy, as judged by the autophagosome-related marker 
LC3-II, is 2.5 times higher in the immature than in the 
adult brain. After HI, LC3-II levels increase more in the 
adult than in the immature brain, approximately three-fold 
higher than in normal controls. In 2006, these authors[11] 
also examined the influence of sex on autophagy after ce-
rebral HI, but found no sex difference in the induction of 
autophagy after neonatal HI. Subsequent studies on adult 
or neonatal cerebral HI have also shown increased expres-
sion of LC3-II and increased numbers of autophagosomes 
in striatal and hippocampal neurons. In other studies, 
Carloni et al.[17] showed that Beclin 1, another marker of 
autophagy, is significantly increased in the hippocampus 
and cerebral cortex after HI in neonatal models. These data 
suggest the involvement of enhanced autophagy in neu-
ronal death following cerebral HI. However, this increase 
might be due to a defect in lysosomal function causing an 
accumulation of autophagosomes, or a real increase in au-
tophagic flux, the entire process of autophagy. Therefore, 
Ginet et al.[19] studied the involvement of autophagy using 
neonatal cerebral HI models and showed that cerebral HI 
increased not only LC3-II levels but also lysosomal activity 

including cathepsin D and LAMP-1 in damaged cortical 
and hippocampal CA3 neurons, demonstrating an increase 
in autophagic flux.

Similar changes have also been found in models of 
focal cerebral ischemia. Degterev et al.[22] showed an in-
crease of LC3-II in damaged brain tissue after transient 
middle cerebral artery occlusion (MCAO) in adult mice. 
Rami et al.[23] showed a dramatic elevation of Beclin 1 in 
neurons in the penumbra after transient MCAO in adult 
rats. These authors also showed that all cells with upregu-
lated Beclin 1 display dense staining for LC3. Consistent 
with these observations, further studies demonstrated that 
focal ischemia enhances both biochemical markers of au-
tophagy and lysosomal activation[26]. Puyal et al.[27] showed 
that temporary MCAO increases LC3-II levels and the 
numbers of cathepsin D- and LAMP1-positive neurons in 
neonatal rats. Moreover, double-labeling showed strong 
punctate autophagosomal (LC3) and lysosomal labeling 
(cathepsin D and LAMP1) in the same neurons. Liu et 
al.[29] recently also showed that LC3-II protein is up-regulated 
in the post-ischemic brain after cerebral ischemia/reperfu-
sion. However, they put forward a different opinion that 
the accumulation of protein aggregate-associated organ-
elles following ischemia is probably due to failure of the 
autophagic pathway, as a result of lysosome deficiency. 

