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The neuropeptide orexin is synthesized by neurons exclusively located in the hypothalamus. However, these 
neurons send axons over virtually the entire brain and spinal cord and therefore constitute a unique central 
orexinergic system. it is well known that central orexin plays a crucial role in the regulation of various basic 
non-somatic and somatic physiological functions, including feeding, energy homeostasis, the sleep/wake cycle, 
reward, addiction, and neuroendocrine, as well as motor control. Moreover, the absence of orexin results in 
narcolepsy-cataplexy, a simultaneous somatic and non-somatic dysfunction. in this review, we summarize 
these central functions of the orexinergic system and associated diseases, and suggest that this system may 
hold a key position in somatic–non-somatic integration. 
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Introduction

in 1998, a novel family of neuropeptides, named orexins or 
hypocretins, was isolated from the central nervous system 
by two groups[1,2]. Using subtraction hybridization, de Lecea 
et al.[1] first identified the mRNA sequence encoding prepro-
hypocretin, the putative precursor of hypocretins (named 
for their exclusive expression within the hypothalamus and 
sharing substantial amino-acid identity with the gut hor-
mone secretin). Almost simultaneously, while searching for 
endogenous peptide ligands for multiple orphan G protein-
coupled receptors, Sakurai et al.[2] identified the same 
neuropeptides. in view of their stimulation of food intake by 
central administration, Sakurai et al.[2] called these peptides 
“orexins”, derived from the Greek word “orexis” meaning 
appetite. it soon became clear that the peptides isolated by 
the two groups were, in principle, identical. in this review, 
we use the orexin nomenclature.

orexin is synthesized by neurons located exclusively 
in the hypothalamus (prefornical area, lateral hypothalamic 
area (LHA) and posterior hypothalamus)[1-3]. From this re-

stricted region, the orexinergic neurons project extensively 
to almost the whole brain, constituting the central orexin-
ergic system[3-5]. Moreover, orexin and orexin receptors are 
also found outside the central nervous system, such as in 
the pancreas and gastrointestinal tract, where they affect 
insulin release, intestinal motility and secretion[6]. intrigu-
ingly, accumulating evidence reveals that the central orex-
inergic system holds a key position in many important basic 
physiological functions, including non-somatic regulation, 
such as feeding, energy homeostasis, the sleep/wake cycle 
and neuroendocrine, as well as somatic motor control. 
Clearly, an intact behavior comprises both somatic (motor) 
and non-somatic (e.g., visceral, emotional, and cognitive) 
components and requires somatic–non-somatic integration 
involving various brain regions and discrete neuronal path-
ways[7,8]. By linking the non-somatic centers to somatic mo-
tor structures, the central orexinergic system may actively 
participate in somatic–non-somatic integration, which is 
crucial for the generation and execution of appropriate and 
coordinated behavioral responses to changes in the inter-
nal and external environments.
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Orexins and Orexin Receptors

There are two splice variants of orexin, A and B (Fig. 1), 
both of which are derived from a common precursor pep-
tide, prepro-orexin. orexin A is composed of 33 amino-acids 
(mol. wt. 3562 Da) and orexin B of 28 (2937 Da), with 46% 
amino-acid identity. Strong homology is found in their C-
terminal halves (73%). The amino-acid sequences of orex-
ins A and B in both non-mammalian vertebrates and mam-
malian species are conserved[9,10], indicating that they are 
phylogenetically old neurotransmitters/neuromodulators.

Two orexin receptors subtypes, orexin 1 receptor 
(OX1R) and orexin 2 receptor (OX2R), have been identified 
(Fig. 1). Both belong to the family of G protein-coupled re-
ceptors[2], and they share an overall 64% sequence identity. 
OX1R has an order-of-magnitude greater affinity for orexin 
A than for orexin B, whereas OX2R is relatively nonselec-
tive between the two peptides[2,11]. it is also known that both 
receptor genes are highly conserved among mammalian 
species[9,10]. While orexins are produced in restricted loca-
tions of the hypothalamus, orexin receptors are expressed 
in diverse regions in the brain and spinal cord. Moreover, 
the distributions of the receptors are generally in agree-
ment with the innervation by orexinergic neurons[12-14]. 
The distribution patterns of OX1Rs and OX2Rs overlap 
but are partially distinct in the central nervous system. 
For instance, regions such as the locus coeruleus, the 
latero dorsal tegmental nucleus, and the pedunculopontine 
tegmental nucleus mainly express OX1R, whereas the tu-
beromammillary nucleus (TMN) of the hypothalamus, the 
nucleus accumbens, and the septal nuclei mainly express 
OX2R[15]. The different distribution patterns suggest that the 
two orexin receptor subtypes play different physiological 
roles.

