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There is no effective drug to treat Alzheimer’s disease (AD), a neurodegenerative disease affecting an esti-
mated 30 million people around the world. Strongly supported by preclinical and clinical studies, amyloid-beta 
(Aβ) may be a target for developing drugs against AD. Meanwhile, the fact that localized neuronal death/loss 
and synaptic impairment occur in AD should also be considered. Neuronal regeneration, which does not occur 
normally in the mammalian central nervous system, can be promoted by neurotrophic factors (NTFs). Evidence 
from clinical trials has shown that both Aβ clearance and NTFs are potentially effective in treating AD, thus a 
new approach combining Aβ clearance and administration of NTFs may be an effective therapeutic strategy. 
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Introduction

Alzheimer’s disease (AD) is an age-related, progressive 
and irreversible neurodegenerative disease that causes 
serious cognitive dysfunction. Its pathological hallmarks are 
extracellular deposits of amyloid-beta (Aβ) and intracellular 
neurofibrillary tangles, together with drastic synaptic and 
neuronal reduction or loss[1]. It has been estimated that AD 
affects 30 million people around the world[2], and the past 
two decades have witnessed an explosion in research into 
the underlying mechanisms as well as potential therapeutic 
strategies. Although it was first described by German psy-
chiatrist Alois Alzheimer in 1906, there is still no cure for 
AD, partly because the cellular and molecular mechanisms 
underlying it are far from clear. 

The Food and Drug Administration in the United States 
has approved a limited range of drugs to treat AD, including 

acetylcholinesterase inhibitors (AChEIs) and N-methyl-D-
aspartate receptor (NMDAR) antagonists[3], although their 
effects are merely symptomatic and memory-improvement 
occurs within a limited period. Donepezil, galantamine, 
rivastigmine and tacrine are AChEIs that prevent the break-
down of acetylcholine released from presynaptic terminals, 
increasing the residence time of the neurotransmitter within 
the synapse and thereby prolonging the duration of its 
interaction with postsynaptic receptors[4]. Memantine, an 
NMDAR antagonist, has been approved for the treatment of 
moderate and severe AD; it works by preventing the excit-
atory neurotoxicity induced by excessive glutamate[5]. 

Currently, no available pharmacological agents cure 
or reverse the progression of this devastating neurological 
disorder. It is therefore urgent to improve our understand-
ing of its pathogenesis, and then develop an effective 
treatment strategy. This review aimed to provide insights 
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into the design of potentially effective pharmaceutical treat-
ments for AD by targeting two seemingly separate but tightly  
connected components, Aβ and neurotrophic factors (NTFs).

Aβ as a Promising Target for AD Treatment

Aβ is a peptide of 36–43 amino-acids produced from amy-
loid precursor protein (APP) through aberrant cleavage by 
β- and γ-secretases. According to the Aβ cascade hypoth-
esis proposed by Hardy and Selkoe, the accumulation of 
extracellular Aβ aggregates or senile plaques is the key 
causative factor in the pathological or neurodegenerative 
changes associated with the development of AD, including 
inhibition of long-term potentiation, impairment of synaptic 
function, and eventual neuronal death/loss leading to cogni-
tive decline[6-8]. 

