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Abstract: Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as 
birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural mus-
cles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in al-
most all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. 
Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land 
or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals 
and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to sur-
face at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat 
loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, 
they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle 
activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is 
possible that, in accord with Darwin’s theory, aquatic mammals might have abolished REM sleep with time. In this review, 
we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.
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1    Introduction

Two distinct sleep states, non-rapid eye movement 
(NREM) and rapid eye movement (REM) sleep, are pres-
ent only in mammals[1] and birds[2]. In other vertebrate 
groups such as fishes, amphibians and reptiles, sleep is uni-
tary in nature[3-6]. Similar to birds and mammals, fishes[7], 
amphibians[4] and reptiles[3] periodically undergo sleep-
wake states but display spike-like activity in the electroen-
cephalogram (EEG) during sleep and low-amplitude waves 

when awake. In birds and mammals, the EEG exhibits a 
synchronized pattern of high-amplitude slow waves dur-
ing NREM sleep and a desynchronized pattern of high-
frequency waves of low amplitude during wakefulness and 
REM sleep. These parameters, along with behavioral ob-
servation, help to characterize vigilant states in animals[1,8]. 
Further, sleep-wakefulness in almost all organisms is regu-
lated by two independent mechanisms: circadian and ho-
meostatic[9]. Although sleep in invertebrates and lower ver-
tebrates shares several behavioral and functional properties 
with mammalian and avian sleep, it also has some funda-
mental differences. For example, sleep in invertebrates and 
lower vertebrates resembles avian and mammalian sleep in 
the daily timing of inactivity, periods of increased arousal 
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threshold, and rebound after sleep loss[10]. However, the 
different stages of NREM and REM sleep, along with 
state-specific electrophysiological correlates, have evolved 
only in mammals and birds. It is believed that the complex 
nature of sleep in birds and mammals might have evolved 
gradually from the sleep state of lower organisms[2]. 

Since the discovery of REM sleep, a number of studies  
have been performed to understand how and why it 
evolved only in birds and mammals. Current knowledge 
suggests that ancient or basal birds like the ostrich[11], and 
mammals such as platypus[12], opossum[13] and ferret[14], 
manifest a large amount of REM sleep. On the other hand, 
reptiles (precursors of birds and mammals) exhibit only a 
single sleep-like state[15]. REM sleep or a REM sleep-like 
state has not been persuasively demonstrated in reptiles, 
suggesting that it has evolved in parallel and independently 
in mammals and birds. Further, semi-aquatic and aquatic 
mammals such as fur seals, dolphins and white whales 
have shed a significant amount of REM sleep and/or have 
eliminated it completely (Fig. 1). It is not known, however, 
why REM sleep is present in terrestrial mammals and birds 
and substantially reduced or eliminated in aquatic mam-
mals. In this review, we primarily discuss the nature of 
sleep in aquatic and terrestrial mammals and the possible 
impact of aquatic conditions on the evolution of REM 

sleep.

2    Discovery of REM sleep

Aserinsky and Kleitman, in 1953, observed for the 
first time a unique sleep stage in humans (both children 
and adults) when the eyes rolled in a regular fashion. They 
noted that the eyes of sleeping subjects were moving at a 
regular interval during which the EEG was similar to the 
waking condition[16]. Since the eyes were moving rapidly 
while the subject was still asleep, they named this new 
sleep stage “rapid eye movement (REM) sleep”. They also 
found that most subjects were dreaming and the respiratory 
rate was augmented during REM sleep[16,17]. Later, they 
also found an increased heart rate during REM sleep[18]. 
Following Aserinsky’s work, Dement and Kleitman re-
ported in 1957 that during REM sleep, there were almost 

no gross body and limb movements (postural muscle ato-
nia), although numerous jerky limb and digital movements 
occurred[19]. In subsequent years, the REM sleep state and 
its associated phenomena were recorded in several experi-
mental animals. For example, Dement in 1958 identified 
a sleep state of low-voltage EEG with eye movements in 
cats[20]. Jouvet’s group in 1959 found a similar sleep stage 
occurring after slow-wave sleep, which comprised rapid 
low-voltage cortical activity with no muscle tone but rapid 
eye movements with jerky paw and tail movements[21]. 
They characterized this stage as ‘paradoxical stage of 
sleep’ because the EEG resembled that during wakeful-