it is worthwhile to note that orexinergic neurons typi-
cally have varicose axon terminals rather than classical 
chemical synaptic specializations[16], and orexin receptors 
are metabotropic and the orexinergic projections are exten-
sively distributed[9,10]. Thus, the central orexinergic system 
may act as a general modulator for whole-brain activity.

Signal Transduction Pathways Coupled to Orexin 

Receptors

orexins exert a quite uniform excitatory effect on neurons 

Fig. 1. Orexins, orexin receptors and the underlying signal trans-
duction pathways. The actions of orexin A and orexin B 
are mediated via two G-protein-coupled receptors named 
OX1R and OX2R. OX1R has an order-of-magnitude greater 
affinity for orexin A than for B, whereas OX2R binds both 
with similar affinity. OX1R is coupled exclusively to the 
Gq subclass of heterotrimeric G-proteins, whereas OX2R 
can couple to not only Gq but also Gi/Go. Stimulation of 
Gq by orexins binding to the receptors activates both the 
PLC–DAG–PKC and PLC–IP3–Ca2+ (released from intracel-
lular stores) pathways. The activation of PKC results in 
the enhancement of nonselective cation channels (NSCC) 
and voltage-gated Ca2+ channels (VGCC) and inhibition of 
K+ currents (IK+). And the store-operated Ca2+ influx may 
lead to the enhancement of the Na+-Ca2+ exchanger (NCX), 
which has yet to be confirmed. In addition, OX2R-mediated 
activation of Gi/Go may result in the enhancement of K+ 
currents. However, the direct electrophysiological effect of 
orexin mediated by Gi/o protein remains undetected. DAG, 
diacylglycerol; IP3, inositol-1,4,5-triphosphate; PKC, pro-
tein kinase C; PLC, phospholipase C.

in the central nervous system, although they can also in-
hibit neurons through undefined presynaptic mechanisms. 
The G protein-coupled receptors OX1Rs and OX2Rs are, 
as yet, the only known receptors that respond to orexins. it 
is well known that the family of Gq proteins, a subclass of 
heterotrimeric G proteins, consists of several subtypes, in-
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cluding Gq, G11, G14 and G15/16. The Gq family mainly signals 
via the Gα subunit to activate phospholipase C (PLC), which 
then induces Ca2+ release from the endoplasmic reticulum 
via iP3 and the activation of protein kinase C (PKC) via dia-
cylglycerol. Since OX1Rs and OX2Rs elicit either extracel-
lular Ca2+ influx by PLC-PKC voltage-gated Ca2+ channels/
transient receptor potential channel pathway or endoplas-
mic reticulum Ca2+ release by the PLC–iP3 pathway, both 
orexin receptors are considered to be Gq protein-coupled 
receptors (Fig. 1)[11,17]. on the other hand, besides the Gq 
pathway, OX2Rs may also be independently coupled to 
other signal transduction pathways. In OX2R-transfected 
neuron-like cells, orexin inhibits forskolin-stimulated cAMP 
accumulation in a dose-dependent manner, and this is 
abolished by pretreatment with pertussis toxin, while in 
OX1R-transfected cells the inhibitory effect of orexin does 
not occur[18], suggesting that OX2Rs are also coupled to the 
pertussis toxin-sensitive Gi/o pathway (Fig. 1). Even though 
the contribution of Gi/o proteins to orexin-mediated cellular 
responses in the central nervous system remains unknown, 
the distinct signal transduction mechanisms may account 
for the different central physiological functions mediated by 
the two orexin receptors.

