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ABSTRACT  

Cognitive functions are often studied using event-
related potentials (ERPs) that are usually estimated 
by an averaging algorithm. Clearly, estimation of 
single-trial ERPs can provide researchers with many 
more details of cognitive activity than the averaging 
algorithm. A novel method to estimate single-trial 
ERPs is proposed in this paper. This method includes 
two key ideas. First, singular value decomposition 
was used to construct a matrix, which mapped single-
trial electroencephalographic recordings (EEG) into a 
low-dimensional vector that contained little information 
from the spontaneous EEG. Second, we used the 
theory of compressed sensing to build a procedure 
to restore single-trial ERPs from this low-dimensional 
vector. ERPs are sparse or approximately sparse in 
the frequency domain. This fact allowed us to use 
the theory of compressed sensing. We verified this 
method in simulated and real data. Our method and 
dVCA (differentially variable component analysis), 
another method of single-trial ERPs estimation, were 
both used to estimate single-trial ERPs from the 
same simulated data. Results demonstrated that our 
method signifi cantly outperforms dVCA under various 
conditions of signal-to-noise ratio. Moreover, the 
single-trial ERPs estimated from the real data by our 
method are statistically consistent with the theories of 
cognitive science. 
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INTRODUCTION

Event-related potentials (ERPs) hidden in electro-
encephalographic recordings (EEG) are powerful indices of 
cognitive brain functions. When participants are exposed 
to specifi c external stimuli, potentials that are time-locked 
to the stimulus onset are evoked[1]. The EEG recorded 
under these conditions is commonly modeled as a linear 
combination of ERPs and spontaneous EEG. The most 
commonly-used method to estimate ERPs is to calculate an 
average across an ensemble of trials[2]; this is considered to 
eliminate spontaneous EEG activity. Obviously, the average 
cannot provide information on the trial-to-trial variability 
of ERPs. This variability is measurable[3] and meaningful 
in cognitive science[4]. For example, a study[5] of the 
P300 by single-trial analysis pointed out that people with 
schizophrenia have a smaller P300s; another study[6] based 
on single trials revealed different sub-types of response in 
late ERPs components; and EEG-fMRI single-trial coupling 
has been used to investigate the neuronal generators of 
the early posterior negativity in response to emotional 
auditory stimuli[7]. A previous study[8] also provided evidence 
that single-trial ERPs can be used to accurately classify 
the differences between experimental conditions. In 
their search for richer indicators of cognitive functions, 
researchers have been committed to fi nding better means 
by which single-trial ERPs can be estimated accurately.
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A number of techniques have been developed to 
estimate single-trial ERPs. The matched-filter proposed 
by Woody in 1967 is based on a signal model in which the 
trial-to-trial change of amplitude and latency is depicted[9]. 
Subsequent researchers expanded Woody's thinking to 
advance this fi eld so that maximum likelihood could be used 
to estimate the amplitudes and latencies for each trial[10-14]. 
A method based on Bayesian theory[15] used second-order 
a priori statistical information in the EEG to estimate single-
trial ERPs. Some researchers assume that EEG sources 
are independent, so Independent Component Analysis has 
been used to estimate single-trial ERPs[16-18]. Another study 
proposed a classification-based framework and derived 
a specialized algorithm for single-trial ERPs estimation 
from this framework[19]. On the other hand, analyses of the 
characteristics of signals in the frequency domain have 
been exploited to design procedures to estimate single-trial 
ERPs[20-26]. Wavelet and Fourier transformations usually 
underlie these procedures. Recently, a new approach 
based on the principle of projecting the signal and noise 
onto their respective signal and noise coeffi cient subspace 
was reported[27].

In single-trial ERPs estimation and related fields, 
the sparsity of ERPs has drawn attention and been 
used to develop new methods of ERPs estimation and 
representation. Sparse component decomposition has 
been applied to estimate ERPs[24]. A framework based on 
compressed sensing (CS), a special computing technology 
for sparse signals, was introduced for the representation of 
multichannel, multiple-trial EEG[28]. A classifi cation method 
based on sparse representation of EEG signals and 
ell-1 minimization has been suggested for building motor 
imagery-based brain-computer interface systems[29, 30]. In 
the present study, we started with the sparsity of ERPs in 
the frequency domain to build a novel method based on CS 
for single-trial ERP estimation.

