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AbstrAct  

Recently, resting-state functional magnetic resonance 
imaging has been used to parcellate the brain into 
functionally distinct regions based on the information 
available in functional connectivity maps. However, 
brain voxels are not independent units and adjacent 
voxels are always highly correlated, so functional 
connectivity maps contain redundant information, 
which not only impairs the computational efficiency 
during clustering, but also reduces the accuracy 
of clustering results. The aim of this study was to 
propose feature-reduction approaches to reduce 
the redundancy and to develop semi-simulated 
data with defined ground truth to evaluate these 
approaches. We proposed a feature-reduction 
approach based on the Affinity Propagation Algorithm 
(APA) and compared it with the classic feature-
reduction approach based on Principal Component 
Analysis (PCA). We tested the two approaches to 
the parcellation of both semi-simulated and real 
seed regions using the K-means algorithm and 
designed two experiments to evaluate their noise-
resistance. We found that all functional connectivity 

maps (with/without feature reduction) provided 
correct information for the parcellation of the semi-
simulated seed region and the computational 
efficiency was greatly improved by both feature-
reduction approaches. Meanwhile, the APA-based 
feature-reduction approach outperformed the PCA-
based approach in noise-resistance. The results 
suggested that functional connectivity maps can 
provide correct information for cortical parcellation, 
and feature-reduction does not significantly change 
the information. Considering the improvement in 
computational efficiency and the noise-resistance, 
feature-reduction of functional connectivity maps 
before cortical parcellation is both feasible and 
necessary.

Keywords: cortical parcellation; resting-state fMRI; 
functional connectivity; feature reduction; stimulated 
data; AP algorithm

INtrODUctION

There is a consensus that the cerebral cortex can be 
subdivided into several structurally and functionally distinct 
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of the human cerebral cortex[26,27].
These parcellation approaches based on functional 

connectivity maps have proven feasible and promising. 
However, a whole brain contains a great number of voxels 
and adjacent voxels are always highly correlated, so 
functional connectivity maps contain redundant information. 
For example, a classic preprocessed fMRI dataset with 
3-mm isotropic resolution contains >40000 voxels and a 
region like the cingulate cortex contains up to thousands 
of voxels. A functional connectivity map for each voxel of 
the cingulate cortex then involves its functional connectivity 
with each voxel of the whole brain. The total number 
of features for each voxel in the cingulate cortex then 
becomes >40000. Therefore, performing cluster analysis 
on thousands of voxels in >40000 dimensions becomes 
computationally inefficient. Furthermore, during clustering, 
the functional connectivity of each voxel with a target voxel 
is always regarded as an independent feature, but a voxel 
is not an independent functional unit of the brain. When 
we characterize the ‘connectional fingerprint’ of a target 
region, it is more reasonable to make feature elements at 
the region level rather than at the voxel level. Under a strict 
definition, each feature element should be independent 
and not highly correlated. If we treat each voxel as one 
feature, we fail to meet the requirement of independence. 
Considering that each voxel is not independent and is 
always highly correlated with other voxels, it becomes 
advantageous to treat voxels in the same functional unit as 
one feature by averaging these voxels.

In this study, we proposed a feature-reduction 
approach based on the affinity propagation algorithm 
(APA)[28] and compared it with the classic approach based 
on principal component analysis (PCA)[29]. The approach 
based on APA provides feature-reduction by averaging the 
time courses of all voxels located within the same functional 
unit. This allows these voxels to be treated as one feature 
during the clustering procedure. To evaluate these different 
approaches, we proposed to build semi-simulated data 
for connectivity-based parcellation. The semi-simulated 
data built here were based on real fMRI data, reflecting a 
complex brain connectivity pattern, and the ground truth 
was clearly defined. Since we knew the ground truth of 
which voxel of this ‘semi-simulated’ seed region belonged 
to which ‘real’ seed region, the conclusions from our 

regions. The ability to identify these regions is fundamental 
to evaluation of the normal and/or abnormal brain functions 
associated with neurological disorders. Although a surge 
of microarchitectonic and invasive tracer studies has 
provided substantial microarchitecture and connectivity 
information regarding cortical parcellation in non-human 
primates[1,2], similar evidence concerning the parcellation 
of the human brain is scarce; it is mostly limited to post-
mortem observations based on microarchitecture[3-7] or 
on anatomical landmarks[8]. However, parcellation based 
on anatomical landmarks and microarchitecture does not 
always provide accurate functional segregation between 
distinct areas[9]. In fact, the function of a cortical area is 
also determined by its extrinsic connections in addition to 
this intrinsic microarchitecture. In non-human primates, 
it has been demonstrated that the extrinsic connection 
of each cortical area represents a unique ‘connectional 
fingerprint’[10]. Therefore, it has become an important 
criterion to include the ‘connectional fingerprint’ in the 
parcellation of functionally distinct brain areas.