The ionic mechanisms underlying the orexin-induced 
depolarization/excitation of neurons are quite complicated 
and distinct in different brain regions/nuclei. The currently-
known mechanisms are mainly inhibition of K+ channels, 
activation of non-selective cation channels, activation of the 
electrogenic Na+/Ca2+ exchanger, and activation of voltage-
gated Ca2+ channels (Fig. 1)[6]. in addition, interactions 
between orexin receptors and NMDA channels have been 
reported[19,20].

Central Physiological Functions of Orexin and 

Related Diseases

Sleep/Wakefulness and Narcolepsy
The central function of orexin that attracts most attention is 
regulation of the sleep/wake cycle, since orexin- or OX2R-
deficient mice and dogs exhibit symptoms strikingly similar 
to human narcolepsy[21-24], that affects ~1/2 000 persons. 
Narcolepsy is a chronic sleep disorder characterized by 
a primary disorganization of behavioral states. A cardinal 
symptom of narcolepsy is excessive daytime sleepiness, 

with irresistible sleep attacks at inappropriate times, such 
as while at work. in narcolepsy patients, the latency for rapid 
eye-movement (REM) sleep is notably reduced and REM 
sleep can even intrude directly into wakefulness. it has 
been reported that human narcoleptics have an 85–95% 
reduction in the number of orexin neurons[25,26]. Similarly, 
orexins are undetectable in the cerebrospinal fluid of these 
patients[27].

Experimental studies have provided substantial evi-
dence for the regulation of sleep and wakefulness by the 
central orexinergic system. orexin A or orexin B, intracere-
broventricularly administered at the onset of the normal 
sleep period, produces a significant increase in the time 
the animal spends awake and a significant decrease in the 
proportion of REM and non-REM sleep[28,29]. Moreover, 
c-fos expression in orexin neurons[30] and the orexin levels 
in cerebrospinal fluid[31] correlate positively with the amount 
of wakefulness and negatively with the amounts of non-
REM and REM sleep. Furthermore, in unanesthetized rats, 
orexin neurons discharge during active waking, reduce dis-
charges during quiet waking, and virtually cease firing dur-
ing sleep[32]. All of these findings show that orexin neurons 
are relatively active during wakefulness and inactive during 
sleep.

Currently, it is agreed that orexin regulates the sleep/
wake cycle through its activation of arousal-promoting 
monoaminergic systems. orexin receptors are distributed 
abundantly in monoaminergic neurons in the raphe nuclei, 
locus coeruleus and TMN[12-14]. Besides, the regions where 
monoamine neurons are concentrated receive a large num-
ber of projections from orexin neurons[4,5]. These results 
suggest that the monoaminergic systems are important 
targets of orexin neurons. Actually, electrophysiological 
studies have demonstrated that orexin excites monoamine 
systems, including noradrenergic neurons in the locus co-
eruleus[28], dopaminergic neurons in the ventral tegmental 
area (VTA)[33] and serotoninergic neurons in the dorsal 
raphe nuclei[34,35] as well as histaminergic neurons in the 
TMN[36]. These monoaminergic neurons project diffusely 
to the cerebral cortex, thalamus and brainstem, and are 
highly active during wakefulness, less active during non-
REM sleep and rarely active during REM sleep. Thus, it is 
likely that orexin neurons enhance and stabilize the activity 
of monoaminergic neurons to promote wakefulness[37]. Be-
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sides, orexin has a strong and direct excitatory effect on the 
cholinergic neurons of the basal forebrain which contribute 
to the cortical activation associated with wakefulness[38].

Among the monoaminergic systems, the histaminergic 
neurons in the TMN seem to be the most important target 
for the orexinergic system in sleep/wake regulation. Several 
reports demonstrate that orexin promotes arousal mainly by 
activating histaminergic neurons via OX2Rs[36,39]. intracere-
broventricular infusion of orexin A significantly increases the 
duration of the waking state. Pretreatment with pyrilamine, 
a histamine H1 receptor antagonist, strikingly decreases 
the orexin A-induced wake time[36]. Similarly, orexin has no 
effect on the wake time in H1-receptor knockout mice when 
administered centrally[40]. Interestingly, OX1Rs and OX2Rs 
may play different roles in the regulation of wakefulness. 
OX2R knockout mice display clear characteristics of nar-
colepsy, whereas OX1R knockout mice do not have overt 
behavioral abnormalities, with only increased fragmenta-
tion of sleep/wake states[41]. However, OX1Rs also play an 
important role in sleep/wake regulation. The narcolepsy 
syndrome that orexin knockout mice exhibit appears to be 
much more severe than that of OX2R knockout mice[24]. 
Considering that histaminergic TMN neurons express 
mainly OX2Rs but locus coeruleus norepinephrine neurons 
express mainly OX1Rs[15], the histaminergic system origi-
nating from the TMN may be a key target for the central 
orexinergic system to regulate the sleep/wake cycle.

