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ABSTRACT

Serotonin plays an important role in mood regulation, 
but the involvement of serotonin pathway genes 
in the development of bipolar I disorder (BP-I), a 
mood disorder, is not clear. We selected 21 single-
nucleotide polymorphisms (SNPs) within the HTR2A 
gene, 8 within the SLC6A4 gene and 23 within the 
TPH2 gene for genotyping using the GoldenGate 
genotyping assay. A total of 375 patients with BP-I 
and 475 normal controls were recruited. Two out 
of 21 SNPs (rs1475196 and rs9567747) in the 
HTR2A gene and 1/23 SNPs (rs17110566) in the 
TPH2 gene were significantly associated with BP-I, 
both genotype-wise and allele-wise. Furthermore, 
a specific haplotype in the HTR2A gene showed a 
signifi cant association with BP-I. Our results indicate 
that the HTR2A and TPH2 genes in the serotonin 
pathway play important roles in susceptibility to BP-I. 
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INTRODUCTION

People with bipolar affective disorder (BPD) experience 

severe, disruptive mood swings. At some points in their life, 
patients with BPD may experience abnormally elevated 
mood, energy, and activity to a degree that interferes with 
the functions of ordinary life. At other times, they may 
endure the opposite state with abnormally low mood, 
energy, and activity[1]. The lifetime prevalence of BPD is 
0.3% to 1.5% with a similar ratio in men and women[2]. 
Despite the high prevalence together with psychosocial 
impairment and a high risk of suicide in patients with BPD, 
the pathogenesis of the disorder is still largely unknown. 
Family, twin, and adoption studies consistently found 
that BPD is highly heritable, estimated at up to 85%[3-5]. 
Moreover, there are substantial interactions between 
genetic and environmental factors[5].

The monoamine hypothesis, which mainly concerns 
the three classic neurotransmitters serotonin, noradrenalin, 
and dopamine, includes the concept that disruption of 
serotonergic function is involved in the pathogenesis 
of many psychiatric disorders, such as BPD, major 
depression disorder, and schizophrenia[6, 7]. Serotonin 
(5-hydroxytryptamine, 5-HT) influences a broad range of 
behavioral functions, including the control of mood, the 
sleep-wake cycle, appetite, sexual behavior and cognition[8-10]. 
Serotonin homeostasis is mainly modulated at pertinent 
targets such as receptors, transporter, and enzymes in its 
biosynthetic pathway. Tryptophan hydroxylase 2 (TPH2), 
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5-HT receptor 2A (HTR2A), and solute carrier family 6, 
member 4 (SLC6A4) in serotonin pathway are among 
the key regulatory genes. Studies demonstrated that the 
TPH2 gene is predominantly expressed in the brainstem, 
especially in neurons of the raphe nuclei, and the encoded 
protein catalyzes the first and rate-limiting step in the 
biosynthesis of serotonin[11]. Recent studies have provided 
some evidence for the involvement of the TPH2 gene in 
BPD and major depression disorder[12-17]. The HTR2A gene 
encodes one of the neurotransmitter receptors for serotonin, 
and may alter the levels of serotonin metabolites. Increased 
levels of 5-HT2 receptors have been associated with mood 
disorders and sleep disturbances[18-21]. Postmortem studies 
on people with depression have shown changes in 5-HT2A 
receptors in different brain regions, which implicate it in 
mood regulation[22-24]. In addition, a genome-wide linkage 
study of a large multigenerational BPD pedigree identifi ed 
a susceptibility locus on chromosome 13q where the 
HTR2A gene is located[25], with subsequent replication in 13 
Australian BPD pedigrees[26]. Large association studies[27-29], 
meta-analysis[30], and convergent functional genomics 
also support the involvement of HTR2A in BPD[31]. The 
human 5-HT transporter (5-HTT) is encoded by the 
serotonin transporter gene (SLC6A4) on 17q11.2-12[32], 
and is responsible for terminating the action of 5-HT in the 
synaptic cleft[33]. Low levels of platelet and brain 5-HTTs 
have been reported to be associated with depression and 
suicide[34-36]. However, previous studies of the possible 
involvement of SLC6A4 in BPD have produced confl icting 
results[37-41]. 

In the current study, we investigated in a Han Chinese 
population the involvement of TPH2, HTR2A and SLC6A4 
in serotonin pathway in the development of BPD, using a 
case-control association design. Only patients with bipolar I 
disorder (BP-I) who had more than one manic episode were 
included in order to reduce the phenotypic heterogeneity 
due to various clinical manifestations.