Of the AD-related factors listed in Table 1, ~50% are 
associated with Aβ. Although many factors are also known 
to be associated with AD (Table 1), the Aβ hypothesis re-
mains the focus of research. This is strongly supported 
by the observation of abundant deposits of Aβ in the brain 
in both sporadic AD (~95% of cases) without a clear in-
heritance pattern, and familial AD (~5% of cases) with 
autosomal dominant inheritance caused by mutations of 
APP and the homologous presenilin genes, presenilin 1 
and 2. These mutations inevitably lead to increased levels 
of Aβ which is considered to be the molecule that initiates 
neuronal degeneration[47]. Evidence for this hypothesis 
comes from APP transgenic mice that show correlations 
between elevated Aβ, Aβ plaques and cognitive deficits. 
Clinical studies of AD also support this hypothesis. Rovelet-
Lecrux et al. reported a duplication of the APP locus on 
chromosome 21 in five families with autosomal dominant 
early-onset AD[48]. Barthel et al., using positron emission to-
mography (PET) images of florbetaben (an 18F-labeled Aβ-
targeted PET tracer), demonstrated that nine of ten mild-
moderate probable AD participants (DSM-IV and NINCDS-
ADRDA criteria) were Aβ-positive, compared to only one of 
ten healthy controls[49]. Furthermore, in a global phase 2, 
open-label, non-randomized, multi-center study recruiting a 
total of 81 men and women with probable mild-to-moderate 
AD and 69 cognitively unimpaired healthy volunteers aged 
55 years and older, florbetaben scans indicated a sensitivity 
of 80% (95% CI 71–89) and a specificity of 91% (84–98) for 
discriminating participants with AD from healthy controls[50].

In addition, Aβ has recently been reported to alter tau 
phosphorylation, which is associated with the other cardi-
nal lesion of AD, neurofibrillary tangles composed primarily 
of hyperphosphorylated tau[51]. Zeng et al.[52], for example, 
reported that Aβ-induced neurotoxicity can be attenuated 
by inhibiting tau protein hyperphosphorylation. It is conceiv-
able that the two pathological hallmarks of AD, Aβ deposits 
and neurofibrillary tangles, may actually reflect two distinct 
patterns of impairment caused by Aβ. 

Aβ and NTF Deficiency as a Toxic Feed-Forward 
Loop Leading to AD

To date, various mechanisms underlying the impairments by 
Aβ have been proposed, including decreased brain-derived 
neurotrophic factor (BDNF) expression, activated inflamma-
tory cells, generation of reactive oxygen species, inhibition of 
long-term potentiation, impairment of synaptic structure and 
function, and acceleration of neurofibrillary tangle formation 
(Table 1). 

Aβ Downregulates NTFs  
As neurotrophic effects are directly correlated with neuronal 
survival and the maintenance of synaptic plasticity, neu-
rotrophic imbalance is a likely mechanism of Aβ impairment. 
NTFs, such as BDNF and nerve growth factor (NGF), play 
critical roles in neuronal survival and regeneration as well as 
synaptic plasticity. More importantly, Aβ has been found to 
contribute to the downregulation of NTFs. 

Peng et al. demonstrated that transgenic mouse mod-
els of AD harboring mutations in APP resulting in Aβ over-
production, show a significant reduction in cortical BDNF 
mRNA expression in comparison with wild-type mice[9]. 
The cortex and hippocampus, regions involved in learning 
and memory, exhibit both increased Aβ production and re-
duced BDNF levels in AD[53-55]. Aβ may impair neurotrophic  
signaling by decreasing NTF levels. NTF deficiency has the 
same presentation as the end-point of AD, neuronal loss 
and synaptic dysfunction. Regionalized neuronal death/loss 
and synaptic impairment in the process of AD have been 
demonstrated in many diagnostic, clinical, and pathological 
studies[56-59]. For example, West et al.[60] found that neurons 
in the CA1 region of the hippocampus decline from 14.08 × 
106 neurons in an age-matched control group to 4.40 × 106 
neurons in an AD group. Similarly, significant neuronal loss 
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in AD was confirmed by Bonbinski et al.[61] who demonstrat-
ed that the neuronal count in CA1 in AD patients is 14% of 
that in a normal elderly control group. Masliah et al. found 
that mild AD cases show a 25% loss of synaptophysin, a 
synaptic protein[62]. These findings provide evidence that 
neuroregeneration might be an approach to treat AD.
NTF Deficits Cause Aβ Overload  
Recent evidence suggests that Aβ neurotoxicity may be a 
consequence of NTF deficiency. This is supported by the 
finding that the AD11 mouse model, which expresses the 
recombinant monoclonal antibody αD11 that specifically 
neutralizes NGF thus causing NGF deprivation, shows AD-
like pathology including Aβ accumulation and hippocampus-
dependent memory deficits[63,64]. Based on the report that 
activation of the amyloidogenic route by NGF deprivation 