CS was developed in a theoretical framework based on 
the theory of optimal recovery, the theory of n-widths, and 
information-based complexity[31]. In recent years, CS has 
attracted considerable attention in applied mathematics, 
computer science, and electrical engineering by suggesting 
that it may be possible to surpass the traditional limits 
of sampling theory. CS builds upon the fundamental fact 
that we can represent many signals using only a few non-
zero coeffi cients in a suitable base or dictionary. Nonlinear 

optimization can then enable the recovery of such signals 
from very few measurements[32].

In this paper, we proposed a special single-trial ERPs 
estimation method built upon the sparsity of ERPs in the 
frequency domain. Elimination of spontaneous EEG is a 
difficult problem because it is always much stronger than 
the ERPs. Almost all ERPs estimation methods assume 
that ERPs are irrelevant to spontaneous EEG. We also 
adopted this assumption in the process of constructing this 
new method. We started with this assumption to seek a 
solution for eliminating spontaneous EEG by a de-noising 
matrix obtained by singular value decomposition (SVD) of 
spontaneous EEG. Further, a sensing matrix in CS was 
obtained by multiplying this de-noising matrix by the basis 
of the inverse Fourier transform. Our method can be briefl y 
described in three steps: (1) obtain a de-noising matrix 
by SVD of spontaneous EEG and a sensing matrix by 
multiplying the de-noising matrix by that basis, (2) eliminate 
spontaneous EEG by the de-noising matrix obtained in the 
fi rst step, and (3) recover single-trial ERPs by the sensing 
matrix using the theories of CS.

METHODS

Signal Model and Problem Formulation
A trial EEG recorded from the scalp is here written as 
Ek T×N, where k represents the index of the trial, N the 
number of channels, and T the number of sampling points 
for a trial. When EEG is recorded in the ERPs experimental 
paradigm, ERPs exist in the EEG, which is considered to 
be a linear combination of spontaneous EEG and ERPs. 
So, we have

                              Ek = Bk + Sk                                 (1)
where Bk denotes the spontaneous EEG of the kth trial 

and Sk the ERPs of the kth trial; certainly Bk, Sk T×N too. 
We denote a column vector of Ek, Bk, Sk as e, b, s, 
respectively. Clearly, e = b + s. The average, commonly 
used to estimate ERPs, can be expressed as

                                            (2)

where it is expected that  =0 and S
–
 is the average 

of all Sk, the variability of which is ignored here. In actual 
settings, K usually ranges from 80 to 200. The broad 
applications of average estimation in cognitive science 
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show that S
–
 is not a bad approximation of Sk [1, 2, 33]. Seeking 

to fi nd every Sk, we consider that S
–
 is still valuable.

Given the task is to estimate all Sk from Ek, what is 
known is clearly not enough. Most estimates of ERPs, 
including averaging and a variety of single-trial estimation 
methods[2, 9-26], build upon the assumption that ERPs are 
irrelevant to spontaneous EEG. Here, we also made this 
assumption. Since S

–
 is an acceptable approximation of Sk 

and Bk is irrelevant to Sk, B~k= Ek – S
–
 can be considered an 

acceptable approximation of Bk. Furthermore, the column 
vectors of Bk are relevant to each other and they jointly 
reflect the status of spontaneous EEG in a trial. That is, 
we can fi nd a projection from Bk, by which a column vector 
of Bk corresponding to a channel from the kth trial can be 
transformed to another vector in which most entries are very 
weak. This implies a solution to attenuate spontaneous EEG 
for estimation of single-trial ERPs. In the actual case, Bk is 
unknown. It is reasonable to use B~k as a substitute for Bk.