Fig. 1. Correlation between REM sleep (% total recording time, TRT, in A; 
% total sleep time, TST, in B) and adaptation to terrestrial, semi-
aquatic and aquatic environments in mammals. The percentages of 
REM sleep relative to total recording time and total sleep time in 
mammals showed a significant inverse correlation with adaptation 
to an aquatic medium (n = 94). All data points used for analysis are 
listed in Table 1. 
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Table 1. Percentage of REM sleep out of total recording time (TRT) and total sleep time (TST) in terrestrial, semi-aquatic and aquatic mammals

  Mammals                                                             REM sleep (% TRT)            REM sleep (% TST)                    References
                                                                                         
  Terrestrial mammals  

 1 Platypus 33.33  56.33  [12]

 2 Virginia opossum 30.58  44.97  [74]

 3 Latrine opossum 27.21  33.67  [75, 76]

 4 Giant armadillo 25.42  33.71  [75, 76]

 5 Ferret 24.42  40.41  [14]

 6 Southern opossum 23.54  29.12  [13]

 7 Large hairy armadillo 18.67  21.94  [41]

 8 Big brown bat 16.25  19.79  [77]

 9 Nine-banded armadillo 14.83  19.81  [78]

 10 Golden hamster 14.63  23.43  [79, 80]

 11 Thirteen-lined ground squirrel 14.21  24.71  [80]

 12 Arctic ground squirrel 14.08  21.02  [81]

 13 Cat 13.42  24.34  [82]

 14 Collared lemming 13.29  21.00  [83]

 15 Little pocket Mouse 13.12  15.70  [84]

 16 Belding’s ground squirrel 12.54  19.00  [85]

 17 Siberian chipmunk 12.25  24.09  [86]

 18 Western european hedgehog 12.00  28.57  [87]

 19 Brandt's hedgehog 11.75  27.33  [88]

 20 Golden-mantled ground squirrel 11.50  19.01  [85]

 21 Kangaroo rat 11.33  17.00  [89]

 22 Pig 10.96  29.13  [90]

 23 Common tree shrew 10.79  16.40  [91]

 24 Norway rat 10.75  19.48  [80]

 25 Mountain beaver 10.21  17.01  [87]

 26 Red fox 10.00  24.51  [92]

 27 Lesser mole rat 9.96  22.53  [93]

 28 Common tenrec 9.75  15.00  [87]

 29 Northern short-tailed shrew 9.58  15.44  [94]

 30 Mongolian jird 9.08  16.60  [95]

 31 Star-nosed mole 9.04  21.03  [96]

 32 Eastern mole 8.79  24.97  [96]

 33 Djungarian hamster 8.63  14.47  [97]

 34 House shrew 8.33  15.62  [94]

 35 African giant pouched rat 8.33  24.09  [98]

 36 Little brown bat 8.29  9.98  [99]

 37 Human  7.92  23.75  [98]

To be continued
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 38 Blind mole rat 7.92  15.27  [100]

