
Neurosci Bull    December 1, 2013, 29(6): 752–760. http://www.neurosci.cn
DOI: 10.1007/s12264-013-1383-2752

·Review·

Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate 
receptors induced by amyloid-β
Zhi-Cong Wang, Jie Zhao, Shao Li
Department of Physiology, Dalian Medical University, Dalian 116044, China

Corresponding authors: Shao Li and Jie Zhao. E-mail: lishao89@hotmail.com, dlzhaoj@163.com

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

The toxicity of amyloid-beta (Aβ) is strongly associated with Alzheimer's disease (AD), which has a high 
incidence in the elderly worldwide. Recent evidence showed that alteration in the activity of N-methyl-D-
aspartate receptors (NMDARs) plays a key role in Aβ-induced neurotoxicity. However, the activation of synaptic 
and extrasynaptic NMDARs has distinct consequences for plasticity, gene regulation, neuronal death, and Aβ 
production. This review focuses on the dysregulation of synaptic and extrasynaptic NMDARs induced by Aβ. 
On one hand, Aβ downregulates the synaptic NMDAR response by promoting NMDAR endocytosis, leading 
to either neurotoxicity or neuroprotection. On the other hand, Aβ enhances the activation of extrasynaptic 
NMDARs by decreasing neuronal glutamate uptake and inducing glutamate spillover, subsequently causing 
neurotoxicity. In addition, selective enhancement of synaptic activity by low doses of NMDA, or reduction of 
extrasynaptic activity by memantine, a non-competitive NMDAR antagonist, halts Aβ-induced neurotoxicity. 
Therefore, future neuroprotective drugs for AD should aim at both the enhancement of synaptic activity and the 
disruption of extrasynaptic NMDAR-dependent death signaling.
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Introduction

Alzheimer’s disease (AD) is the most common form of 
dementia and is pathologically characterized by senile 
plaques, neurofi brillary tangles, and synaptic loss. Although 
the pathogenesis of the disease is still not well understood, 
amyloid-beta (Aβ) is widely recognized to be neurotoxic. 
To date, the downstream signaling pathways of N-methyl-
D-aspartate receptors (NMDARs) are thought to be 
involved in Aβ-induced neurotoxicity. For example, Aβ 
induces synaptic loss[1-3] and postsynaptic density-95 (PSD-
95) degradation[4-6], stimulates the production of reactive 
oxygen species (ROS)[7-10], disrupts axonal transport[11], and 
causes microtubule deregulation[12] through an NMDAR-
dependent mechanism. Furthermore, Aβ not only binds to 
domains within or near NMDARs in vitro and in vivo[3, 7, 9, 13], 
but also directly activates NMDARs[14-16].

NMDARs are the major subtype of ligand-gated 

ionotropic glutamate receptors expressed widely in the 
central nervous system. Based on their localization on the 
cell membrane, NMDARs are distinguished as synaptic or 
extrasynaptic. Synaptic NMDARs are classically defined 
as functional receptors that are activated by glutamate 
released during low-frequency synaptic events, whereas 
extrasynaptic NMDARs, which are not activated by 
synaptically-released glutamate from presynaptic vesicles, 
are found at various locations such as the cell body, the 
dendritic shaft, and the neck of the dendritic spine. For 
many years it has been thought that the degree of Ca2+ 
infl ux through NMDARs is solely responsible for differences 
in cellular outcome: moderate levels of NMDAR activity 
are beneficial for neurons, while excessive activation of 
NMDARs is deleterious due to Ca2+ overload. However, 
synaptic and extrasynaptic NMDARs are known to play 
opposing roles in some signaling pathways: synaptic 
NMDARs play a protective role by promoting nuclear 
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signaling to cAMP response element binding protein 
(CREB), inducing gene expression of brain-derived 
neurotrophic factor (BDNF), activating extracellular signal-
regulated kinases (ERK) and an anti-apoptotic pathway, 
whereas extrasynaptic NMDARs antagonize signaling to 
CREB, block BDNF expression, and cause mitochondrial 
membrane potential loss and cell death[17-23]. Also, selective 
stimulation of extrasynaptic NMDARs triggers excitotoxicity, 
but Ca2+ overload through synaptic NMDARs is not 
neurotoxic[19, 21, 24]. This review aims to summarize recent 
studies on the dysregulation of synaptic and extrasynaptic 
NMDARs induced by Aβ, and provide new insights into 
the development of AD therapies based on the balance 
between synaptic and extrasynaptic NMDARs.