Investigation of the ‘connectional fingerprint’ in the 
human brain is challenging due to the inability to use 
invasive tracing techniques as well as the limitations of 
post-mortem anatomical evaluation. The use of resting-
state functional magnetic resonance imaging (rs-fMRI) 
has led to a number of studies in recent years that have 
investigated this functional ‘connectional fingerprint’ in 
relation to cortical parcellation[11-22]. By measuring the 
cross-correlation of low-frequency blood oxygenation 
level-dependent fluctuations between brain voxels while 
subjects are at rest[23], one can calculate the functional 
connectivity between any pair of voxels. This cross-
correlation measurement generates functional connectivity 
maps between voxels, where the functional connectivity 
of each voxel to all the voxels of the brain is represented. 
Based on these functional connectivity maps, voxels can 
then be classified by cluster analysis. This method using 
rs-fMRI to perform cortical parcellation has provided fine-
grained functional subdivisions of the anterior cingulate 
cortex[11], precuneus[24,25], thalamus[22], basal ganglia[13], 
lateral parietal cortex[14], medial frontal cortex[12,18], and 
insular cortex[15,16], as well as the subdivision of the whole 
brain[17,26]. The fine-grained functional subdivisions of brain 
regions can be further used to investigate the organization 
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analysis were more reliable. 

PArtIcIPANts AND MEtHODs

Participants and Data Acquisition
The analysis was performed on the New York Test-Retest 
Reliability dataset of the 1000 Functional Connectomes 
Project[30]. The dataset consists of 6.5-min scans acquired 
from 25 healthy subjects (10 males and 15 females) at 
three different time points on a 3T Siemens Allegra scanner 
using an echo-planar imaging (EPI) sequence (time 
repetition (TR) = 2 000 ms; time echo (TE) = 25 ms; flip 
angle = 90°; 39 slices, matrix = 64×64, field of view (FOV) = 
192 mm; acquisition voxel size = 3 × 3 × 3 mm3). The first 
scanning session of each subject was used in this study. 
A high-resolution T1-weighted anatomical image using 
magnetization prepared gradient echo (TR = 2 500 ms; TE = 
4.35 ms; flip angle = 8°; 176 slices, FOV = 256 mm) was 
also obtained for spatial normalization.

fMrI Data Preprocessing
Image preprocessing was performed using AFNI[31] and 
FSL[32]. In brief, the data were motion-corrected to the 
mean image volume and were spatially smoothed using a 
6-mm FWHM Gaussian kernel, following which the fMRI 
data were band-pass filtered (0.005 Hz < f < 0.1 Hz), linear 
and quadratic trends were removed, and the data were 
de-noised by regressing out the global, white-matter and 
cerebrospinal fluid signals and 6 motion parameters. The 
fMRI data were written into MNI152 standard space with 
concatenated transformations from functional volume to 
anatomical volume (linear) and spatial normalization of the 
structural MR images to MNI152 (non-linear), and were 
restricted using a gray matter mask to reduce the number 
of non-gray matter voxels and to improve the computational 
efficiency. 

selection of seed regions
semi-simulated seed region  We constructed a semi-
simulated seed region by combining six ‘real’ seed regions 
from different parts of the brain into one ‘semi-simulated’ 
region. The ground truth was defined since we knew 
exactly which voxels of this ‘semi-simulated’ seed region 
belonged to which ‘real’ seed region. Three of the six 
‘real’ seed regions were task-positive and were centered 

on the intraparietal sulcus (-25, -57, -46), the frontal eye 
field (25, -13, 50), and the middle temporal region (-45, -69, -2)[33]. 
The remaining three seed regions were task-negative and 
were centered on the medial prefrontal cortex (-1, 47, -4), 
posterior cingulate/precuneus (-5, -49, 40), and lateral 
parietal cortex (-45, -67, 36)[33]. We masked the six “real” 
seed regions with the same grey-matter mask used in the 
fMRI data preprocessing and combined the six “real” seed 
regions into one semi-simulated seed region. The total 
number of voxels contained in the semi-simulated seed 
region was 156.
real seed regions  Besides the semi-simulated seed 
region, we also selected three real seed regions of different 
sizes – the right supplementary motor area (R-SMA), 
cingulate cortex, and right prefrontal cortex (R-PFC) to test 
the different approaches. All seed regions were extracted 
from the anatomical automatic labeling template[8], the 
R-SMA being area 20, the cingulate cortex containing 
areas 31 to 36, and the R-PFC consisting of areas 3-4, 7-8 
and 11-14. We masked these seed regions with the same 
grey-matter mask used in the fMRI data preprocessing so 
that they would match the preprocessed fMRI data. The 
final sizes were 516 voxels for the R-SMA, 1975 for the 
cingulate cortex and 2641 for the R-PFC.

Functional connectivity Map Analysis
The map for each voxel showed its functional connectivity 
with all other voxels within the whole brain. Functional 
connectivity between a pair of voxels was represented by 
the Pearson correlation coefficient of their preprocessed 
time series. We averaged the functional connectivity maps 
of the 25 participants to obtain the group raw functional 
connectivity map.