Besides the innervation of wake-promoting mono-
aminergic neurons, orexin neurons also receive inhibitory 
GABAergic projections from sleep-active neurons in the 
ventrolateral preoptic area (VLPo)[42], which plays a critical 
role in the initiation of non-REM sleep and the maintenance 
of both non-REM and REM sleep. Selective deletion of 
GABAB receptors in orexin neurons results in highly un-
stable sleep/wake architecture in mice[43], indicating that 
the inhibitory pathway from the VLPo may be important for 
turning off arousal orexin neurons during sleep. Thus, the 
central orexinergic system may link the VLPo sleep-active 
neurons with the wake-active monoaminergic neurons and 
hold a key position in sleep/wake regulation, while loss of 
the link established by the orexinergic system may result in 
narcolepsy.
Motor Control and Cataplexy
Among narcoleptic patients, ~70% experience a dangerous 

complication named cataplexy. Cataplexy is an attack char-
acterized by the sudden loss of muscle tone, which is most 
often triggered by strong emotional stimuli. During cata-
plexy, patients remain conscious. Notably, orexin deficiency 
in humans, dogs, and rodents results in not only narcolepsy 
but also cataplexy[9,21], highlighting the possibility of a direct 
modulatory role of orexin in motor control. Since cataplexy 
is closely associated with narcolepsy and often triggered by 
strong emotions, the effect of orexin on the motor system 
has always been considered secondary to its actions on 
the neuronal circuits controlling sleep or emotions[9,10].

However, numerous neuroanatomical and immunohis-
tochemical studies reveal that essential subcortical motor 
structures, such as the basal ganglia, cerebellum, and ves-
tibular nucleus, receive direct innervation from orexin neu-
rons[4,5]. Moreover, during movements, orexinergic neurons 
are particularly active[30,44] and orexin release increases[45]. 
The evidence suggests that the orexinergic system directly 
participates in central motor control.

orexin neurons in the LHA and prefornical area are 
known to project to regions in the midbrain, including the 
substantia nigra (SN) and mesopontine tegmentum[4,5]. The 
latter contains the mesencephalic locomotor region and pe-
dunculopontine nucleus, both of which are involved in the 
initiation and modulation of locomotion and other stereo-
typed movements. in decerebrate cats, injecting orexin A 
into the mesencephalic locomotor region reduces the inten-
sity of electrical stimulation required to induce locomotion 
on a treadmill or even elicits locomotor movements without 
electrical stimulation[46]. on the other hand, microinjection 
of orexin A into the pedunculopontine nucleus increases 
the stimulus intensity required to induce muscle atonia[46]. 
Furthermore, orexins dose-dependently and selectively ac-
tivate GABAergic neurons of the SN pars reticulata and not 
dopaminergic neurons in the SN pars compacta[47]. injecting 
orexin A into the pars reticulata reduces the inhibitory ef-
fect of the pedunculopontine nucleus on muscle atonia[46]. 
in addition, accumbens shell-induced locomotor activity 
is greatly strengthened by activation of OX2Rs after local 
orexin A infusion[48].