Activation of Synaptic or Extrasynaptic NMDARs 

Infl uences Aβ Production

NMDAR stimulation has been reported to increase the 
levels of α-C-terminal fragments (C83) of amyloid precursor 
protein (APP) and release soluble APP (sAPP), as well 
as decrease the production and release of Aβ1-40, all of 
which are blocked by NMDAR antagonists or α-secretase 
inhibitors[25]. However, chronic NMDA exposure increases 
the expression of neuronal Kunitz protease inhibitory 
domain-containing APPs (KPI-APPs; isoforms exhibiting 
important amyloidogenic potential), which subsequently 
inhibit the α-secretase candidate tumor necrosis factor-α 
converting enzyme, and increase the production of Aβ[26].

To determine whether this contradiction is explainable 
in terms of the activation of synaptic or extrasynaptic 
NMDARs, they were separately activated in a series 
of experiments. Activation of synaptic NMDARs alone 
inhibits Aβ release and increases C83 production and ERK 
phosphorylation[25] (Fig. 1). Aβ is produced primarily within 
neurons and secreted into the interstitial fl uid (ISF). Using 
a micro-dialysis technique to specifi cally measure dynamic 
changes in ISF Aβ levels in vivo, Verges et al. revealed 
that high doses of NMDA or NMDAR agonist activate ERK 
and reduce the processing of APP into Aβ, while NMDAR 
antagonists increase ISF Aβ levels, suggesting that 
basal activity of these receptors normally suppresses Aβ 
levels[27]. Similar to these reports, after synaptic NMDAR 
activation, Bordji et al. failed to detect any KPI-APPs, and 

Aβ levels were not modifi ed[19]. Mechanistically, stimulation 
of NMDARs up-regulates the genes encoding a disintegrin 
and metalloproteinase 10 (ADAM10), the constitutive 
α-secretase that governs the non-amyloidogenic pathway 
of APP processing, and increases the trafficking of 
ADAM10 to the postsynaptic membrane[28, 29]. On the other 
hand, selectively activating extrasynaptic NMDARs does 
not stimulate C83 production and ERK phosphorylation[25], 
but induces a signifi cant increase in KPI-APP mRNA and Aβ 
production, with no change in total APP mRNA expression, 
implying that a shift from normal APP to KPI-APP expression 
causes the higher production of Aβ[19] (Fig. 1).

Dysregulation of Synaptic NMDARs Induced by 

Aβ

Aβ Promotes Synaptic NMDAR Endocytosis 
To determine the effect of Aβ on cell surface (both synaptic 
and extrasynaptic) NMDAR expression, Snyder et al. 
treated cultured cortical neurons with Aβ for 1 h and found 
that Aβ reduces the surface expression of the NR2B 
and NR1 subunits of NMDARs, but does not change the 
total levels (including internalized surface receptors) of 
NR2B, which is observed in the neurons from APPSwe mice 
that over-express human APP with the familial Swedish 
mutation. And the effect of Aβ is completely inhibited by 
a γ-secretase inhibitor, which substantially reduces the 
Aβ level[30]. Consistent with these data, Aβ-mediated 
NMDAR endocytosis also occurs in other mouse cortical 
or hippocampal neurons that are exposed to Aβ[3, 13, 31-33], and 
neurons or retinal membrane from transgenic animals with 
AD[13, 33, 34].

Specifically, Aβ significantly reduces NR1 at synaptic 
sites, further supporting the selective action of Aβ on synaptic 
NMDARs[30]. In neurons from APP [V717I] transgenic mice, 
a model that mimics the early cognitive impairment in AD, 
the amounts of postsynaptic NR2B are also decreased[13]. 
In addition, Li et al. used a biochemical approach to 
separate synaptic and extrasynaptic fractions from acute 
hippocampal slices after incubation with 7PA2 CM (medium 
from cells stably over-expressing a human APP mutation 
and secreting Aβ). They found a significant decrease of 
synaptic NR2B at 6 and 16 h, but no change of the NR2B 
levels in either the synaptic or extrasynaptic fractions at 30 
min[35]. 
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Although NMDARs can be redistributed from synaptic 
to extrasynaptic sites, Snyder et al. failed to find an 
increase in extrasynaptic staining of NMDARs after Aβ 
treatment[30]. Incubating neurons with Aβ does not change 
extrasynaptic NR2B clusters at 30 min, 6 h, and 16 h[35], 
indicating that Aβ does not promote extrasynaptic NR2B 
endocytosis.