 39 Northern night monkey  7.58  10.72  [76]

 40 Yellow-bellied marmot 7.54  10.39  [86]

 41 Mexican volcano mouse 7.54  10.46  [101]

 42 Brushtail possum 7.00  12.28  [102]

 43 Chimpanzee 6.75  15.00  [76, 103]

 44 Common marmoset 6.67  16.85  [104]

 45 Dog 6.46  17.96  [105, 106]

 46 Chinchilla 6.46  12.38  [80]

 47 Stump-tailed macaque 6.33 15.96  [107]

 48 Hispid cotton rat 6.16  13.09  [93]

 49 Least shrew 5.83  15.38  [94]

 50 Olive baboon 5.79  14.23  [93]

 51 Gray mouse lemur 5.71  9.57  [108]

 52 Common genet 5.42  21.31  [98]

 53 Hamadryas baboon 5.25  12.80  [109]

 54 House mouse 5.25  9.58  [80]

 55 Pale-throated three-toed sloth 4.95  11.30  [110]

 56 Greater short-nosed fruit bat 4.77  7.73  [111]

 57 Rabbit 4.54  12.91  [112]

 58 Barbary macaque 4.45  9.11  [113]

 59 Pig-tailed macaque 4.42  11.04  [114]

 60 Guinea pig 4.42  12.28  [115]

 61 Bonnet macaque 4.37  11.45  [116]

 62 Common squirrel monkey 4.29  11.28  [117]

 63 Rhesus macaque 4.08  10.95  [118]

 64 Yellow-spotted hyrax 3.79  17.16  [119]

 65 Senegal galago 3.63  11.15  [120]

 66 Patas monkey 3.58  7.93  [121]

 67 Lesser dawn fruit bat 3.57  5.80  [111]

 68 Black lemur 3.50  8.70  [122]

 69 Horse  3.29  27.43  [39]

 70 Yellow baboon 3.25  7.88  [123]

 71 Cow 3.13  18.89  [39]

 72 Goat 2.95  13.15  [40]

 73 Long-nosed potoroo 2.58  5.81  [124]

 74 Vervet monkey 2.50  5.80  [121]

 75 Sheep 2.37  14.81  [39]

 76 Rock hyrax 2.29  11.23  [119]

 77 Guinea baboon 2.25  6.01  [109]

Continued

To be continued
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ness, whereas behaviorally the animal remained asleep[21]. 
In the same year, this sleep stage was also recorded in the 
rabbit[22], and in subsequent years in the dog[23], monkey[24], 
rat[25], mouse[26] and several other mammals (details in 
Table 1). The classic signs of REM sleep, such as fast low-
voltage EEG, atonia, cessation of thermoregulation, and 
ponto-geniculo-occipital (PGO) spikes were discovered 
first in the cat, but tonic features associated with REM 
sleep were later recorded in most terrestrial mammals (for 
details see review[27]).   

After the discovery of REM sleep in mammals, at-
tempts were made to find it in non-mammalian species 
such as birds and reptiles. In 1964, two groups (Klein et 
al., and Ookawa and Gotoh) reported a periodic recurrence 
of fast low-voltage EEG waves during behavioral sleep in 
birds[28,29], which was later reconfirmed as REM/paradoxi-
cal sleep[30-33]. Interestingly, hippocampal theta activity (4–7 

Hz), typical of mammalian REM sleep and equivalent to 
spontaneous mammalian PGO waves had not been reliably 
observed in birds[32]. Although some of the REM sleep- 
associated tonic features were not reliably recorded in 
birds, it was confirmed by several reports that REM sleep 
is present in birds[34]. In order to trace the phylogenetic 
correlates of REM sleep in lower vertebrates, attempts 
were made to characterize this sleep state in reptiles such 
as crocodiles, alligators, lizards, snakes and tortoises but 
REM sleep or a REM sleep-like state has never been ob-
served or recorded in reptiles[7]. Although Huntley and 
associates and a few others have reported the presence of 
REM sleep in some reptiles[35], clear confirmatory evidence 
is still lacking. Since the discovery of REM sleep, several 
studies have clearly demonstrated that it is found distinctly 
in birds and mammals and not in lower vertebrates such as 
reptiles, amphibians and fishes.

 78 Degu 2.16  7.51  [125]

 79 Tree hyrax 2.08  10.22  [119]

 80 Mongoose lemur 1.50  3.03  [122]

  Semi-aquatic mammals   

 81 Southern sea lion 9.71  39.29  [46]

 82 Gray seal 6.25  24.19  [52]

 83 Walrus 5.00  8.33  [48]

 84 Elephant seal 5.00  11.11  [51]

 85 Northern fur seal 4.70  12.46  [54]

 86 Cape fur seal 4.58  14.32  [45]

 87 Harp seal 3.2  12.83  [50]

 88 Sea otter 2.50  6.66  [44]

 89 Caspian seal 1.71  11.78  [49]

  Aquatic mammals   

 90 Amazon manatee 1  3.57  [64]

 91 Bottlenose dolphin 0  0  [60]

 92 Black sea porpoise  0  0  [61]

 93 White whale 0  0  [63]

 94 Amazon dolphin 0  0  [62]

Note: Total sleep time in aquatic mammals is quantified by combining all slow-wave stages, such as moderate synchronization with sleep spindles and delta waves 

appearing individually in either hemisphere during unihemispheric sleep.