Functional connectivity Maps by Different Feature-
reduction Approaches
Based on affinity propagation  We first applied a gross 
parcellation of all voxels within the whole brain using the 
APA (Fig. 1). Then, an average of the time series of the 
voxels in the same resulting clusters was taken. Finally, 
new functional connectivity maps of seed regions were 
generated by the correlations representing the relationship 
between raw seed region time series and the new whole-
brain time series. Details of the APA are in Supplemental 
Data. 
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In this experiment, we first averaged the functional 
connectivity maps of the whole brain for 25 participants 
to obtain the group whole-brain functional connectivity 
map and then performed gross clustering of the whole 
brain as described above. By averaging the time courses 
of voxels in the same clusters, we obtained a new whole-
brain time course in each participant. The seed region 
functional connectivity maps were then calculated from 
the correlations between seed region time courses and 
the new whole-brain course in each participant. Finally, 
by averaging the seed region functional connectivity 
maps of the 25 participants, we obtained the group seed 
region functional connectivity map with APA-based feature 
reduction.
based on principal component analysis  The feature-
reduction approach by PCA was directly done on the 
raw functional connectivity maps. PCA is a mathematical 
procedure that uses an orthogonal transformation to 
covert a set of correlated variables into a set of linearly 
uncorrelated variables (principal components). Details of 
PCA are in Supplemental Data.

In this experiment, we averaged the raw seed region 
functional connectivity maps of 25 participants to obtain 

the group functional connectivity map and then performed 
the feature-reduction by PCA on this map. We selected all 
principal components (PCA-all) and principal components 
covering 95% of the cumulative contribution (PCA-95) to 

build new functional connectivity maps.

seed region Parcellation
In order to investigate whether the feature-reduction 
procedures significantly changed the information in 
functional connectivity maps, cluster analysis using the 
K-means algorithm was applied to each seed region 
(the K-means algorithm was designed to partition n 
observations into k clusters where each observation 
belongs to the cluster with the nearest mean). We used the 
standard K-means algorithm of Matlab. The algorithm was 
repeated 1024 times for all seed regions. The goal number 
of clusters (K) must be defined for this algorithm. Therefore, 
it was set as K = 6 for the semi-simulated seed region 
(ground truth was K = 6), K = 2-10 for the R-SMA, K = 2-15 
for the cingulate cortex and K = 2-30 for the R-PFC. 

To quantitatively evaluate the improvement of 
computational efficiency brought by the feature-reduction 
approaches, we compared their time costs during K-means 

Fig. 1. Flow-chart of the APA-based feature-reduction approach.
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cluster analysis. We recorded the average computational 
cost of one iteration and the average number of iterations 
for the convergence of one repetition. Besides, the total 
computational cost of K-means was also related to the 
number of repetitions. Therefore, we had to determine 
the number of repetitions needed for K-means to reach 
the global minimum solution. To do this, we estimated the 
probability of the global minimum solution by recording the 
number of minimum solutions with the defined number of 
repetitions (1024). 

The experimental platform was rack-mounted servers, 
Dawning I840 with CPUs 12 × 4 AMD Opteron 6174 (2.2 
GHz) and 256 GB of memory; the operating system was 
Mandriva Linux.

We used the inconsistency rate to compare different 
parcellation results. This rate was calculated as the 
percentage discrepancy between different connectivity 
matrices[20]. A connectivity matrix was defined as follows: 
for the resulting clusters with N voxels in one seed region, 
a connectivity matrix MN×N  can be generated, where the 
element Mi,j equals 1 if both voxels vi and vj are not found in 
the same cluster and equals 0 otherwise. 

For the semi-simulated seed region, we compared the 
resulting clusters of all functional connectivity maps with 
the ground truth. Thus, we were able to evaluate whether 
functional connectivity maps provide effective information 
for cortical parcellation and whether feature-reduction 
significantly changes the information of the functional 
connectivity maps. For the real seed regions, we did not 
know the ground truth. The inconsistency rate was only 
used to outline the difference between the resulting clusters 
based on different functional connectivity maps.

Noise-resistance Analysis 
The inconsistency rate cannot tell which feature-reduction 
approach is better. In this section, we designed simulated 
data to evaluate the noise-resistance of the feature-
reduction approaches. The simulated data were generated 
based on the semi-simulated seed regions described above 
(Fig. 2). In brief, we randomly selected one participant 
and constructed the simulated data comprising the time 
courses of the semi-simulated seed region in this subject. 
Then we carried out two experiments by adding noise to 
the simulated data in different ways. We repeated each 
experiment 50 times.