Since cataplexy is a sudden and transient episode of 
loss of muscle tone, the central motor areas/nuclei which 
directly control muscle tone are particularly focused on. A 
recent study from our laboratory[49] first reported a direct 
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excitatory effect of orexins on neurons in the cerebellar 
interpositus nucleus, one of the final outputs of the spino-
cerebellum, which mainly regulates muscle tone and fine-
tunes ongoing movements of the body and limbs. Further-
more, we demonstrated that orexin increases not only the 
excitability but also the sensitivity of projection neurons in 
the lateral vestibular nucleus, which directly contributes to 
the adjustment of muscle tone for both postural mainte-
nance and alternation between extensor and flexor phases 
during locomotion[50]. The homogeneous excitatory effect 
of orexin on these neurons involved in motor control sug-
gests that the central orexinergic system acts to excite 
motor structures uniformly and in parallel. Therefore, com-
mon excitation by orexin may help the motor structures 
maintain excitability at a certain level and also provide for 
an appropriate level of sensitivity to inputs coding changes 
in the internal and external environments. intriguingly, local 
microinjection of orexin A improves vestibular-related motor 
behaviors in rats, including posture, balance, and negative 
geotaxis against the gravitational field[50], implicating orexin 
and the central orexinergic system in the direct control of 
somatic motor behavior. More importantly, the direct motor 
effect of endogenous orexin is critical when an animal faces 
a major motor challenge as opposed to during rest and 
general movements[50]. Thus, during a significant behavioral 
challenge, the increased excitatory drive and sensitivity 
due to the release of orexin may be essential for ensuring 
the prompt and appropriate magnitude of motor responses. 
This may account for why, when encountering an unexpected 
challenge that requires a strong motor response, orexin de-
ficiency results in cataplexy.
Feeding and Energy Homeostasis
in the earlier publications dealing with orexin, it was re-
ported that intracerebroventricular administration promotes 
feeding[2]. But the orexin-induced food intake is only an 
acute effect. Chronic continuous intracerebroventricular 
infusion of orexin A results in an increase in daytime food 
intake but a decrease in nighttime food intake in rats[51]. 
Thus, on the whole, there is almost no increase in the total 
amount of food intake per day. Many brain regions/nuclei, 
including the arcuate nucleus (ARC), prefornical area, LHA, 
dorsomedial hypothalamic nucleus, paraventricular nucleus 
(PVN), VTA and nucleus accumbens, are effective sites for 
the injection of orexin to promote feeding[52]. The promotion 

effect is blocked significantly by central pretreatment with 
anti-orexin A antibodies and the highly selective OX1R an-

tagonist SB-334867[53,54].
Orexin fibers project densely into the ARC[4,5], which 

contains first-order neurons responsive to circulating adi-
posity signals and is involved in the regulation of food 
intake. intracerebroventricular administration of orexin A 
induces high c-fos expression in orexigenic neuropeptide Y 
(NPY)-containing neurons in the ARC as well as increasing 
food consumption by animals. Pretreatment with BiBo3304, 
an NPY-Y1 receptor-specific antagonist, partially inhibits 
orexin-induced feeding behavior, suggesting that the NPY 
system may be one of the downstream pathways by which 
orexin A stimulates feeding[55]. However, since BiBo3304 
does not completely abolish the effect of orexin A, other 
pathways may also be involved in orexin A-induced feeding 
behavior. Electrophysiological studies have shown a pos-
sible involvement of the anorexigenic pro-opiomelanocortin 
(PoMC) system. Apart from exciting NPY-containing neu-
rons[56,57], orexin also inhibits PoMC-containing neurons in 
the ARC by attenuating [Ca2+]i oscillations and decreasing 
[Ca2+]i levels[58,59]. intriguingly, the central orexinergic system 
may regulate feeding behavior through its innervation of 
the limbic system[60]. infusion of orexin A into the shell of the 
nucleus accumbens, a limbic forebrain area strongly linked 
to eating motivation, increases feeding[48]. Moreover, intra-
accumbens shell administration of muscimol, the GABAA 
receptor agonist, induces intense hyperphagia in rats and 
high c-fos expression in orexin-containing neurons[61]. 
These results indicate that orexin may influence food intake 
by appetitive modulation.