Continued
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3    REM sleep in the terrestrial, semi-aquatic 
and aquatic mammals: Comparative studies

3.1  REM sleep in terrestrial mammals  Sleep studies 
have mostly been performed in mammals and REM sleep 
has been electrophysiologically recorded in ~80 terrestrial 
species (Table 1). Phylogenetically, mammals fall into 
three sub-classes: (1) prototheria [egg-laying mammals: 
the echidna (Tachyglossus aculealus) and the duckbilled 
platypus (Ornithorhynchus anaticus)]; (2) metatheria 
(marsupials such as kangaroo and opossum); and (3) eu-
theria (placental mammals). In the mammalian lineage, it 
is believed that the prototheria might have evolved from 
reptiles, hence are ancient in origin and a connecting link 
between reptiles and mammals[36]. Some features of the 
echidna such as microchromosomes, filiform sperm, and 
egg-laying, closely resemble reptiles[36] and interestingly, 
REM sleep has not been found reliably in echidna and 
reptiles[7,35,37].  It was proposed, therefore, that REM sleep 
might have originated in recent metatheria and/or euthe-
ria[37]. Siegel’s group, however, later found that REM sleep 
is present in the duckbilled platypus[12], thus refuting the 
hypothesis that REM sleep evolved relatively recently. 
They observed that the platypus not only exhibits REM 
sleep, but also displays the highest amount (5.8–8 h/day), 
more than any other animal studied so far[12]. Further, based 
on the firing properties of brainstem neurons in the echid-
na, the same group reported that echidna sleep may have 
features of combined REM and NREM sleep. It remains 
ambiguous whether the echidna has combined aspects of 
REM and NREM sleep or no REM sleep because only one 
study has reported some of the typical characteristics of 
REM sleep[38]. 

Ancient mammals spend the most time in REM sleep 
(platypus: 33.33%; Virginia opossum: 30.58%; lutrine 
opossum: 27.20%; ferret: 24.41%) while relatively mod-
ern mammals spend varied amounts of time, ranging from 
13.42% in the cat to 3% in the cow, goat and sheep (Table 1). 
A decreasing trend was further noted in the mongoose le-
mur, which spends only 1.5% of its time per day in REM 
sleep (the lowest amount of REM sleep in any terrestrial 

mammal studied so far) (Table 1). These data suggest 
that REM sleep might have evolved in ancient mammals 
or their ancestors, but later, during the course of evolu-
tion, it remained high in some while it dwindled in oth-
ers. Further, some mammalian species sleep notably less 
than others. For example, cow and goat sleep only 4–5 h/
day[39,40], while the large hairy armadillo usually sleeps 20 
h/day[41]. It can also be argued that animals that sleep less 
would exhibit less REM sleep. Although this could be true, 
an important interesting fact is that the majority of both 
long and short sleepers maintain REM sleep at a relatively 
constant 16.87 ± 0.009% of the total sleep period. Species 
that show exceptionally different NREM/REM sleep pro-
portions are the platypus, opossum and ferret, which have 
a very high proportion of REM sleep (25–56%) and some 
species of bat, monkey and lemur which exhibit a very 
low proportion (3–7%) of the total sleep period (details in 
Table 1). We do not yet have a clear understanding of why 
some terrestrial mammals have reduced their total sleep 
time, although some reasons could be energy conservation, 
survival strategy, ecological need or other evolutionary 
forces[42,43]. 
3.2  REM sleep in semi-aquatic mammals  Pinnipeds, 
semi-aquatic mammals, have adapted their sleep to the 
aquatic environment. They have a distinctive sleep pattern 
as they can sleep on land as well as in water. On land, their 
sleep is very similar to terrestrial mammals displaying both 
NREM and REM sleep with bihemispheric symmetry in 
slow-wave generation during NREM sleep. While in water, 
they exhibit inter-hemispheric asymmetry in the genera-
tion of slow-waves during NREM sleep and interestingly, 
a substantial decrease in REM sleep[44-48]. Some pinni-
peds, such as Caspian seals (Phoca caspica)[49], harp seals 
(Pagophilus groenlandica)[50] and elephant seals (Mirounga 
angustirostris)[51], do not exhibit inter-hemispheric asym-
metry in slow-wave generation during NREM sleep, sug-
gesting that unihemispheric sleep is typical of fur seals and 
sea lions but not of all semi-aquatic pinnipeds.