induces apoptotic death in PC12 cells[65], Matrone and col-
leagues further found that APP and presenilin 1 N-terminus 
(which is the active component endowed with γ-secretase 
activity) levels were increased in hippocampal neurons that 
were previously exposed to NGF or BDNF for 48 h followed 
by deprivation by anti-NGF (or -BDNF) antibodies[66]. These 
findings suggest that Aβ and NTF deficits cause a feed-
forward loop that accelerates the toxicity of Aβ sufficient to 
cause neuronal death.

Moreover, p75 neurotrophin receptor (p75NTR), a 
pan-receptor for neurotrophins including BDNF, NGF, neu-
rotrophin-3 and neurotrophin-4/5, has been reported to 
correlate with Aβ production. Knockout of p75NTR in APP-
transgenic mice reduces the Aβ production in the brain, 
suggesting that activation of p75NTR in Aβ-related pa-

Table 1. Proposed pathogenesis of Alzheimer’s disease (AD)

Causative/risk factors Consequences

Aβ                                                                                  Down-regulation of BDNF[9], activation of inflammatory cells[10], generation of reactive  

                                                                                      oxygen species[11], inhibition of long-term potentiation[6], impairment of synaptic structure 

                                                                                      and function[7,8], acceleration of neurofibrillary tangle formation[12]

Altered function of blood-brain barrier                           Decreased clearance of Aβ[13], leakage of serum-derived components into brain 

                                                                                            leading to neuronal dysfunction[14], promotion of aluminum accumulation in brain[15]

Brain trauma Increased risk of AD[16,17]

Chronic stress Induction of abnormal hyperphosphorylation of tau[18] , accelerated impairment of cognition[19]

Decline in protein synthesis Further neuronal impairment caused by other factors[20,21]

Decline in stimulation and acetylcholine  Impaired memory circuitry[22,23]

Decreased levels of neurotrophic factors Deficient support for neuronal survival[24,25]

Depression Chronic inflammation, impairment in the signaling of neurotrophins[26]

Diabetes Apoptosis of neurons, defects of long-term potentiation, changed synapse plasticity[27,28]

Downregulation of neprilysin Promotion of Aβ deposits[29-31]

Enhanced reactive oxygen species levels  Contributes to mitochondrial dysfunction[32,33]

and calcium overload 

Glutamate increases Neuronal excitotoxicity leading to neuronal death[34,35]

Hyperphosphorylated tau Formation of neurofibrillary tangles[36,37]

Inflammation                                                                 Exacerbation of tau pathology[38], induction of Aβ release from neurons[39], attenuation of 

                                                                                      long-term potentiation[40], retraction of synapses[41]

Metal ion dyshomeostasis Promotion of Aβ aggregation[42,43]

Mutations in genes for presenillin-1 and -2, and   Increased Aβ levels, linked to Aβ accumulation[44-46]