5   Signaling pathways regulating autophagy 
activation in cerebral ischemia

Although ample evidence demonstrated enhanced au-
tophagy in neuronal death following cerebral ischemia, the 
signaling pathways regulating its activation remain poorly 
defined. It is possible that energy-sensing[55], hypoxia, en-
doplasmic reticulum (ER) and oxidative stress[56] in cere-
bral ischemia are potent stimuli of neuronal autophagy. 
5.1  PI3K-Akt-mTORC1  mTORC, the major inhibitory 
signal of autophagy, is activated by nutrients (amino-acids), 
energy (ATP) and growth factors[57]. mTOR exists in two 
distinct complexes, mTORC1 and mTORC2, that differ 
in their subunit composition and sensitivity to rapamycin. 
mTORC1 integrates upstream activating signals that in-
hibit autophagy through the class I PI3K-protein kinase B 
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(PKB, also known as Akt) pathway. Class I PI3K is a nega-
tive regulator of autophagy that is activated by insulin-like 
and other growth factor signals. Activation of class I PI3K 
leads to the phosphorylation of plasma membrane lipids 
that recruit and activate Akt/PKB by PDK1[58,59]. Then ac-
tivated Akt/PKB promotes phosphorylation of the protein 
encoded by tuberous sclerosis protein 2 (TSC2)[60,61]. The 
phosphorylation blocks TSC2 interaction with TSC1, pre-
venting formation of the TSC1/2 complex, and results in 
mTORC1 activation[62]. A recent study demonstrated that 
in neonatal HI, autophagy is part of integrated signaling 
which includes the PI3K-Alt-mTOR axis[63].
5.2  AMPK-mTORC1  AMP-activated protein kinase 
(AMPK) is a sensor of cellular bioenergetics, especially 
in response to energy stress[37]. A decrease in ATP concen-
tration during ischemia increases the AMP/ATP ratio and 
activates AMPK. Upstream kinases include LKB1 kinase 
and Ca2+/calmodulin-dependent protein kinase kinase-β 
(CaMKKβ)[64, 65]. Active AMPK leads to phosphorylation 
and activation of TSC1/2 and inhibition of mTORC1 ac-
tivity through Rheb. In mammals, the mTORC1 substrate 
S6K1 is a positive regulator of autophagy. Recently, it was 
reported that nicotinamide phosphoribosyltransferase pro-
motes neuronal survival by inducing autophagy via regu-
lating the TSC2-mTOR-S6K1 signaling pathway during 
cerebral ischemia[66].
5.3  Beclin 1-Bcl-2 complex  Beclin 1 was identified as a 
Bcl-2-interacting protein through its BH3 domain[67]. The 
binding of Bcl-2 to Beclin 1 disrupts the association of 
Beclin 1 with PI3K, hVps34 and p150, therefore inhibiting 
autophagy[68]. Intriguingly, only ER-localized, but not 
mitochondria-localized, Bcl-2 inhibits autophagy[68]. Un-
der stress conditions, Beclin 1 is released and induces au-
tophagy[69,70]. As previously demonstrated, the expression 
of Beclin 1 in neurons is dramatically increased in neona-
tal HI or focal cerebral ischemia[17,23]. Ischemia stimulates 
autophagy through the AMPK–mTOR pathway, whereas 
ischemia/reperfusion stimulates autophagy through a Beclin 1- 
dependent but AMPK-independent pathway[71]. Although 
there are several different mechanisms to regulate the 
dissociation of Beclin 1 from Bcl-2 during autophagy in 

mammalian cells[72], the specific mechanism in cerebral 
ischemia is not yet established.

Hypoxia-inducible factor-1α (HIF-1α) is a key tran-
scription factor activated by the low oxygen conditions 
during cerebral ischemia. Although HIF-1α stimulates 
autophagy after cerebral ischemia[73], the underlying 
mechanism remains unclear. It was reported that HIF-1α 
stimulates mitochondrial autophagy by the upregulation 
of BNIP3 in mouse embryo fibroblasts[74]. BH3 domain-
containing proteins such as BNIP3, upregulated in models 
of ischemia-induced delayed neuronal death, might compete 
with Beclin 1 for binding to Bcl-2 and then release Beclin 1 
to stimulate autophagy[75].
5.4  p53  The tumor suppressor and transcription factor p53 
has been reported to be pivotal in neuronal apoptosis[76]. 
Recently, we and other investigators have found a new role 
for p53 in signaling autophagy[77,78]. p53 induces autophagy 
through the upregulation of damage-regulated autophagy 
modulator (DRAM), the p53 target gene encoding a lyso-
somal protein[77]. In our previous studies, we demonstrated 
that the NF-κB-regulated p53 pathway also contributes to 
excitotoxic neuronal death by activating the autophagic 
process[79]. Overstimulation of N-methyl-D-aspartate recep-
tors (NMDARs) induces the upregulation of p53, its target 
gene DRAM, and other autophagic proteins including LC3 
and Beclin 1. Moreover, the NF-κB inhibitor SN50 inhibits 
the excitotoxin-induced upregulation of p53, its target gene 
DRAM, and other autophagic proteins.

6    Role of autophagy in cerebral ischemia

Although accumulating evidence indicates that au-
tophagy is enhanced following cerebral ischemia, its func-
tional role in neuronal death is still unclear. Over the years, 
researchers have used chemical inhibitors or inducers of 
autophagy to investigate the role of autophagy in cerebral 
ischemia.