Ridgway et al., in 1975, for the first time studied sleep 
telemetrically in four adult gray seals (Halichoerus grypus)[52] 
and found that they can sleep under the water, on the sur-
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face, and out of the water. They found that sleep in gray 
seals is distinct from that in terrestrial mammals in many 
ways: (1) REM sleep comprises 6.35% of total recording 
time, and is accompanied by rapid but regular heart and 
respiratory rates (which are usually irregular during REM 
sleep in terrestrial mammals); and (2) REM sleep appears 
before NREM sleep, whereas in other terrestrial mammals 
it normally follows NREM sleep[52]. Later, Mukhametov 
et al., while recording sleep polygraphically in three sub-
adult northern fur seals (Callorhinus ursinus), observed a 
sleep pattern similar to that reported by Ridgway et al. in 
the gray seal[52]. Mukhametov et al. recorded 5.8% REM 
sleep in the northern fur seal[53]. Interestingly, they also 
showed, for the first time, an inter-hemispheric asymmetry 
in the generation of slow waves during NREM sleep in 
the northern fur seal[53]. Later, they further confirmed this 
unique event as ‘the generation of inter-hemispheric asyn-
chrony of slow wave activity’ in the northern fur seal and 
suggested that this phenomenon is not specific to aquatic 
cetaceans[54]. Nevertheless, in two other pinnipeds (the 
Caspian seal and the harp seal, which are morphologi-
cally very close to the northern fur seal), inter-hemispheric 
asymmetry in slow waves has not been found[49,50]. Al-
though the harp seal does not exhibit unilateral sleep, its 
sleep pattern exhibits a remarkable phenomenon. When 
harp seals sleep on land, they exhibit ~3.2% REM sleep, 
but in water they barely go into REM (0.5%)[50]. Castellini 
et al. compared sleep in northern elephant seal pups under 
dry and wet conditions and demonstrated that the length of 
REM sleep episodes significantly decreases under wet con-
ditions[51]. Similar characteristics have also been recorded 
in northern fur seals[55]. When the northern fur seal sleeps 
on land, it exhibits ~5% REM sleep but when it sleeps in 
water, the proportion of REM sleep decreases consider-
ably[55]. In order to find similar REM sleep patterns in 
other mammals that have adapted to constant living in 
the aquatic environment, Laymin et al. investigated the 
behavioral sleep pattern in sea otters (Enhydra lutris) and 
found that they exhibit REM sleep-like behavior in water 
as well as on land[44], though it is not clear if the proportion 
decreases significantly when they sleep in water. Interest-

ingly, it was noted that the longest episodes of REM sleep 
occurred on land[44]. Further, they studied the sleep patterns 
in the walrus, the only surviving representative of the fam-
ily Odobenidae. When on land, the walrus exhibits 6.9% 
REM sleep, but in water this significantly decreases to 
1.1%[47]. This evidence thus suggests that REM sleep is not 
expressed at its full length if these animals sleep in water.

The three families of pinnipeds, Odobenidae, Otarii-
dae and Phocidae, comprise 35 species. Among these, the 
sleep-wakefulness pattern has been studied in only 8, and 
REM sleep has been reported in all of these. Most of these 
animals [walrus[47] (Odobenidae), elephant seal[51] and harp 
seal[50] (Phocidae), and northern fur seal[55] (Otariidae)] ex-
hibit either less REM sleep or shorter REM episodes in wa-
ter than on land. In another four pinnipeds: gray seal[52] and 
Caspian seal[49] (Phocidae); cape fur seal[45] and sea lion[46] 
(Otariidae) the amount of REM sleep could not be charac-
terized in both conditions, so it is undetermined whether 
these animals also exhibit differential REM sleep expres-
sion on land and in water. REM sleep was also found in 
another semi-aquatic mammal, the sea otter, which belongs 
to the Mustelidae and is adapted for constant living in the 
aquatic environment. Nevertheless, out of the nine semi-
aquatic mammalian species studied so far, the majority (five 
species) express more REM sleep when on land, but dras-
tically curtail it while sleeping in water. Thus, it seems that 
aquatic conditions may not be favorable for REM sleep.
3.3  REM sleep in aquatic mammals  Aquatic mammals 
belonging to two families, Cetacea and Sirenia, have a 
notable sleep pattern: one half of the brain remains active 
while the other half sleeps, and each half exhibits ~4 h of 
slow-wave sleep per day[56]. John Lilly for the first time 
noted that dolphins sleep with one eye open and the other 
closed[57]. He assumed that the dolphin scans its environ-
ment all the time by keeping one half of the brain always 
active[57]. His finding may have led to the discovery of uni-
hemispheric sleep in dolphins[56]. 