We explored the projection described above by SVD 
of B~k. According to the principle of SVD, we have B~k = U∆V, 
where U T×T, V N×N, and ∆ is a T × N rectangular 
diagonal matrix with non-negative real numbers on the 
diagonal, which are called singular values. Each column 
vector of U corresponds to a singular value in ∆. When 
b is projected to a column vector of U, the singular value 
corresponding to it represents the power of b on it. Usually, 
the singular values decay rapidly if they are sorted in 
descending order. That is, the power of b concentrates 
on only a few dimensions if b is projected to the space 
determined by U. We can obtain a de-noising matrix Dk M×T, 
where M<N<<T,  by transposing some column vectors of 
U corresponding to the small singular values. For the sake 
of simplifi cation, we denote the above procedure with the 
notation SVM, that is Dk = SVM(B~k), where the subscript M is 
a parameter of de-noising. It may be expected that every 
entry of η = Dkb is close to 0. So, we have

                                y = Dke

                                   = Dks+Dkb                              (3)

                                   = Dks+η

                                   ≈ Dks                                                           

where e T×1 is the known measurement result and Dk M×T 
is obtainable, so y M×1 is a computable approximation 
of Dks. Now, estimation of single-trial ERPs has been 
formalized as a problem of determining s by known y and 

Dk. Here, Dk is not a square matrix and not invertible. The 
problem of equation  is still difficult. The next step of our 
method is built on CS.

Sensing Matrix
CS is a method for sparse signals with complete theories. 
Mathematically, a signal x T×1 can be said to be m- 
sparse when it has at most m non-zeros and m<<T[31, 32]. 
Intuitively, s in this paper should be a sparse signal or an 
approximately sparse one because most entries of s are 
close to zero except those surrounding a few peaks, which 
are called components in cognitive science and related 
areas[1, 2, 34]. But, this is not straightforward according to 
the mathematical definition of sparse signals. When s is 
transformed from the time domain to the frequency domain 
by Fourier transformation, only m ≈ 16 entries among all 
400 entries of the s vector in the frequency domain are not 
equal to zero, and other entries are equal to or very close 
to zero. The sparsity of s is clearly revealed by Fourier 
transformation.

The sparsity of EEG as well as ERPs has been 
widely discussed and exploited by many researchers. One 
paper[28] described the sparsity level of EEG signals based 
on the analysis of 750-sample EEG recordings from a 
control participant performing a continuous performance 
task. Others[29, 30] developed a classification scheme for 
motor imagery-based brain-computer interface systems 
by a combination of sparse representation of EEG and 
a common spatial pattern. A further study[24] designed a 
decomposition method based on the sparsity of ERPs 
and EEG, by which multiple signals could be separated 
by learning in a mixed dictionary with a matching pursuit 
algorithm, for ERPs estimation.

In this study, we used the sparsity of ERPs in 
the frequency domain to construct the single-tr ial 
ERPs estimate. According to the principle of Fourier 
transformation, we may have s = Φx, where Φ  T×T 
corresponds to a discrete inverse Fourier transform,  Φ is 
irrelevant to x, x T×1, and most entries of x are equal to 
or near zero. To proceed, we defi ned Ak = DkΦ, Ak M×T, 
where Dk is derived from B~k being irrelevant to x, and Φ is 
also irrelevant to x. Equation (3) can be further written as 
follows:

                                    y = Dke
                                       = Akx + η                            (4)
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In equation (4), e is measured data, Dk is determined 
via SVM(B~k), y and Ak are computable, and only x is to 
be determined. Clearly, the task in this study can be 
accomplished if x is determined well.

In terms of other studies[31, 32], x is an m-sparse signal 
to be determined, Ak is a sensing matrix, η is noise, and y 
is the measurement of x. According to the theory of CS, for 
determining x it is required that M ≥ 2m. Always, m ranges 
from 10 to 20. EEG is usually recorded with 64, 128, or 256 
electrodes, that is, N = 64, 128, or 256. M is slightly smaller 
than N. So, M ≥ 2m is completely met here. Signal recovery 
algorithms of CS are good for obtaining x from y and Ak.

Algorithm of Estimation
Generally, a variety of 1 minimization or “greedy” algorithms 
for signal recovery in CS areas are applicable to our goal 
in the study. Here, a greedy algorithm named iterative hard 
thresholding (IHT)[32] was modifi ed as the core of our single-
trial ERPs estimation. This is called COSE, an abbreviation 
of compressed sensing, by which we emphasize the 
importance of compressed sensing in our method. COSE is 
shown as Algorithm 1.