amyloid precursor protein; ApoE 4 allele genotype
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thologies leads to increased Aβ production[67]. This finding 
may well explain the sporadic AD which does not involve 
mutations of genes implicated in Aβ generation. In the AD 
brain, p75NTR expression is increased while neurotrophin 
levels are decreased, resulting in activation of the neuro-
degenerative pathway (triggered by proNGF and Aβ) that  
leads to Aβ overproduction, neuronal death, and finally 
cognitive decline, rather than activation of the neurotrophic 
pathway (triggered by neurotrophins) that promotes neu-
ronal survival and improves cognition[68]. Moreover, AD11 
transgenic mice with chronic NGF deprivation (that is, the 
transgenic anti-NGF antibodies bind to mature NGF much 
more strongly than to proNGF, leading to a decrease in 
mature NGF availability with a lower NGF/proNGF ratio) 
show Aβ accumulation and cognitive decline, for which the 
“neurotrophic deficit” hypothesis was recently refined as 
“neurotrophin imbalance”[63]. Interestingly, by crossing anti-
NGF mice to p75NTRexonIII(−/−) mice, Capsoni reported a full 
rescue of anti-NGF mice with the Aβ phenotype by p75NTR 
signaling abrogation[69]. It would thus be reasonable to 
enhance the neurotrophin/p75NTR/Trks pathway by intro-
ducing exogenous NTFs, switching the neurodegenerative 
pathway of p75NTR to the neurotrophic pathway and re-
ducing Aβ load in the brain.

The Status quo of AD Treatment Using Aβ Clear-
ance

Aβ clearance has shown potential effectiveness in treat-
ing AD. Treatment with bapineuzumab, a humanized anti-
Aβ monoclonal antibody, decreased the cortical Aβ load in 
patients with mild-moderate AD in a phase 2 clinical trial[70]. 
Exploratory analyses in another phase 2 trial of bapineu-
zumab in mild-moderate AD showed that potential treatment 
difference was found for 79 APOE ε4 noncarriers (47 bap-
ineuzumab vs 32 placebo) and for completers (defined as 
patients who completed all bapineuzumab treatment and 
a week 78 efficacy assessment in this trial, 36 bapineu-
zumab vs 21 placebo)[71]. Bapinneuzumab is now under-
going phase 3 clinical trials. However, many failures have 
occurred in clinical trials for Aβ-lowering agents. Results 
obtained from a phase 1 trial on the long-term effects of 
Aβ42 immunization using AN1792 (a synthetic form of the 
42 amino-acid Aβ peptide) showed that the immunization 
cleared amyloid plaques composed primarily of Aβ in pa-

tients with AD but failed to prevent progressive neurode-
generation[72]. Alternative approaches that included target-
ing β- and γ-secretases, crucial enzymes for Aβ generation 
from APP, have been far from successful. Clinical trials us-
ing Semagacestat, the most studied γ-secretase inhibitor, 
have shown no promising improvement as far as cognitive 
function is concerned. Similar disappointing results have 
been obtained in two large phase 3 studies of a γ-secretase 
modulator (tarenflurbil) in patients with mild AD[73-75], and for 
tramiprosate, which targets the production of Aβ[76]. 

Therefore, a question arises as to why Aβ clearance 
for AD treatment seems not as effective as predicted by 
the Aβ hypothesis. One could argue that AD researchers 
should think outside Aβ box[77]. However, these failures 
do not predict the future, as proposed by Selkoe. On one 
hand, the failures of these experimental drugs may be 
due to their intrinsic drawbacks. Tarenflurbil is a weak 
γ-secretase modulator (~250 µmol/L half-maximal inhibitory 
concentration) with poor brain penetration[78]. Semagacestat 
is a non-selective γ-secretase inhibitor with a therapeutic 
index of <3; its half-maximal inhibitory concentration for 
Aβ reduction is only two to three times lower than that for 
inhibiting Notch cleavage[79], a receptor involved in regulat-
ing cell-fate decisions. Deficient Notch signaling is a severe 
side-effect of γ-secretase inhibitors; it can cause abnor-
malities in the gastrointestinal tract, thymus and spleen[80]. 
Besides, none of these experimental drugs showed enough 
potential disease-modifying of AD in phase 2 clinical trial 
but they were nevertheless advanced to phase 3 clinical 
trial[81], which could in part account for this status quo of Aβ 
clearance treatment. On the other hand, anti-Aβ therapies 
may be highly effective in preventing or slowing the prog-
ress of AD in asymptomatic patients with very early signs 
of AD pathology (that is, presymptomatic phases of AD are 
likely to benefit from anti-Aβ therapies)[82]. 