(1) Different levels of time-course signal-to-noise ratio 
(tSNR): randomly-selected time points (the number was 80 
or 190) of all voxels were mixed with Gaussian noise under 
different levels of tSNR (tSNR = 10, 7, 5, 2, 1.5, 1, 0.75, 0.5, 
0.25, and 0.125). We randomly selected 50 voxels from the 
simulated data and treated them as a seed region. We then 
carried out K-means cluster analysis based on the seed 
region’s functional connectivity maps (APA, PCA-95, and 
PCA-all/Raw).

(2) Different numbers of time points: A different number 
of randomly-selected time points for all voxels were mixed 
with Gaussian noise under a higher or lower tSNR (tSNR = 
2.0 or 0.1). The number of points varied from 5 to 190 (5, 
10, 30, 50, 80, 120, 150,180, and 190). We then randomly 
selected 50 voxels from the simulated data, treated them 
as a seed region, and carried out K-means cluster analysis 
based on the functional connectivity maps of the seed 
region (APA, PCA-95, and PCA- all/Raw).

“Eigenmap” of PcA
Moreover, we used the “Eigenmap” concept of PCA to 
compare the characteristics of different real seed regions. 
In mapping the modulus of the first eigenvector of PCA 
to the cortical surface using Caret5 software[34], the parts 
of the brain that provide the most important features for 
the parcellation of a certain brain region can easily be 
identified. To quantitatively compare the first Eigenmaps 
of different seed regions, we also performed repeated 
measures one-way ANOVA on the three Eigenmaps, 
followed by the multiple comparison test with the Bonferroni 
correction. A whole flowchart of this study was given in Fig. 
S1.

rEsULts

Feature reduction
the PcA-based approach  The feature-reduction 
approach based on PCA produces N-1 (N is the number of 
voxels in each seed region) components responding to non-
zero eigenvalues. Therefore, after using all components 
(PCA-all), the sizes of functional connectivity maps of the 
four seed regions were reduced to 516 × 515 (R-SMA), 
1975 × 1974 (cingulate cortex), 2641 × 2640 (R-PFC), and 
156 × 155 (semi-simulated seed region). 
the APA-based approach  Based on the group whole-
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brain functional connectivity maps, the APA divided all 
the voxels of the brain (45161 voxels in total) into 2881 
clusters. The cluster size ranged from 7 to 36 voxels. The 
time courses of all voxels in each cluster were averaged 
and all voxels in each cluster were converted into one 
feature to be used in the following cluster analysis of the 
seed regions. The sizes of the functional connectivity maps 
in these regions were reduced from 516 × 45161 to 516 × 
2881 (R-SMA), 1975 × 45161 to 1975 × 2881 (cingulate 
cortex), 264 × 45161 to 2641 × 2881 (R-PFC) and 156 × 
45161 to 156 × 2881 (semi-simulated seed region). 

computational cost of K-means

Table 1 shows a comparison of the computational cost of 
K-means on functional connectivity maps without feature-
reduction (Raw), with APA-based feature-reduction, and 

with PCA-based feature-reduction selecting all components 
(PCA-all). For all functional connectivity maps, both the 
average computational cost of one iteration (t) and the 
average number of iterations for the convergence of one 
repetition (Num) increased when the number of clusters 
(K) and the size of the seed region became larger. Even 
though there was no evident difference in the average 
number of iterations for convergence among the three 
kinds of functional connectivity maps, the average 
computational cost of one iteration and one repetition for 
the raw functional connectivity maps was much larger 
than that of the functional connectivity maps with feature-
reduction. Take K = 15 of the cingulate cortex for example. 
The computational cost of one repetition for the raw 
functional connectivity maps was 1128.57 s. After using the 
feature reduction approaches, the computational efficiency 

Fig. 2. Flow-chart of noise-resistance analysis. We designed simulated data to evaluate the feature-reduction approaches on their noise-
resistance. We randomly selected one participant and constructed the simulated data comprising the time-courses for the semi-
simulated seed region. then we carried out two experiments by adding noise to the simulated data in different ways (A-b). We 
repeated each experiment 50 times.
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table 1. the computational cost of K-means based on different functional connectivity maps (raw, PcA-all, APA)

 Semi-simulated seed region SMA-R   Cingulate Cortex
 Num t (s) T(s)= Num*t Num t (s) T(s)= Num*t Num t (s) T(s)= Num*t
Raw
K=2 - - - 8.28 2.12 17.58 7.32 5.03 36.85