PARTICIPANTS AND METHODS

Samples
Patients in the BP-I group: 375 in-patients or out-patients 
at the Guangzhou Brain Hospital were included in the 
study. All patients were interviewed individually by trained 

psychiatrists using the Structured Clinical Interview for 
Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition (DSM-IV) Axis I Disorders[42]. Patients were 
excluded if they had any other current Axis I diagnosis other 
than BPD, or neurological disease, or signifi cant physical 
illness. Patients with history of consciousness disturbance 
after traumatic brain injury were also excluded. 

A total of 475 community volunteers were recruited as 
normal controls using the Structured Clinical Interview for 
DSM-IV-TR Axis I Disorders-Non Patient Edition to screen 
for a lifetime absence of psychiatric illness. Participants with 
significant physical illness, pregnancy, or any psychiatric 
disorder were excluded.

All participants were Han Chinese. This study was 
carried out in accordance with the Declaration of Helsinki 
and was approved by the Institutional Review Boards 
of Guangzhou Brain Hospital and West China Hospital, 
Sichuan University. Written informed consent was given by 
all subjects.

Genotyping
Peripheral blood (5 mL) was collected from all participants, 
and genomic DNA was extracted according to the standard 
phenol-chloroform procedure[43]. A total of 52 single-
nucleotide polymorphisms (SNPs) (21 SNPs in HTR2A, 8 
in SLC6A4, and 23 in TPH2) were selected based on SNP 
tagging of Han Chinese in Beijing through the HapMap 
database (http://hapmap.ncbi.nlm.nih.gov). The coverage 
of tagging SNPs, calculated by Tagger Server (http://www.
broadinstitute.org/mpg/tagger/), on average captured 70% 
of the information in the targeted region with max r2 ≥0.8. 
The distributions of these SNPs are shown in Figs. 1, 2 and 
3. A total of 250 ng DNA was genotyped by the GoldenGate 
genotyping assay following the manufacturer’s instructions 
(BeadStation 500, Illumina Inc., San Diego, CA). 

Statistical Analysis
Student’s t-test and the χ2 test were used for continuous 
variables and categorical variables as appropriate. Analysis 
was performed using the SPSS 12.0 statistical software 
package[44]. Hardy-Weinberg equilibrium and intermarker 
linkage disequilibrium (LD) as expressed by r2 and D’ 
values were calculated using Plink 1.07 (http://pngu.mgh.
harvard.edu/purcell/plink). Categorical association tests 
between cases and controls were analyzed using the χ2 
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test or Fisher’s exact test, as appropriate. Multiple marker 

haplotypes were analyzed by Plink 1.07 with a moving-

window strategy combining 2 to 8 neighboring SNPs. For 

each combination of loci within one gene, we obtained 

both global P values that assessed the significance of 

association for all the haplotypes of the loci, and P values 

that assessed the significance of association for specific 

haplotypes. For the present analysis, the minimum 

haplotype frequency was set at 0.05 (i.e. haplotypes 

that occurred with a frequency of <5% in controls were 

excluded). Bonferroni correction was used to reduce false-

positives due to multiple tests[45].

RESULTS

Demographic Characteristics
Sex and age distribution did not differ signifi cantly between 

patients with BP-I and normal controls, but there was a 

significant difference in years of education. The age at 

onset in patients with BP-I was 24.3 ± 8.9 years (mean ± 

SD) (Table 1).

Hardy-Weinberg Equilibrium Test
The genotypic frequencies of 52 SNPs within the TPH2, 
HTR2A, and SLC6A4 genes were in Hardy-Weinberg 
disequilibrium in the control group (P >0.05 for all SNPs).

Fig. 1. Genomeview from Goldsurfer2 showing the selection of 21 tagSNPs (red dots) in relation to the coding region of HTR2A (blue lines). 
Linkage disequilibrium (LD) is measured in r2.
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Comparison of Patients with BP-I and Normal Controls
Effects of individual SNPs Analysis for effects of 
individual SNPs revealed that 2/21 SNPs (rs1475196 
and rs9567747) in the HTR2A gene and 1/23 SNPs 
(rs17110566) in the TPH2 gene showed a statistically 
significant association with BP-I both genotype-wise and 
allele-wise (Table 2). No individual SNPs in the SLC6A4 
gene were signifi cantly associated with BP-I.
Effects of multi-marker haplotypes The aim of multiple-
marker analysis is to find haplotypes with significant 
associations that can be used to map true susceptibility 
in the region. Consequently, only those haplotypes 
with a global P value of <0.05, and at least one specific 

haplotype with a corrected P value of <0.05 are shown 
(Table 3). We found that haplotypes with multiple-markers 
(SNPs rs1928038 - rs1475196 - rs9562689 - rs9567747 
- rs1328684 - rs1328684) showed significant association 
with BPD-I, with a global P value of 0.003, and three 
specific haplotypes (CAAGAA, GAGGAA, and CCGAAA) 
with corrected P values of <0.05. 