Mechanistically, Aβ-mediated NMDAR endocytosis 
requires α-7 nicotinic acetylcholine receptors (α7nAChRs) 
and striatal-enriched protein tyrosine phosphatase (STEP)[30]. 
Wang et al.  reported that Aβ  binding to neuronal 
α7nAChRs promotes the aggregation of intraneuronal Aβ 
and the formation of neurofibrillary tangles (NFTs)[36, 37]. 

S24795, a novel α7nAChR agonist, reduces the Aβ-
α7nAChR interaction, decreases Aβ-induced NFTs 
and Aβ accumulation, and reverses the attenuation of 
Ca2+ influx through NMDARs in the Aβ-infused mouse 
brain[38]. Similarly, a study on a transgenic mouse model 
of AD over-expressing APP and lacking the α7nAChR 
gene showed that these mice are better able to solve a 
cognitive challenge such as the Morris water maze test, 
and α7nAChR deletion protects the loss of synapses and 
preserves the capacity to elicit long-term potentiation 
(LTP)[39]. STEP61 levels are progressively increased 
in the prefrontal cortex of AD patients and transgenic 
mouse models of AD[33]. Using genetic manipulations to 

Fig. 1. Schematic of the dysregulation of synaptic and extrasynaptic NMDARs by Aβ. Aβ downregulates the synaptic NMDAR response by 
promoting NMDAR endocytosis, and leads to neurotoxicity or neuroprotection. On the other hand, Aβ enhances the activation of 
extrasynaptic NMDARs by decreasing neuronal glutamate uptake and inducing glutamate spillover, subsequently causing neurotoxicity. 
Moreover, synaptic NMDAR activation inhibits the production of Aβ, while extrasynaptic NMDAR activation increases it.
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reduce STEP activity in transgenic AD mice increases 
the expression of NR2B, leads to significantly improved 
cognitive function, and facilitates LTP[40, 41] (Fig. 1). 
Moderate ethanol consumption has been associated 
with a reduced risk of AD in several epidemiological 
studies. Recently, ethanol preconditioning-dependent 
neuroprotection was found to be associated with early 
enhancement of synaptic NR2B localization and NMDAR 
activity[42]. Also, chronic ethanol exposure increases 
synaptic NR2B clusters and synaptic NMDA currents, but 
does not change extrasynaptic NMDAR clusters[43].

However, downregulation of NMDARs can also be 
neuroprotective. Pretreating cultured neurons with Aβ 
promotes NMDAR endocytosis, decreases Ca2+ influx, 
and protects neurons from NMDA- and glutamate-induced 
excitotoxicity[31, 44]. Likewise, the retinas of transgenic mice 
over-expressing Aβ have reduced NR2B, and present with 
less NMDA-induced retinal damage than wild-type mice[34]. 
Moreover, donepezil, an acetylcholinesterase inhibitor, 
decreases glutamate toxicity via promoting NMDAR 
endocytosis and attenuating glutamate-mediated Ca2+ 
entry[45].
Aβ Reduces Postsynaptic NMDA Currents 
To investigate the effect of Aβ on synaptic transmission, 
excitatory postsynaptic currents (EPSCs) were recorded in 
neurons from mice over-expressing APP. Li et al. reported a 
signifi cant decrease of NMDA-EPSCs in slices treated with 
7PA2 CM. Moreover, they suggested that an Aβ-mediated 
rise in glutamate levels leads to receptor desensitization 
and then causes NMDA-EPSC reduction[46]. Also, it 
has been reported that Aβ reduces NMDA postsynaptic 
currents[47]. A decrease in evoked-response amplitude could 
result from negative modulation of the presynaptic release 
machinery, yet Aβ does not alter the synaptic release 
probability and presynaptic vesicle release at presynaptic 
sites[2, 47, 48].