In Algorithm 1, COLj(·) represents an operator that 
takes the jth column of the matrix, Hm(·) denotes a hard 
thresholding operator on a vector that sets all entries to 

zero except for the m entries of this vector with the largest 
magnitude. The stopping criterion in line 7 can consist of 
either a limit on the number of iterations or a requirement 
that y ≈ Ax1 in some sense.

dVCA
Comparison between COSE and dVCA[11] will be made 
in the next section to demonstrate the advantages of our 
method. Here, dVCA is briefl y described in this context. The 
dVCA algorithm consists of the following steps.

(1) Choose the averaged result of EEG of K trials as 
the initial estimate of the ERPs component waveform.

(2) For all components and trials, estimate the single-
trial latency shift.

(3) Update the ERPs waveform component by 
component.

(4) For all components and trials, estimate single-trial 
amplitudes.

(5) If the stopping criterion is met, end. Otherwise, go 
to step (2).

RESULTS

Simulated Data
We designed a procedure to build simulated EEG 

Algorithm 1.  COSE, single-trial ERPs estimation

lnput: EEG of K trials Ek, k = 1,…,K.

Output: ERPs of channel j of K trials sk, k = 1,…,K.

1: initialize de-noising parameter M, sparsity level m, channel index j, inverse Fourier transformation matrix Φ.

2:  

3: k = 1

4: while k< = K do

5: e = COLj(E
k), B

~k= Ek - S
–
, Dk = SVM(B

~k), y = Dke, Ak = DkΦ.

6: x0 = 0

7: while stopping criterion is not met do

8: x1 = Hm(x0 + AT(y–Ax0)), x0 = x1.

9: end while

10: sk = Φx1

11: k = k + 1

12: end while



Neurosci Bull     December 1, 2013, 29(6): 788–797792

containing known ERPs by referring to the literature[11, 22, 24]. 
In this procedure, simulated EEG was synthesized by the 
superposition of spontaneous EEG and simulated ERPs 
waveforms including several components. Eight university 
student volunteers (identifi ed as S1 to S8) were randomly 
selected in order to acquire spontaneous EEG. They were 
19–25 years old, half were female, and their hearing and 
sight were normal. A 64-electrode EEG instrument was 
used to record EEG at 1 000 Hz. The real 64-channel 
EEG of participants in the resting state was viewed as 
spontaneous EEG.

The spontaneous EEG of each participant was cut 
into 72 segments, each of which spanned 400 ms. The 
72 segments corresponded to 72 trials. A simulated ERPs 
waveform containing two components is shown as the “real” 
curve on the right in Figure 1. A group of simulated ERPs 
waveforms for 72 trials were generated by adjusting the 
amplitudes and latencies of the two components. In detail, 
the single-trial amplitudes of the two components were 
Gaussian-distributed with means –1 and 9 and standard 
deviation 0.5, their latencies were Gaussian-distributed 
with means 168 and 274 and standard deviations 10 and 
15. Superposition of spontaneous EEG segments and 
simulated ERPs waveforms was carried out to construct 
a group of simulated EEG corresponding to 72 trials. 
The signal-to-noise ratio (SNR) of this group of simulated 

EEG was –10 according to SNR = 20·log , where σs 

represents the standard deviation of simulated ERPs 
and σn the standard deviation of the spontaneous EEG. 
We produced other 9 groups of simulated EEG for each 
participant by increasing the mean of amplitudes of the two 
components. They were –3 and 11, –5 and 13, –7 and 15, 
–9 and 17, –11 and 19, –13 and 21, –15 and 23, –17 and 
25, and –19 and 27. The SNRs of the other 9 groups were 
–8, –6, –4, –2, 0, 2, 4, 6, and 8.

We estimated single-trial ERPs from each simulated 
EEG by COSE and dVCA. Also, the average of each group 
of simulated EEG was computed for comparison. Two 
randomly-selected examples of estimation results are given 
in Figure 1. Both examples showed that “averaged” is not 
equal to “real”, which makes it clear that “averaged” is just 
an approximation of single-trial ERPs. COSE resembled 
“real” much more than dVCA. This is an indication of the 
advantage of COSE over dVCA.