Mukhametov and his team (in 1975) recorded EEG in 
the bottle-nose dolphin for the first time and reported oc-
casional asynchronous development of EEG slow waves 
in both hemispheres[58]. In addition, they noted that the 



Vibha Madan, et al.    Sleep alterations in mammals: Did aquatic conditions inhibit REM sleep? 753

dolphin does not show any polygraphic signs of REM 
sleep[58], though an earlier study by Shurley et al. (in 1969) 
reported episodes of REM sleep in the pilot whale[59]. In 
all subsequent physiological studies, however, it was con-
firmed that REM sleep is absent from the Cetacea bottle 
nose dolphin[60], black sea porpoise[61], amazon river dol-
phin[62] and beluga whale[63], while in the amazon manatee 
(Sirenia), only a few episodes of REM sleep were recorded[64]. 
Although sleep has been studied extensively in only a 
few cetaceans and REM sleep is absent in most of them, 
further studies are needed to confirm whether REM sleep 
or its associated signs are indubitably absent in Cetacea. 
Lyamin et al. pointed out in their review that the traditional 
criteria used to identify REM sleep may not be appropriate 
for cetaceans because if dolphins have REM sleep of short 
duration, it could remain unnoticed[56]. Another reason for 
unidentified REM sleep in cetaceans could be the possibil-
ity that they have a modified form of REM sleep[56]. The 
latter, however, seems unlikely because the semi-aquatic 
pinnipeds exhibit the conventional form of REM sleep and 
its associated signs, living in similar conditions in water 
and on land. The difference in REM sleep in water and on 
land is that pinnipeds have significantly less REM sleep in 
water. It is likely that during the course of divergent evolu-
tion, REM sleep may not necessarily be required, and thus 
was eliminated in all aquatic mammals. 

4    Do aquatic conditions disfavor REM sleep 
continuity? 

Sleep in some semi-aquatic mammals is unique be-
cause it changes from bihemispheric on land to unihemi-
spheric in water. It is noteworthy that when on land, sleep 
in fur seals generally resembles that of most terrestrial 
mammals, i.e. the sleep cycle alternates between NREM 
and REM sleep and the bilateral EEG exhibits synchroni-
zation during NREM sleep and desynchronization during 
REM sleep. But when the fur seal is in water, the occur-
rence of REM sleep declines to the extent that there may 
not be even a single episode[46]. It is not known how the 
brain switches from terrestrial bihemispheric to aquatic un-
ihemispheric sleep in semi-aquatic mammals. In fact, it has 

been suggested that sleep in fur seals defies the principle 
of homeostatic regulation, since no rebound of lost REM 
is seen when it returns to land after staying several weeks 
in water[42]. Unihemispheric and bihemispheric sleep have 
their own specific properties, probably regulated by differ-
ent mechanisms. A neuronal mechanism activated in ani-
mals when they are in water could induce the distinctive 
unihemispheric aquatic sleep and simultaneously eliminate 
REM sleep. Hence, one would not expect a REM rebound 
once the organism regained bihemispheric terrestrial sleep. 

The amount of REM sleep in mammals may depend 
on their degree of adaptation to the aquatic and non-aquatic 
environments. REM sleep in completely aquatic mammals 
such as the dolphin, porpoise, white whale and manatee is 
either completely absent or present in a negligible amount 
(dolphin and white whale: 0%; manatee: 1%)[64,65]. Semi-
aquatic mammals such as seals exhibit comparatively more 
REM sleep than aquatic mammals but less than terrestrial 
mammals. The amount of REM sleep (% of total recording 
time and % of total sleep time) in 94 mammalian species 
is listed in Table 1. When we correlated the percentage of 
REM sleep out of total recording time (Fig. 1A) and also 
out of total sleep time (Fig. 1B) with adaptation to aquatic, 
semi-aquatic and terrestrial conditions for these 94 mam-
mals, the correlations were significantly negative. Most 
terrestrial mammals exhibit a high amount and proportion 
of REM sleep compared to semi-aquatic mammals, while 
aquatic mammals either do not have REM sleep or even if 
they have it, it is very little. This suggests that when ani-
mals remain in water, aquatic conditions somehow restrain 
the genesis of REM sleep.