Despite the fact that orexin significantly increases food 
intake in the daytime, continuous intracerebroventricular 
administration has no effect on body weight[51] and daily 
intraparaventricular orexin treatment even induces weight 
loss[62] in rats. on the other hand, in orexin- or orexin receptor-
knockout mice, body weight is increased[23,41,63]. All these 
seemingly paradoxical results indicate that orexin may be 
actively involved in energy metabolism rather than only in 
food intake. Actually, feeding is not an isolated behavior but 
is closely associated with wakefulness, activity and even 
higher brain functions. in wild-type mice, food deprivation 
triggers a drop in circulating glucose and leptin levels and 
an elevation in ghrelin signaling, which leads to the acti-
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vation of orexin neurons to induce a significant increase 
in vigilance, exploration and locomotor activity[64]. in con-
trast, orexin neuron-ablated animals fail to exhibit fasting-
induced wakefulness as well as locomotor activity[64]. Thus, 
it is speculated that reduced energy expenditure may be 
the reason for the increased body weight in orexin-deficient 
rodents. More recently, Sellayah et al.[65] reported that mice 
deficient in orexin gain more weight when fed the same 
high-fat diet as normal mice. The underlying mechanism 
involves brown-fat hypoactivity, which also leads to damp-
ening of energy expenditure. Therefore, by modulating en-
ergy expenditure, orexin plays an integral role in adaptive 
energy homeostasis and body weight regulation.
Reward
Psychostimulants, such as amphetamine and methylpheni-
date, have been widely used to treat narcolepsy; however, 
interestingly, the phenomenon of drug addiction rarely oc-
curs in these patients[66]. Therefore, it is suggested that the 
orexinergic system may be necessary for the formation of 
addiction and plays important roles in reward processing. 
This hypothesis was later confirmed in animal models. 
Subcutaneous morphine-induced place preference and 
hyperlocomotion are abolished in orexin knock-out mice, 
demonstrating a crucial link between the central orexinergic 

system and reward-seeking behavior[67,68].
orexin neurons receive projections from the VTA and 

nucleus accumbens[42], both of which are widely implicated 
in the reward system, drug addiction, and motivation. Cor-
respondingly, the VTA also receives massive inputs from 
orexin neurons in the LHA and prefornical area[4,5,69]. These 
reciprocal connections may constitute a basis for the in-
volvement of the orexinergic system in the regulation of re-
ward circuitry. Electrophysiological data have documented 
that orexins directly activate dopamine neurons in the 
VTA[70]. in addition, both intracerebroventricular infusion of 
orexin A and its administration directly into the VTA lead to 
dose-related reinstatement of drug-seeking[71,72]. Pretreat-
ment of alcohol-preferring rats with the OX1R antagonist 
SB-334867 completely abolishes the olfactory cue-induced 
reinstatement of alcohol-seeking behavior[73]. Moreover, in 
vitro application of orexin A potentiates N-methyl-D-aspar-
tate receptor (NMDAR)-mediated neurotransmission in the 
neural plasticity relevant to addiction, via PLC/PKC-depen-
dent insertion of NMDARs into VTA dopamine neuron syn-

apses[19]. Furthermore, in vivo administration of SB-334867 
blocks locomotor sensitization to cocaine and occludes 
cocaine-induced potentiation of excitatory currents in VTA 
dopamine neurons[19]. These results provide substantial evi-
dence for a critical role of orexin signaling in the induction 
of synaptic plasticity associated with addiction, and in the 
subsequent reward-seeking behaviors.