K=3 - - - 12.03 2.81 33.78 14.11 6.47 91.31

K=4 - - - 20.00 3.32 66.44 20.67 7.50 155.11

K=5 - - - 21.44 4.18 89.68 27.97 12.25 342.67

K=6 6.42 2.76 17.75 22.50 4.85 109.13 32.47 16.94 549.85

K=7 - - - 24.92 5.49 136.80 36.35 12.97 471.37

K=8 - - - 24.50 6.13 150.19 31.83 16.00 509.32

K=9 - - - 24.23 6.62 160.36 31.75 15.84 502.91

K=10 - - - 24.99 7.31 182.70 33.31 18.48 615.67

K=11 - - - - - - 36.19 20.61 745.78

K=12 - - - - - - 37.90 23.74 899.69

K=13 - - - - - - 38.24 24.72 945.51

K=14 - - - - - - 40.87 26.01 1063.09

K=15 - - - - - - 41.52 27.18 1128.57

PCA-all
K=2 - - - 8.28 0.02 0.18 7.30 0.21 1.51

K=3 - - - 12.03 0.03 0.35 14.16 0.28 3.98

K=4 - - - 20.01 0.04 0.80 20.52 0.33 6.70

K=5 - - - 21.44 0.04 0.92 27.85 0.46 12.86

K=6 6.40 0.01 0.08 22.50 0.06 1.34 33.08 0.54 17.80

K=7 - - - 24.92 0.06 1.56 37.01 0.51 18.85

K=8 - - - 24.50 0.08 1.98 32.38 0.58 18.68

K=9 - - - 24.23 0.10 2.35 32.63 0.63 20.49

K=10 - - - 24.99 0.11 2.73 34.14 0.70 23.80

K=11 - - - - - - 36.20 0.71 25.66

K=12 - - - - - - 37.11 0.77 28.42

K=13 - - - - - - 38.85 0.81 31.54

K=14 - - - - - - 40.28 0.86 34.70

K=15 - - - - - - 40.84 0.86 35.19

APA
K=2 - - - 8.21 0.16 1.30 6.64 0.39 2.59

K=3 - - - 9.27 0.23 2.13 16.20 0.48 7.76

K=4 - - - 20.80 0.24 5.00 20.63 0.61 12.69

K=5 - - - 22.03 0.30 6.57 28.43 0.74 21.01

K=6 6.42 0.20 1.26 24.03 0.37 8.88 30.70 0.90 27.61

K=7 - - - 24.42 0.40 9.80 35.50 1.35 47.82

K=8 - - - 24.11 0.44 10.49 30.57 1.26 38.67

(to be continued)
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improved considerably; the computational cost-saving was 
97% with PCA-all and 94% with APA. 

The frequency of the minimum solution was estimated 

based on the results shown in Table 2. As the number of 
clusters (K) and the size of seed regions increased, the 
frequency of minimum solution sharply decreased, no 

(continued)

K=9 - - - 23.97 0.46 11.06 32.03 1.34 42.79

K=10 - - - 25.20 0.53 13.37 33.55 1.37 45.87

K=11 - - - - - - 36.03 1.41 50.73

K=12 - - - - - - 36.20 1.61 58.33

K=13 - - - - - - 37.16 1.72 63.89

K=14 - - - - - - 39.31 1.82 71.44

K=15 - - - - - - 39.86 1.80 71.77

*Num represents the average number of iterations for the convergence of one repetition; t represents the average computational cost of one 

iteration; T represents the average computational cost of one repetition; K represents the number of clusters defined in K-means; Raw represents 

the raw functional connectivity maps; PCA-all represents the functional connectivity maps with PCA-based feature reduction selecting all non-zero 

components; APA represents the functional connectivity maps with APA-based feature reduction.

table 2. Minimum solution of K-means within 1024 repetitions for semi-simulated seed region

 R-SMA   Cingulate Cortex  R-PFC
 Raw PCA-all APA Raw PCA-all APA PCA-all APA
K=2 1023 1023 1024 1024 1024 1024 13 9

K=3 1024 1024 409 334 327 223 5 24

K=4 18 14 5 17 30 1 2 98

K=5 19 49 19 139 161 60 1 27

K=6 2 6 70 280 299 392 1 11

K=7 3 8 18 88 77 4 3 22

K=8 3 16 9 126 136 3 2 1

K=9 1 2 18 33 28 7 1 19

K=10 1 4 79 2 6 11 1 5

K=11 - - - 1 1 19 1 1

K=12 - - - 1 1 2 2 1

K=13 - - - 3 2 1 1 9

K=14 - - - 4 3 2 1 1

K=15 - - - 1 2 14 1 1

K=16-30 - - - - - - 1 1

 Semi-simulated seed region

K=6 10 10 8     

*Raw represents the raw functional connectivity maps; PCA-all represents the functional connectivity maps with PCA-based feature-reduction 

selecting all non-zero components; APA represents the functional connectivity maps with APA-based feature reduction; K represents the number of 

clusters defined in K-means.
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table 3. Inconsistency rate between resulting clusters of functional connectivity maps without feature reduction (raw) and those 
with APA-based feature reduction (APA)

 Raw vs PCA-all  Raw vs PCA-95  Raw vs APA
 SMA-R Cingulate Cortex SMA-R Cingulate Cortex SMA-R Cingulate Cortex
K=2 0 0 0 0 0 0