Pretreatment with 3-methyladenine (3-MA) and wort-
mannin (a PI3K/PLK1 inhibitor), which inhibit autophagy, 
significantly reduces Beclin 1 expression in the superficial 
layers of cortex and increases necrotic cell death[17]. In 
contrast, rapamycin, which increases autophagy, augments 
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Beclin 1 expression, reduces necrotic cell death, and de-
creases brain injury. These data suggest that the activation 
of autophagic pathways is a potential protective mecha-
nism in neonatal HI.

Conversely, in an earlier study, we found that the 
autophagy inhibitor 3-MA and the cathepsin B inhibitor 
Z-FA-fmk confer moderate neuroprotection in permanent 
MCAO models in adult rats by inhibiting the upregulation 
of LC3-II and cathepsin B, suggesting that an autophagic 
mechanism contributes to ischemic neuronal injury[26]. In 
transient focal cerebral ischemia/reperfusion models of 
neonatal rats, 3-MA also provides substantial neuropro-
tection even when given >4 h after ischemia[27]. A recent 
study[21] showed that 3-MA has a time-dependent protec-
tive effect on hippocampal CA1 neuronal death after tran-
sient global ischemia/reperfusion in young adult rats, and 
needs to be administered before ischemia. Furthermore, 
inhibition of cathepsin B release might be another im-
portant cause of the protection by 3-MA. Taken together, 
these data suggest that autophagy activation contributes to 
neuronal death after cerebral ischemia.

Notably, most chemical inhibitors of autophagy are 
not entirely specific. For example, 3-MA has potential pro-
apoptotic side-effects due to inhibition of the anti-apoptotic 
PI3K/Akt pathway. A recent study showed a possible pro-
autophagic effect of 3-MA[80]. Thus, the use of gene dele-
tions, in vivo transgenic/knockout models, or functional 
knockdown (e.g., with RNAi) are the preferred approaches 
when possible, because these methods allow a more direct 
assessment of the resulting phenotype. Deletion of Atg7 
protects hippocampal pyramidal neurons after HI injury 
in Atg7-kncokout neonatal mice[14]. RNAi knockdown of 
Beclin 1 reduces infarct volume, as well as the histological 
injury and neurological deficits induced by focal cerebral 
ischemia in adult rats[30], supporting the conclusion that au-
tophagy plays a pro-death role in acute cerebral ischemia.

Although it remains unclear why autophagy plays 
different roles in ischemic brain injury, this might depend 
on brain maturity, region, the severity of ischemia, and 
the timing of therapeutic interventions. First, the age or 
maturity of the brain influences autophagic mechanisms 

after cerebral ischemia. Autophagy is more pronounced in 
adult than in immature brains, whereas the apoptotic ma-
chinery is more pronounced in immature brains[10]. Second, 
autophagy after cerebral ischemia is region-specific. It is 
widely accepted that apoptosis and autophagy are energy-
dependent and that energy failure causes necrosis. While 
necrosis predominates in the ischemic core, autophagy and 
apoptosis often occur at the border of the lesion[23-25]. Third, 
the extent of neuronal damage and the underlying mecha-
nisms also depend on the severity of the insult. Milder HI 
insults in neonates are more likely to result in apoptosis 
than necrosis, whereas severe insults lead primarily to ne-
crotic neuronal death. Following the milder insult, induced 
autophagy might trigger apoptosis via caspase-dependent 
or -independent pathways[14]. However, after severe insults, 
limited over-activation of autophagic pathways might 
delay the progression of cells towards death[17,18]. Lastly, 
autophagy might play different roles during various stages 
of cerebral ischemia. It has been reported that autophagy 
may be protective during ischemia in the heart, whereas 
it may be detrimental during reperfusion[71]. Autophagy 
is strongly activated in the brain during reperfusion after 
cerebral ischemia. Moreover, the inhibition of autophagy 
is protective, suggesting that autophagy might play a det-
rimental role during reperfusion[27,28]. However, the role 
of autophagy during ischemia is still unclear. Our previ-
ous study showed the detrimental role of autophagy in 
fatal ischemia[26]. Interestingly, using the same model, we 
demonstrated that autophagy activation during cerebral 
ischemic preconditioning (IPC) confers a remarkable toler-
ance to subsequent fatal ischemia, and the neuroprotective 
effects by IPC can be mimicked by autophagy inducers[81]. 
Thus, the role of autophagy in cerebral ischemia is com-
plex. Whether it promotes cell survival or cell death de-
pends on the pathological situation.