Since Aβ promotes synaptic NMDAR endocytosis and 
reduces NMDA-evoked currents, Aβ may attenuate Ca2+ 

infl ux at synapses. Using two-photon uncaging of glutamate 
to stimulate individual dendritic spines while monitoring 
spine head Ca2+ transients, Shankar et al. showed that 
Aβ reduces NMDAR-dependent Ca2+ influx into the spine 
head[1]. Pre-incubation of cortical and hippocampal neurons 
with a low (100 nmol/L) or a high concentration (1 μmol/L) 

of Aβ for 30 min or 3 h inhibits the NMDA or glutamate-
mediated increase of cytosolic Ca2+[13, 16, 31, 44]. Also, 
prolonged exposure (16 h) of cortical neurons to Aβ causes 
an attenuation of NMDAR-mediated Ca2+ infl ux[8].

Dysregulation of Extrasynaptic NMDARs Induced 

by Aβ

Aβ Enhances the Activation of Extrasynaptic 
NMDARs by Reducing Excitatory Amino-acid 
Transporters 
The glutamate-aspartate transporter (GLAST) and glutamate 
transporter-1 (GLT-1) are the main proteins responsible 
for removing excess glutamate from the synaptic cleft. 
Considerable evidence supports the hypothesis that Aβ 
downregulates the uptake of glutamate by decreasing 
these glutamate transporters in both the cortex and 
fibroblasts of AD patients or animal models of AD[49-52], 
as well as astrocytes both in vitro and in vivo [53, 54]. 
Recently, Bicca et al. revealed decreases in GLT-1 
and GLAST expression and glutamate uptake in the 
hippocampus of Aβ-treated mice, which could be prevented 
by a selective and competitive NMDAR antagonist[10]. 
Interestingly, disturbance of cholesterol metabolism or aging 
may contribute to a reduction in glutamate transporters[55, 56]. 
Moreover, Aβ promotes extracellular glutamate release from 
hippocampal neurons[57], and increases the hippocampal 
levels of extracellular glutamate[58]. After selectively blocking 
synaptic NMDARs, perfusing 7PA2 CM markedly increases 
NMDA-EPSCs, and a selective NR2B inhibitor strongly 
inhibits NMDA-EPSCs, suggesting that Aβ enhances the 
activation of extrasynaptic NR2B[35, 46] (Fig. 1). Also, inhibition 
of glutamate transporters causes glutamate spillover from 
the synapse and increases extrasynaptic NMDA-EPSCs[35, 59]. 

As discussed above, Aβ can decrease the NMDAR-
mediated intracellular Ca2+ concentration[13, 16, 31, 44], but triggers 
a sustained Ca2+ influx mediated by NMDARs[7, 15, 60]. This 
paradox may be explained by the activation of extrasynaptic 
NMDARs. Li et al. showed that the change in extrasynaptic 
NMDAR-mediated cytosolic Ca2+ in response to NMDA 
is significantly greater in 7PA2 CM-treated neurons[35], 
and this is significantly attenuated by memantine[7, 16, 60], 
consistent with the notion that memantine predominantly 
blocks extrasynaptic NMDARs[21, 61, 62].
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Neurotoxicity Is Mediated by Extrasynaptic NR2B-
NMDARs 
NR2B-NMDARs are predominantly located at extrasynaptic 
sites in mature neurons, and their activation promotes 
cell death through a series of pathways, which have 
been described in detail elsewhere[63]. Synaptic plasticity 
such as LTP or long-term depression (LTD) is thought 
to underlie learning and memory. Depending on the 
stimulation protocol, Li et al. reported that Aβ from several 
sources (synthetic, cell culture, human brain extracts) 
facilitates LTD through metabotropic glutamate receptors 
(300 pulses) or NMDARs (900 pulses). They found that 
the effect of Aβ is caused by the activation of extrasynaptic 
NR2B through the inhibition of glutamate uptake, as it can 
be prevented by an extracellular glutamate scavenger and 
is closely mimicked by the inhibition of glutamate uptake[46]. 
Likewise, Aβ-inhibited LTP shares the same mechanism[35, 64]. 
Moreover, Aβ application impairs early neuronal function 
before major cytotoxic effects, including LTP, baseline 
synaptic transmission, spontaneous neuronal network 
activity, retraction of synaptic contacts, and accumulated 
Jacob (a messenger that couples extrasynaptic NMDAR 
activity to CREB) dephosphorylation in the nucleus; 
all these effects are blocked by extrasynaptic NR2B 
antagonists[65] (Fig. 1). Consistent with these reports, only 
NR2B antagonists, but not those of NR2A, protect against 
NMDA-induced excitotoxicity[16, 66], Aβ-mediated inhibition of 
plasticity[67], Aβ-induced PSD-95 and synaptophysin loss[5, 6], 
and Aβ-increased Ca2+ infl ux[16], as well as Aβ-induced ROS 
production and endoplasmic reticulum stress[68]. In addition, 
activation of either synaptic or extrasynaptic NR2B results 
in excitotoxicity and neuronal apoptosis[66].