K=3 0 0 0 0 0.82% 0.31%

K=4 0 0 0 0 0.99% 0.83%

K=5 0 0 0 0.04% 0.97% 2.72%

K=6 0 0 0 0.15% 0.30% 0.81%

K=7 0 0 0.88% 0 2.01% 0.45%

K=8 0 0 0.21% 0.05% 2.19% 0.09%

K=9 0 0 0.27% 0.03% 0.11% 0.30%

K=10 0 0 0.11% 0.15% 0.23% 0.30%

K=11 - 0 - 0.72% - 0.35%

K=12 - 0.13% - 0.34% - 0.34%

K=13 - 0 - 0.80% - 0.96%

K=14 - 0 - 0.16% - 0.44%

K=15 - 0.03% - 0.09% - 0.20%

*K represents the number of clusters defined in K-means. Examples of resulting clusters were given in Figs. S2 and S3.

Fig. 3. results of noise-resistance analysis in experiment 1. randomly-selected time points of all voxels were mixed with Gaussian noise 
under different levels of tsNr from 10 to 0.125. We randomly selected 50 voxels from the simulated data and treated them as a 
seed region. We then carried out K-means cluster analysis based on the seed region’s functional connectivity maps (APA, PcA-95, 
and PcA-all). the inconsistency rate with respect to the ground truth was used to evaluate the resulting clusters. this experiment 
was repeated 50 times. Data are plotted as the mean with the 95% confidence interval.
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Fig. 4. results of noise-resistance analysis in experiment 2. Different numbers of randomly selected time points for all voxels were 
mixed with Gaussian noise under a higher or lower tsNr. the number of time points was varied from 5 to 190. We then randomly 
selected 50 voxels from the simulated data, treated them as a seed region, and carried out K-means cluster analysis based on the 
functional connectivity map of the seed region (APA, PcA-95, and PcA-all). the inconsistency rate with respect to the ground truth 
was used to evaluate the resulting clusters. this experiment was repeated 50 times. Data are plotted as the mean with the 95% 
confidence interval.

Fig. 5. Surface mapping of the first Eigenmaps of the three real seed regions. The first Eigenmap of each seed region, R-SMA (A), cingu-
late cortex (B) and R-PFC (C) is displayed. The color bar is defined with the warmest color representing the highest value and the 
coldest color representing the lowest value.
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Fig. 6. Box-and-whisker plots of the first Eigenmaps of the three 
real seed regions. the bottom and top of the box are the 
lower and upper quartiles, the band near the middle is the 
median, and the ends of the whiskers represent the mini-
mum and maximum. **significantly different Eigenmaps.

matter which feature-reduction approach we chose. 1024 
repetitions were definitely enough for the global minimum 
solution when K or the size of seed regions was small, but 
were not sufficient when K or the size of seed regions was 
large.

Specifically, the 1024 repetitions were not enough to 
establish a global minimum solution for the parcellation of 
the R-PFC. In most circumstances, the number of times 
the minimum solution was found was only once, and it was 
not known whether this was a local minimum or a global 
minimum (probability ≤1/1024). Based on the resulting 
R-PFC clusters, further evaluation of the inconsistency rate 
would be inaccurate. Thus, we did not present the results 
of inconsistency rate for R-PFC.

comparison of Parcellation results (Inconsistency 
rate)
semi-simulated seed region  All functional connectivity 
maps provided correct information for the parcellation of 
the semi-simulated seed region, as the inconsistency rates 
between the ground truth (K = 6) and the resulting clusters 
based on different kinds of functional connectivity maps 
(Raw, PCA-all, PCA-95 and APA) were all zero.
real seed regions  Since the ground truth for the real 
seed regions was unavailable, we used the clustering 
results based on Raw as the baseline to calculate the 
inconsistency rate. Functional connectivity maps with 
feature-reduction gave results similar or identical to Raw. 
The resulting clusters based on Raw and those based on 
PCA-all were identical, except for the low inconsistency 
rate when K = 12 and K = 15 in the cingulate cortex (Table 
3). In most circumstances, the inconsistency between 
resulting clusters based on Raw and those based on PCA-
95 or APA was low. 

Noise-resistance Analysis 
Experiment 1 was designed to il lustrate the noise-
resistance of the APA-based approach and the PCA-all 
approach under different levels of time-course signal-to-
noise ratio (tSNR). Under all tSNRs, the performances 
using the APA-based approach were better than those 
using PCA-all (Raw) and PCA-95 (Fig. 3).

Experiment 2 was designed to illustrate the noise-
resistance of the two approaches under different numbers of 
noise-added time points. Similar to the above experiments, 

the APA-based approach outperformed the PCA-all/Raw 
and PCA-95 approaches (Fig. 4). 