7    Autophagy in the “cell death continuum”

An important feature of neonatal HI is that neuronal 
death phenotypes are very heterogeneous and cannot be 
categorized dichotomously as either necrosis or apop-
tosis[82,83]. Cell death manifests along a continuum from 
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apoptosis to necrosis with activation of signaling pathways 
resulting in cell death phenotypes with hybrid structural 
and biochemical features[84,85]. Portera-Cailiau et al.[86] 
first reported the existence of a “continuum” of apoptotic, 
necrotic, and overlapping morphologies after excitotoxic 
injury in the neonatal forebrain. Subsequent studies de-
scribed the presence of “hybrid” cells with characteristics 
intermediate between apoptosis and necrosis in various 
cerebral regions[87,88].

Autophagy is also part of this complex continuum in 
specific regions following neonatal HI in mice. Koike et 
al.[14] showed that dying pyramidal neurons express both 
apoptotic and autophagic features following neonatal HI. 
More recent studies[19] showed that enhanced autophagy in 
the cortex may be related to apoptosis since some neurons 
with strong autophagic activity also show apoptotic fea-
tures. In contrast, neurons in CA1 present only a minimal 
increase in autophagy but strong apoptotic characteristics. 
Blocking autophagy inhibits the apoptotic pathway, sug-
gesting that autophagy contributes to programmed cell 
death by activating the apoptotic pathway[27]. Moreover, 
Beclin 1-independent autophagy is an important contribu-
tor to both the caspase-dependent and -independent com-
ponents of neuronal apoptosis[89].

Consistent with previous studies, Carloni et al.[17] also 
showed that the autophagic pathway is activated in neurons 
that show apoptotic features in neonatal HI rat pups. How-
ever, these authors showed that inhibition of autophagy 
switches the cell death continuum from apoptosis to ne-
crosis. Induction of autophagy reduces the progression of 
cells toward necrotic cell death. This may be due to the 
role of autophagy in maintaining adequate energy produc-
tion at the cellular level early after severe HI. Therefore, 
autophagy could allow apoptosis and delay necrotic cell 
death by providing energy substrates to cells or through 
interconnections with apoptosis.

It has also been reported that autophagy is involved 
in the complex continuum following focal cerebral isch-
emia. Apoptosis tends to occur late and at the border of 
the ischemic area, whereas necrosis occurs earlier and at 
the ischemic core. Around the ischemic core is a region 

of hypoperfused, electrically silent tissue that barely re-
ceives enough blood to keep neurons alive, defined as the 
“ischemic penumbra”. Cell death in the penumbra not only 
bears a resemblance to necrosis, apoptosis, or a mixture 
of the two, but also exhibits the biochemical and morpho-
logical characteristics of autophagic cell death. Sufficient 
availability of ATP and intact mitochondrial function are 
the main determinants to shift apoptosis-doomed neurons 
away from necrosis[23-25].

Taken together, all of the three cell death morpholo-
gies, autophagy, apoptosis, and necrosis, can occur in neu-
rons following cerebral ischemia giving mixed features of 
cell death. The interactions among autophagy, apoptosis, 
and necrosis are complex with much crosstalk, and their 
roles in ischemia need further investigations.

8    Conclusion

In neurons, constitutively active autophagy at low levels 
is important for maintaining homeostasis and protein quality 
control under normal conditions. Accumulating evidence 
has demonstrated increased autophagy in response to 
cerebral ischemia. However, the role of autophagy is more 
complex, and depends on brain maturity, region, insult 
severity and stage of ischemia. Thus, each pathological 
situation requires a specific study on the role of autophagy. 
The cell-death morphologies of autophagy, apoptosis, and 
necrosis can occur in neurons after cerebral ischemia giving 
mixed features of cell death. A better understanding of 
the interactions among autophagy, apoptosis, and necrosis 
might provide new therapeutic targets for the treatment of 
cerebral ischemic injury. 
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