Other Therapeutic Approaches to AD 

In addition to Aβ, microtubule-associated protein tau, 
the hyperphosphorylation of which contributes to axonal 
transport disruption and the accumulation of neurofibrillary 
tangles[83], is also an important therapeutic target for AD. 
As dysregulation of tau processing causes neuronal de-
generation correlated with AD[84], researchers have made 
substantial efforts to search for targets to reverse abnormal 
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tau processing. To date, several kinases have been identi-
fied as key players in abnormal tau phosphorylation, par-
ticularly glycogen synthase kinase 3 (GSK-3) and protein 
phosphatase 2A[85]. The role of GSK-3 in the development 
of AD-like cognitive decline was supported by Liu et al.[86] 
who found that inhibition of phosphoinositol-3 kinase and 
protein kinase C results in overactivation of GSK-3, leading 
to tau hyperphosphorylation and eventually impaired spa-
tial memory. Lithium, a GSK-3 inhibitor, has been shown to 
reduce the amount of altered tau protein in animal studies 
and improve cognitive and biological outcomes in partici-
pants with amnestic mild cognitive impairment in a phase 2 
clinical study[87].

Besides, since inflammation may participate in the 
neurodegenerative process of AD, the use of non-steroidal 
anti-inflammatory medications such as naproxen may 
reduce AD incidence in vulnerable subjects[88]. Oxidative 
stress is also reported to play a role in the process of AD, 
as strongly proposed by Smith and Perry[89,90], and antioxi-
dants may be associated with a lower risk of AD[91]. These 
treatment strategies for AD are still under way and more 
investigations and trials are needed to test their efficacy in 
its prevention or treatment.

Perspectives

Currently, a major problem we have to combat is that pa-
tients with AD do not receive interventional treatment until 
it has already developed to a level at which neurons have 
already been so disrupted that, we think, targeting Aβ alone 
is insufficient to cure the disease. Previous attempts using 
the approach of Aβ clearance decreased Aβ levels in the 
brain, as demonstrated by both preclinical studies in cellular 
or animal models and clinical trials. However, injured neu-
rons cannot repair themselves. Neurons and synapses are 
the basic units of the nervous system and neural circuits. In 
the peripheral nervous system, injured neurons are capable 
of regenerating. Neuronal regeneration, however, does not 
occur normally in the mammalian central nervous system 
(CNS), a phenomenon that has been well documented[92]. 
Under normal circumstances, very few, if any, axons in the 
CNS can regenerate past a lesion site where distinctive 
large endings (retraction bulbs) are found[93]. 

There is a metaphor that vividly elucidates the failure 
of targeting Aβ to treat AD. Suppose a mouse runs into 

a house and chews through the electrical circuit for light-
ing the house, then the light bulbs associated with this 
circuit will be off due to the failure of power. A mousetrap 
is used to catch the mouse to prevent further impairment 
of the circuit. If the broken circuit is not repaired, the light 
bulb is still off even though the mouse has been captured. 
Not only should the mouse be captured, but the broken 
circuit should be fixed in order to make the light work. In 
this image, we metaphorically take the mouse to be Aβ, 
the mousetrap to be Aβ clearance, the electrical circuit as 
neuronal networks, and the light bulb as cognitive function. 
From the point of view of this metaphor, treatment of AD 
by combining Aβ clearance with neuroregeneration may be 
beneficial.