When the amplitudes are transformed to gray-scale, 
a group of ERPs waveforms can be drawn as an image. 
All estimation results of the two groups of simulated EEG 
are presented as gray-scale images in Figure 2. Visual 
inspection showed that COSE images were much more 
similar to their real counterparts than dVCA images. These 
results demonstrated that COSE works much better than 
dVCA in the two groups of simulated EEG. 

Next, we compared the real and estimated values 
of COSE and dVCA for the amplitudes and latencies of 
components of each simulated trial (Fig. 3). The data 

Fig. 1. Examples of waveforms of real ERPs and ERPs estimated by averaging, COSE, and dVCA. The “real” curve is the actual ERPs 
waveform in simulated EEG. The “averaged” curve is the average of 72 trials. The “COSE” curve is the result estimated by COSE. 
The “dVCA” curve is the result estimated by dVCA. The left panel is from trial 52 of simulated EEG from S1 in which the SNR is 
–10. The right panel is from trial 69 of simulated EEG from S1 in which the SNR is –6.
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demonstrated that the effectiveness of estimating the 
latencies of both components by COSE was much better 
than that of dVCA (Fig. 3, right panels; since both axes 
are the same scale, good performance is indicated by 
clustering along the diagonal). For amplitude, we used 
different scales for the horizontal and vertical axes in order 
to contain as many dVCA results as possible (Fig. 3, left 
panels). In this situation, better performance is indicated 
when data points cluster near the horizontal. The data 
showed that results of components estimated by COSE 
were good, while dVCA was not satisfactory. These results 
demonstrated the good performance of COSE and the 
advantage of COSE over dVCA.

We built ten groups of simulated EEG for each of the 
eight participants. All estimated results for amplitudes are 
shown in Figure 4 and for latencies in Figure 5. The data 
showed that the correlations of real and estimated values 
of COSE were higher than those corresponding to dVCA 
in each group of all subjects for Components 1 and 2, and 
for amplitudes and latencies. Higher correlation implies 
better performance and the data showed the superiority of 
COSE over dVCA. In addition, a trend for the correlation to 
increase with SNR was revealed for dVCA; this trend was 
also present for COSE though not obvious. This suggests 

Fig. 2. Groups of ERPs waveforms presented as gray-scale images by transforming amplitude to gray scale. Left panels, images from 
S1 with SNR = –10; right panels, S1 with SNR = –6. Upper panels, estimates by COSE; middle panels, the real waveforms; bottom 
panels, estimates by dVCA.

that SNR plays an important role in the performance of 
single-trial ERPs estimation. Generally, the SNR of ERPs 
in real EEG is low. The ability of a method to adapt to a low 
SNR is very important. The advantages of COSE over dVCA 
in the groups with a low SNR highlight important points.

Cognitive Experiment Data
Besides simulated data, our method was further verified 
with real data from a cognitive experiment based on 
sensory gating, which is a normal function of brain. The 
brain fi lters redundant information by this function to adapt 
to a new environment and maintain the integrity of cognitive 
function[35]. Sensory gating is related to cognitive processes 
such as attention and working memory and works to protect 
cognition[36]. The paired-click paradigm, a standard means 
of researching sensory gating, was inserted into delayed-
response tasks with different memory loads in three 
experiments. In Experiment 1, the participants were asked 
to maintain a resting state. In Experiment 2, a randomly-
selected image of a face was set as the stimulus of a trial 
and the participants were trained to maintain a state of 
low-load object working memory. In Experiment 3, two 
randomly-selected faces were set as the high memory load 
and the participants were also trained to maintain an object 
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working memory state, but with a high load. In Experiments 
2 and 3, the participants were asked to remember the 
faces and make a judgment as to whether the probe faces 
were the same as the target ones by clicking a computer 
mouse. The three experiments corresponded to three 
different states of the participants. In each state, they were 
all given stimuli of two consistent 10-ms sounds (frequency, 
1 000 Hz; intensity, 85 db; inter-stimulus interval, 500 ms; 
inter-test interval, 6-8 s; selected according to the paired-
click paradigm). EEG was recorded from the participants 
in the different states. The real EEG was the superposition 
of ERPs and spontaneous EEG. The three experiments 
consisted of 80 trials for each participant. Normally, the 
ERPs evoked by the first sound is stronger than that by 
the second sound; i.e., sensory gating occurs. We verifi ed 
COSE by judging whether the results in these real EEG 
were consistent with this phenomenon.