The Balance between Synaptic and Extrasynaptic 

NMDARs for Therapeutic Targeting

When glutamate is used to activate both extrasynaptic 
and synaptic NMDARs, the extrasynaptic receptors shut 
off synaptic NMDAR signaling[17, 18, 21, 23]. Conversely, 
enhancement of synaptic NMDAR activity protects against 
extrasynaptic NMDAR-induced neuronal death[69]. Thus, 
the selective enhancement of synaptic activity or reduction 
of extrasynaptic activity may be sufficient to prevent Aβ-
induced neurotoxicity.

Aβ downregulates PSD-95 and synaptophysin in an 
NMDAR-dependent manner, and only extrasynaptic NR2B-
NMDAR antagonists abrogate this effect, while blockade of 
synaptic NMDAR activity does not infl uence these effects[5, 6]. 
However, pretreatment with a low dose of NMDA (1 μmol/L) 
prevents the actions of Aβ, and the protective effect is 
eliminated only by blockade of synaptic NMDARs. In 
contrast, a high dose of NMDA (10 μmol/L) potentiates 
the effect of Aβ, which is only abolished by ifenprodil[5], 
suggesting that the enhancement of synaptic NMDAR 
activity can halt the manifestation of early-stage events in 
AD.

Memantine has received marketing authorization from 
the European Medicines Agency and the Food and Drug 
Administration (USA) for the treatment of moderate to 
severe AD. Recently, accumulating evidence indicates that 
memantine, at therapeutic concentrations, preferentially 
blocks extrasynaptic over synaptic NMDARs in hippo-
campal autapses and cortical neurons[21, 61, 62]. Blocking 
extrasynaptic NMDARs with memantine inhibits NMDAR-
induced KPI-APP expression and decreases Aβ expression 
and release both in cellular models and transgenic ani-
mals[19, 70], reduces tau hyperphosphorylation[71, 72] and micro-
tubule deregulation[12], blocks excessive formation of ROS[7] 
and intracellular or mitochondrial Ca2+ overload[7, 15, 60], and 
prevents Aβ-inhibited LTP[73] and synaptic deterioration[3]. 
In addition, memantine inhibits CREB shutoff and rescues 
neurons from NMDA-mediated toxicity[15, 23].

Conclusions and Perspective

In summary, Aβ differentially affects the activity of synaptic 
and extrasynaptic NMDARs, resulting in neurotoxicity or 
neuroprotection. Although most recent evidence supports 
this notion, some issues still need to be addressed. For 
example, how Aβ influences NR2A levels and whether 
there are other potential effects. In addition, it is known that 
Aβ activates many receptors both on the cellular surface 
and in the nucleus, and their combined effects as well as 
the upstream or downstream signaling pathways are yet to 
be described.

Despite the fact  that NMDARs mediate brain 
damage in AD, clinical trials of NMDAR antagonists are 
not therapeutically effective due to blockade of synaptic 
NMDAR activity. Therefore, a sufficient understanding 
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of NMDAR dysregulation induced by Aβ provides a 
novel conceptual basis for the future development of 
neuroprotective therapies for AD. And antagonists designed 
to selectively target extrasynaptic NMDAR signaling while 
sparing the physiological and neuroprotective roles of 
synaptic NMDARs could be promising therapies for AD.
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