intriguingly, the orexinergic system may be also in-
volved in the memory link between stimulus and reward[72]. 
Harris et al. used a two-chamber, nonbiased, conditioned 
place-preference (CPP) model to measure the rewarding 
properties of morphine, cocaine and food and thereby 
evaluate the effect of the orexinergic system on reward pro-
cessing. in this model, one chamber becomes associated 
with drug or food reward through repeated pairings, where-
as the other chamber is associated with no reward. When 
the animal becomes addicted, it spends more time in the 
chamber with consummatory rewards and thereby forms 
CPP. And once the consummatory rewards in the chamber 
are withdrawn for a time, the CPP gradually disappears. 
Chemical activation of LHA orexin neurons reinstates the 
extinguished drug-seeking behavior. And this reinstatement 
effect is completely blocked by prior administration of an 
OX1R antagonist[72]. These results show that the projec-
tions from the LHA orexinergic system to the VTA play an 
important role not only in the formation of an acute desire 
for reward, but also in the learning and memory of the re-
ward condition.
Neuroendocrine
The release of many hormones is modulated by orexin. 
intracerebroventricular administration of orexins markedly 
increases plasma adrenocorticotropic hormone and cor-
ticosterone levels[74], suggesting that central orexin acti-
vates the hypothalamo–pituitary–adrenal axis. Moreover, 
after intracerebroventricular injection of orexins, c-fos 
mRNA increases in a dose-related manner in the parvo-
cellular division of the PVN, a large part of which contains 
corticotropin-releasing hormone neurons[28,74]. in addition, 
recently, Lopez et al.[75] found that the mRNA of growth 
hormone-releasing hormone in PVN neurons decreases 
significantly after intracerebroventricular injection of orexin 
A. Furthermore, intracerebroventricular administration of 
orexin A leads to a decrease in spontaneous growth hor-
mone secretion in rats, indicating an inhibitory role of orexin 
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A in growth hormone secretion[76]. in addition, the central 
orexinergic system may also modulate the hypothalamo–
pituitary–gonad axis. Campbell et al.[77] found that 75–85% 
of gonadotropin-releasing hormone (GnRH) neurons re-
ceive projections from orexin neurons, and 85% of GnRH 
neurons express OX1Rs or OX2Rs. In addition, orexin A 
activates the release of GnRH in hypothalamus explants[78]. 
Moreover, in the brains of narcolepsy patients, the level of 
luteinizing hormone decreases and the release of luteiniz-
ing hormone activated by GnRH declines[79]. All of these re-
sults suggest that the central orexinergic system is actively 
involved in neuroendocrine regulation.

Conclusion

Accumulating evidence reveals that the central orexinergic 
system, originating from restricted hypothalamic regions, 
regulates various basic physiological processes, including 
not only non-somatic regulation, such as feeding, energy 

homeostasis, the sleep/wake cycle, addiction, and neu-
roendocrine, but also somatic motor control (Fig. 2). on the 
other hand, central motor structures project back to the hy-
pothalamus, such as direct cerebellohypothalamic projec-
tions[7,8] and indirect projections from the vestibular nuclei to 
the hypothalamus[80], to influence nonsomatic physiological 
functions. By bridging the non-somatic centers to somatic 
motor structures and modulating both non-somatic and 
somatic activity in parallel, the central orexinergic system, 
together with the circuits from motor structures to non-so-
matic centers, may actively participate in the orchestration 
of somatic–non-somatic integration, which is crucial for the 
generation and execution of appropriate and coordinated 
behavioral responses (including both somatic and non-
somatic components) to changes in the internal and exter-
nal environments. Actually, narcolepsy-cataplexy caused 
by orexin deficiency is a simultaneous somatic and non-
somatic dysfunction in which somatic (motor) activity and 
some non-somatic (sleep and emotional) responses are not 

Fig. 2. Central functions of the orexinergic system (diagrammed in the rat brain). Central orexin, secreted exclusively by neurons in the 
hypothalamus (red), plays a crucial role in the regulation of non-somatic and somatic physiological functions by actions on brain 
regions involved in feeding (orange), the sleep/wake cycle (blue), reward (purple), and neuroendocrine (pink), as well as motor 
control (dark green). On the other hand, central motor structures, including both the cerebellum and vestibular nuclei, project di-
rectly (light green solid line) and indirectly (light green dashed line) back to the hypothalamus to influence non-somatic functions. 
Thus, by bridging the non-somatic center to somatic motor structures and modulating both non-somatic and somatic activities in 
parallel, the central orexinergic system, together with the circuits from motor structures to the hypothalamus, may actively partici-
pate in somatic-non-somatic integration. ARC, arcuate nucleus; LHA, lateral hypothalamic area; NA, nucleus accumbens; SN, sub-
stantia nigra; TMN, tuberomammillary nucleus; VLPO, ventrolateral preoptic area; VTA, ventral tegmental area; 3V, third ventricle; 
4V, fourth ventricle.
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correctly integrated and coordinated. Thus, further studies 
on the somatic and non-somatic functions of the orexinergic 
system and the underlying mechanisms will assist not only 
in understanding and reevaluating the functional roles of 
orexin, but also in comprehending the entire mechanism of 
somatic–non-somatic integration, which will help to explain 
the pathogenesis of simultaneous somatic and non-somatic 
dysfunctions.
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