First Eigenmaps comparison
The first Eigenmap of R-SMA differed from those of 
the cingulate cortex and the R-PFC, whereas the first 
Eigenmaps of the cingulate cortex and the R-PFC were 
similar. Areas with high values in the first Eigenmap of 
R-SMA were limited to the bilateral SMA and posterior 
insular cortex. Areas with high values in the first Eigenmaps 
of the cingulate cortex and the R-PFC were similar and 
more distributed, including the anterior insular cortex, 
posterior cingulate cortex/precuneus/retrosplenial region, 
anterior cingulate cortex, medial prefrontal cortex, 
dorsolateral prefrontal cortex, lateral parietal lobule and 
interior temporal lobule (Fig. 5).

One-way repeated measures ANOVA revealed significant 
differences in the three Eigenmaps [F(2,135480) = 5.559, 
P <0.0001] (Table S1). The post hoc test showed that 
both the first Eigenmap of the R-PFC and that of cingulate 
cortex differed from the first Eigenmap of the R-SMA (P < 
0.01, corrected), but no significant difference was found 
between the first Eigenmap of the R-PFC and that of the 
cingulate cortex (Fig. 6).
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DIscUssION

Computational Efficiency
The computational cost of K-means involves three parts: 
(1) the average computational cost of one iteration; (2) the 
average number of iterations for the convergence of one 
repetition; and (3) the number of repetitions needed for 
a global minimal solution. In this study, we calculated the 
detailed computational cost for each part and showed how 
the feature-reduction procedures improved computational 
efficiency. 

Take the cingulate cortex for example. When the 
number of clusters (K) was set at 15 for the raw functional 
connectivity maps, the average computational cost of 
one iteration was 27.18 s and the average number of 
iterations for one repetition was 41.52.  Thus, on average, 
1128 s (41.52 × 27.18 s) guaranteed the convergence 
of one repetition. With the power of modern computing, 
the average computational cost of one iteration or one 
repetition for K-means is inexpensive. However, as the 
number of repetitions increases, the corresponding 
number of iterations increases many-fold. This leads to a 
computational cost that modern computing can no long 
afford, especially when a high data resolution is used. 
In this study, we set the number of repetitions at 1024, 
which took >300 h (1024 × 1128 s) to do the parcellation 
of cingulate cortex with K equal to 15. Moreover, as 
shown in Table 2, the possibility for a minimum solution 
for the above example was ≤0.098% (1/1024). In other 
words, 1024 repetitions could not guarantee the global 
minimum. However, increasing the number of repetitions 
may not be a feasible way to obtain a global minimum 
for the raw functional connectivity maps, especially when 
seed regions and K are large, because it would require 
a greatly increased computational cost. Therefore, one 
feasible solution is to carry out feature-reduction, as its 
high computational efficiency would then compensate for 
the computational cost brought by the increased number 
of repetitions. For example, the PCA-all feature-reduction 
reduced the average computational cost of one iteration 
to 0.86 s, 32-fold less than the computational cost of the 
raw functional connectivity maps. Thus, it only took 35 s to 
complete one repetition and 10 h to finish 1024 repetitions 
on average to give identical results. 

Besides feature-reduction, efficiency could also be 
improved by a better clustering algorithm. Nevertheless, 
reducing the dimensions of the data itself would be a more 
extensive and basic method and does not conflict with 
these better algorithms (feature reduction can be applied to 
these algorithms).

PcA-based Feature reduction
Due to the specific characteristic of functional connectivity 
maps that the number of features is greatly larger than 
the number of voxels, the feature-reduction approach 
based on PCA produces N-1 (N is the number of voxels 
in each seed region) components responding to non-zero 
eigenvalues. Taking all components (PCA-all), the resulting 
clusters showed little or no difference from the clusters 
resulting from the raw functional connectivity maps (Table 
3). The reason is that the PCA-all was totally based on the 
raw functional connectivity maps. The variance of PCA-
all would be expected to be the same as that of the raw 
functional connectivity maps, so that the final resulting 
clusters of both functional connectivity maps would be 
identical. K = 12 and K = 15 on the cingulate cortex are two 
cases in which K-means did not reach the global minimum 
solution so that a low inconsistency rate was found (Table 2). 
Thus, PCA-all reduced the number of features, improved 
the computational efficiency, and gave exactly the same 
results as the raw functional connectivity maps.

It is common to use the first few components for 
clustering (covering most of the variance) while performing 
PCA-based feature-reduction because it can further 
improve computational eff iciency and may reduce 
noise[39]. The noise-resistance of the PCA-based approach 
depends on the separation of signal and noise in different 
components and on the selection of the right number of 
components. However, the performance of PCA-95 in 
noise-resistance analysis was similar to that of PCA-all 
(Raw), and did not improve. This indicated that the PCA-
based feature-reduction may not separate signal and noise 
well enough for functional connectivity maps.