Studies on the sleep patterns in reptiles that have ei-
ther adapted to aquatic life or live near water [such as the 
turtle, black iguanid lizard (Ctenosaura pectinata) and 
green iguanid lizard (Iguana iguana)] are limited. It is 
likely that the unitary form of sleep will be found in such 
animals. Sleep remains to be examined thoroughly in rep-
tiles that stay away from water. This might provide clues 
regarding the evolution of the dual nature of sleep. Inter-
estingly, REM sleep can be artificially abolished in ter-
restrial mammals using specific deprivation methods, such 
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as disk-over water, multiple or single platform, and wire-
mesh grid platform in which water is used as the surrounding 
medium[66-69]. In the wire-mesh grid platform method, the 
animal is kept on a platform with a guard of wire mesh 
grid and the water level is kept 1 cm below the platform in 
a tank, so the animal cannot fall into the water and/or make 
contact with it. Merely keeping an animal in such a condi-
tion suppresseses REM sleep. However, keeping an animal 
over water could be stressful and/or fear-inducing, and it 
is known that stress/fear suppresses REM sleep[70]. It is not 
clear what contributes to the elimination of REM sleep in 
these protocols, stress or the presence of water; but from 
the examples of sleep patterns in the semi-aquatic pini-
peds, it seems that less REM sleep is expressed in aquatic 
conditions.

5    Possible advantages of REM sleep elimina-
tion in aquatic mammals

Significantly less REM sleep in semi-aquatic and 
some aquatic mammals and no REM sleep in cetaceans 
raise unanswered questions, such as whether the evolution 
of REM sleep in vertebrates was confined to life on land 
and/or whether adaptation to life in an aquatic environment 
inhibited the occurrence of REM sleep. It is possible that 
REM sleep serves a meaningful purpose only in terrestrial 
animals and hence its evolution is restricted to them. In the 
majority of terrestrial mammals, basic somatic features of 
REM sleep such as atonia, REMs and myoclonic twitches 
occur[71]. The dramatic atonic condition during REM sleep 
occurs because the motoneurons, which innervate muscle 
fibers, are actively inhibited[72]. The aquatic mammals are 
obligate swimmers and have evolved unihemispheric sleep, 
during which they can sleep with one half of the brain and 
simultaneously remain moving to sustain life. Therefore, 
a condition that could immobilize them or restrict their 
movement, as usually happens during REM sleep in ter-
restrial mammals, cannot be advantageous. In addition, 
it has been observed in terrestrial mammals that the ther-
moregulatory mechanism and response to thermal load re-
mains suspended or inhibited during REM sleep[71], so the 
responses are similar to those of poikilothermic animals. 

The aquatic mammals live in thermally challenging envi-
ronments and it is known that conductive heat loss is ~90 
times greater in water than air. Since all mammals have 
distinctive thermoregulatory machinery, aquatic mammals 
do not differ in this from other mammals. If aquatic mam-
mals had REM sleep, they would face the herculean task of 
managing their body temperature during REM sleep. There 
could, however, be several other reasons for doing away 
with REM sleep. Considering all, it seems that REM sleep 
may not be favorable for life in an aquatic environment 
and might have subsequently been reduced or eliminated 
in aquatic mammals.

6    Conclusion

We have limited information to understand the evolu-
tion of the dual nature of sleep in higher vertebrates. REM 
sleep has been characterized in birds and mammals only. 
Within mammals, however, REM sleep is absent in ceta-
ceans and is drastically reduced in semi-aquatic mammals. 
Although in-depth sleep studies have only been performed 
in a limited number of aquatic and semi-aquatic species, 
the data consistently show less or no REM sleep in these 
animals. Since aquatic and semi-aquatic mammals live in a 
challenging environment, the presence of REM sleep could 
do more harm than good. Therefore, REM sleep might 
have been reduced or eliminated in the evolution of some 
mammals. This also indicates a great influence of selec-
tion/evolutionary forces on sleep characteristics. It has also 
been proposed that some aquatic mammals may survive 
for several weeks without sleep, while terrestrial mammals 
cannot survive long[73]. This suggests that the sleep patterns 
in aquatic and terrestrial conditions are basically distinct. 
Therefore, we need to develop a detailed understanding of 
the evolution of sleep and its functions. 
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