NTFs Promote Neuroregeneration  
There is ample and encouraging evidence that NTFs stimu-
late neuronal growth, increase synapse number and pro-
mote the survival of mature mammalian CNS neurons[94-96]. 
A study by Nagahara et al.[97] showed that BDNF prevents 
the lesion-induced death of entorhinal cortical neurons 
in aged rats and reverses the synaptic loss in APP trans-
genic mice. It has also been demonstrated that NGF has a 
trophic influence on the basal forebrain cholinergic neurons 
whose pronounced loss is responsible for the cognitive 
decline in AD[98]. In view of the potential therapeutic effects 
of NTFs on degenerating neurons, efforts have been made 
to use them to treat AD[99]. Since the first discovery of NGF 
in the 1950s, a variety of chemical compounds that pos-
sess neurotrophic activity, such as magnesium fructose 1, 
6-diphosphate[100], magnolol and honokiol[101], have been 
identified. The known ability of these compounds or factors 
to promote nerve regeneration and neuronal survival has 
made them a highly attractive group of targets for develop-
ing drugs for AD. 

There are also encouraging outcomes from clinical 
trials using neurotrophic agents to treat AD. Cerebrolysin 
is a peptide preparation acting in a way similar to endog-
enous NTFs. In randomized controlled clinical trials, pa-
tients with moderate to moderately severe AD receiving 
cerebrolysin, compared with those assigned to receive 
placebo, had significant improvement in initiation of activi-
ties of daily living and cognitive performance scaled by the  
Alzheimer’s Disease Assessment Scale Cognitive Subpart 
Modified[102,103].
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Combination of Aβ Clearance and NTFs to Treat 
AD  
As illustrated above, neuronal loss and synaptic dysfunc-
tion are the consequence or end-point of multiple but con-
vergent pathways, and Aβ is the leading causative factor 
for AD. Aβ causes neuronal death in AD by decreasing NTF 
expression, whereas NTF deficits are associated with Aβ 
overproduction. Deficits need compensation; thus it is a 
promising approach to use NTFs for preventing neuronal 
degeneration. Here, we propose that a combination of Aβ 
clearance and administration of NTFs may be an effective 
way to treat AD. 

First, Aβ clearance is supposed to clear senile plaques 
and decrease the levels of neurotoxic Aβ to prevent further 
neuronal death caused by Aβ. Second, NTFs are capable 
of protecting neurons against risk factors and may even 
promote axonal regeneration to restore impaired neuronal 
networks and synaptic plasticity; NTFs can even reverse Aβ 
overload in the brain caused by NTF deficits and open the 
feed-forward toxic loop constituted by Aβ and NTF deficien-
cy. Last but not least, NTFs may increase the efficacy of 
Aβ clearance in the treatment of AD in the advanced stage. 
The severity of neuronal/synaptic loss varies at different 
stages of AD. Synaptic loss in CA1 in mild AD plummets 
to 55% that of groups with mild cognitive impairment (MCI) 
or no cognitive impairment (NCI), while the synaptic value 
in CA1 of the MCI brain decreases by 18% of that in NCI 
brain[105]. Rossler et al. found that, according to the Braak 
staging system, neuron density in CA1 is reduced by 33% 
at stage IV (P <0.02) and 51% at stage V (P <0.000 2) in 
comparison with stage I during AD[104]. These data suggest 
a strong correlation between neuronal/synaptic loss and 
severity of decline in cognition. Such loss may influence the 
efficacy of anti-Aβ on treating AD. This might well explain 
why anti-Aβ therapies have a high efficacy in preventing 
and delaying the development of AD in early stages of the 
disease, but are much less effective in advanced stages[106]. 
Thus, neuroregeneration agents may enable anti-Aβ to 
have high efficacy in the advanced stage.

Ideally, these two approaches can be combined to 
ameliorate the pathological process of AD or better still to 
improve cognitive function in AD patients. Different from 
the specific reduction of Aβ neurotoxicity by Aβ clearance, 
NTFs target and act through various receptors on a range 

of injured or degenerating neurons. It is therefore likely that 
the protective or rescuing effects of the two mechanisms 
can be synergistic, and may be more effective for the treat-
ment of AD. This indeed has been reiterated by Chopra 
et al.[107]: “a synergistic combination of agents will have 
the capacity to alter the neurodegenerative cascade and 
the major aim should be to design ligands with pluripotent 
pharmacological activities”.
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