Besides, the eigenvectors of PCA can be used to 
generate “Eigenmaps,” to help visualize important features 
for the parcellation. The first Eigenmap, which bears most 
of the variance, plays the most important role in cluster 
analysis. Eigenmaps also reflected the properties of seed 
regions. For example, the first Eigenmap of R-SMA showed 
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a high value for limited brain areas including the bilateral 
SMA and posterior insula (Fig. 5), two areas known to be 
strongly correlated with the R-SMA[16,18]. In addition, areas 
with high values in the first Eigenmap of the cingulate 
cortex and that of the R-PFC were similar and more 
distributed (Fig. 5). This complicated distribution of these 
high-value areas reflects important properties of the two 
regions: both are hetero-modal association regions, taking 
part in multiple brain networks and functions[35]. 

APA-based Feature reduction
The APA-based approach is considerably different from the 
PCA-based approach because it was not based directly 
on the raw functional connectivity maps. This approach 
constructed new whole-brain time-courses by averaging the 
voxels in the same functional units. Therefore the functional 
connectivity maps with the APA-based feature-reduction 
did not contain the same variance as the raw functional 
connectivity maps. So, the resulting clusters of functional 
connectivity maps with the APA-based feature-reduction 
differed from those of Raw (Table 3). 

The APA-based approach neutralized noise by 
averaging voxels, and the noise-resistance of this approach 
was also better than the PCA-based approach as indicted 
by the noise-resistance analysis. Meanwhile, the APA-
based approach converted voxel-level feature elements 
to the region level, which improved the independence of 
features and may contribute to better parcellation results. 

However, the APA-based approach required a gross 
clustering of all voxels within the brain which made it 
less efficient than the PCA-based approach. From the 
perspective of computational efficiency, this was not 
problematic because the APA is a fast algorithm and 
needs only one repetition. In this experiment, the total 
computational cost of this gross parcellation was 3.3 h for 
the brain with a resolution of 3 × 3 × 3 mm3. This gross 
parcellation contributed to functional connectivity maps 
with much less-redundant noise-neutralized seed regions 
and a much lower computational cost in the seed region 
parcellation than the raw functional connectivity maps. 
When both the accuracy and computational efficiency of 
seed region parcellation were valued, the gross clustering 
of the whole brain appeared to be a necessary and 
beneficial step. 

The gross parcellation of the APA-based approach 

reduced ~40000 features into ~2000 features but still gave 
correct resulting clusters with respect to the ground truth, 
as shown in the parcellation of the semi-simulated seed 
region. These results demonstrated that a voxel is not an 
independent functional unit and functional boundaries exist. 
Conversely, this characteristic of fMRI data is also the basis 
for the validity of the APA-based approach. 

The functional-connectivity-based parcellation of 
the brain not only helps to identify distinct functional sub-
regions, but may also help to reveal differences in these 
sub-regions between healthy and psychiatric populations. 
The abnormal functional connectivity patterns in psychiatric 
populations may give different parcellations of the brain 
from the healthy population. Due to its better noise-
resistance, the APA-based approach can contribute to 
more accurate parcellation results compared with the Raw 
and the PCA-based approach, and thus may help to reveal 
subtle differences in brain parcellation between different 
groups of subjects.

semi-simulated Data
The best way to evaluate a pattern-recognition problem is 
to compare its results with the ground truth. The ground 
truth can be defined by constructing simulated data or 
manually defining it in real data. For example, when we 
evaluated the different algorithms for the segmentation 
of brain tissues (grey matter, white matter) on anatomical 
images, we were able to manually draw the boundaries 
of the different tissues to build the ground truth. However, 
it was difficult to define the ground truth in connectivity-
based parcellation because it was not known which 
brain voxels belonged to which clusters. Furthermore, 
simulating a complex brain connectivity pattern to address 
this issue was even more difficult. Though recent years 
have witnessed a growing number of studies related to 
connectivity-based parcellation (both fMRI and DTI), few 
studies have attempted to construct simulated data or 
define the ground truth to evaluate different methods. Here, 
we attacked this challenge and proposed an approach 
to building semi-simulated data for connectivity-based 
parcellation. The semi-simulated data built here reflected 
the complex brain connectivity pattern, and the ground truth 
could be clearly defined. We remain optimistic that this 
approach of building semi-simulated data is also applicable 
to the DTI connectivity-based parcellation in addition to 
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fMRI data as well as other related problems. 

cONcLUsION 

The clustering results of the semi-simulated data suggest 
that functional connectivity maps or the ‘connectional 
fingerprint’ can provide correct information for cortical 
parcellation, and feature-reduction does not significantly 
change the ‘connectional f ingerprint ’ information. 
Considering the improvement in computational efficiency 
(the APA-based approach and the PCA-based approach) 
and the noise-resistance (the APA-based approach), 
feature-reduction of functional connectivity maps before 
cortical parcellation is both feasible and necessary.

sUPPLEMENtAL DAtA

Supplemental data include detailed methods for functional 
connectivity maps by different feature reduction approaches, 
a whole flowchart of the study, two figures of examples of 
resulting clusters of the R-SMA and cingulate cortex, and 
one table of the statistics on the three Eigenmaps. They 
can be found online at http://www.neurosci.cn/epData.
asp?id=90.
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