Participants S1–S4 took part in Experiments 1 
and 2, and S5–S8 in Experiments 1 and 3. During 
these experiments, NeuroScan was used to record and 
precondition the EEG: the AC fi lter was set to 0.1–100 Hz, 

and the data sampling rate was 1 000 Hz; the reference 
electrode was on the nasion, and the resistances of all 
electrodes were <5 kΩ. About 60 single-trial EEGs were 
obtained in each session, since precoditioning usually 
rejected some single trials.

COSE was applied to estimate single-trial ERPs from 
all real EEG. Subsequently, the amplitude of N100, a 
component often measured in studies of sensory gating, 
was determined from each single-trial ERPs estimation and 
matched according to the relation of the first sound and 
second sound. The Wilcoxon signed-rank test was carried out on 
the pairs of amplitudes for all experiments on each participant. 
As shown in Table 1, means corresponding to the 1st sound 
were larger than those to the 2nd sound (P <0.05). This is 
fully consistent with the principle of sensory gating[35]. The 
results of these cognitive experiments support the utility of 
COSE, our single-trial ERPs estimation method based on 
compressed sensing.

DISCUSSIONS
ERPs have been important tools of research on cognitive 

Fig. 3. Scatter diagrams of data from S1 with SNR = –10. Horizontal axis, real value; vertical axis, estimated value. Each point includes 
information of the real and estimated values of a component of a trial. Left panels, scatter diagrams of component amplitudes; 
right panels, scatter diagrams of component latencies. The title “COSE-Com1-Amp-Sca” denotes that this is a scatter diagram of 
the amplitudes of Component 1 estimated by COSE; other titles are similar.
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Fig. 4. Correlation of amplitudes. The correlation coeffi cient of real and estimated amplitudes was calculated for each component of 
each group of all subjects. The symbol ‘*’ represents the correlation coeffi cient of a group of Component 1 real amplitudes and 
amplitudes estimated by dVCA. The horizontal coordinate is the SNR of the group and the vertical coordinate the correlation 
coeffi cient. ‘°’, ‘+’ and ‘x’ have same implications, but correspond respectively to Component 1 estimated by COSE, Component 
2 estimated by dVCA, and Component 2 estimated by COSE. Blue indicates Component 1 and red Component 2. The solid lines 
indicate COSE and the dotted lines dVCA. Each sub-graph displays the results from one participant (S1–S8).

Fig. 5. Correlation of latencies, as in Fig. 4.

functions for a long time. However, they are usually 
estimated by averaging. Clearly, estimation of single-trial 
ERPs can reveal much more about cognitive activities 
in the brain. However, estimation of single-trial ERPs is 

diffi cult. Research on this issue can be traced back at least 
to 1967[9], and a variety of methods have been proposed 
and tried. In recent years, various ways to improve the 
estimation of single-trial ERPs have been developed[15, 19, 27]. 
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Here, we sought a new solution to estimate single-
trial ERPs, starting with the fact that ERPs are sparse 
or approximately sparse in the frequency domain. 
Compressed sensing, which recently emerged as a 
computing technology for sparse signals, was suitable for 
single-trial ERPs estimation in our research. We built a 
method on compressed sensing, in which singular value 
decomposition was also used.

We designed a procedure to construct simulated data, 
in which our method and dVCA were compared. The results 
showed that our method worked well and was clearly better 
than dVCA. The real data were from cognitive experiments 
designed to assess sensory gating. The results of our 
method with the real EEG were fully consistent with the 
findings of cognitive science. The cognitive experiments 
provide evidence for the utility of our method.

An ERPs waveform consists of only a few peaks, which 
implies their sparsity, although this is not straightforward in 
the time domain. Here, we disclosed the sparsity of ERPs 
through Fourier transformation. However, there may be 
other approaches to accomplish this for ERPs, such as 
wavelet transformation. This is a direction of advancing 
research.
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