DISCUSSION

In the present study, we found that 2 out of 21 SNPs 
(rs1475196 and rs9567747) in the HTR2A gene and 1 out of 
23 SNPs (rs17110566) in the TPH2 gene were signifi cantly 

Fig. 2. Genomeview from Goldsurfer2 showing the selection of 15 tagSNPs (red dots) in relation to the coding region of TPH2 (blue lines). 
Linkage disequilibrium (LD) is measured in r2.
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associated with BP-I both genotype-wise and allele-wise. 
Furthermore, a specifi c haplotype within the HTR2A gene 
also showed significant association with the disease by 
multi-marker haplotype analysis. The combined evidence 
from the current study supports the hypothesis that genes 
in the serotonin pathway, especially the HTR2A and TPH2 
genes, play important roles in susceptibility to BP-I.

The TPH2 gene is located on chromosome 12q21.1, 
spanning ~93 kb and containing 12 exons[11, 46]. This gene 
encodes a member of the pterin-dependent aromatic-
acid hydroxylase family and plays an important role in 
the regulation of serotonin function[46]. Many previous 
studies suggested that this chromosome region might be 

associated with BPD. For example, significant linkage 
between BPD and chromosome 12q23-24 has been 
reported in a number of independent linkage analyses[47-49]. 
Cichon et al. found a significant association between 
rs17110563 in the TPH2 gene, which encodes a Pro206Ser 
substitution, and BPD[50]. Zhang et al. reported that a 
rare loss-of-function mutation (G1463A) in the TPH2 
gene may represent an important risk factor for unipolar 
major depression[14]. Lopez et al. found that the haplotype 
G-T-A (rs1386494 - rs1007023 - rs9325202), located in 
the HTR2A gene, contributes to the risk of both BPD and 
suicide attempts in families with BPD[17]. Another report 
indicated that the C2755A polymorphism, which leads 

Fig. 3. Genomeview from Goldsurfer2 showing the selection of 8 tagSNPs (red dots) in relation to the coding region of SLC6A4 (blue lines). 
Linkage disequilibrium (LD) is measured in r2.
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to an S41Y substitution, and two SNPs in the promoter 
region of the TPH2 gene, T−703G (rs4570625) and 
T−473A (rs11178997), might be involved in susceptibility 
to BPD. The latter two promoter polymorphisms are 
predicted to affect POU3F2 binding and modulate TPH2 
gene expression[51]. In the current study, the associated 
SNP (rs17110566) in an intron region of the TPH2 gene 
is unlikely to affect the coding sequence of TPH2, but it 
may be involved in BP-I by LD or by influencing TPH2 
mRNA expression. Taking into account the possible 
strong LD between rs17110566 and nearby variants, the 

causal variants may be harbored in the haplotype block 
we identified. As Cichon et al. suggested, further studies 
should be focused on detecting low-frequency and high-
frequency penetrance variants in order to identify the full 
spectrum of susceptibility variants present in the haplotype 
blocks in the TPH2 gene[50].

Studies on the HTR2A gene have also produced 
controversial results. Some previous studies suggested that 
this gene is associated with BPD[52-55], but others did not 
support these fi ndings[56-58]. A recent Australian cohort study 
selected eight SNPs across the HTR2A gene and found 
that two common variants (rs2224721 and rs1923886) and 
a haplotype block (CCGCA) are associated with BPD[55]. In 
our study, we did not fi nd signifi cant association between 
these two common variants (rs2224721 and rs1923886) 
near the 5’UTR and BP-I. However, two other common 
variants (rs1475196 and rs9567747) near the UTR of the 
HTR2A gene [located close to functional polymorphisms 
of rs6313 (102T/C) and rs6314 (His452Tyr or C1354T) 
in the 3’ end] showed a positive association with BP-I. 
The inconsistency between Australian cohort study and 
ours may be due to genetic heterogeneity in the different 
populations. Alternatively, false-positives may have been 
produced in either or both studies due to phenotypic 
heterogeneity. In order to reduce this heterogeneity, 

Table 1. Demographic characteristics of patients with BPD-I and healthy controls

                                                               Case (n = 375)                        Control (n = 475)  χ2/t     P

Sex (male:female) 169:206 236:239 1.73 0.189 

Age (years) 31.58 ± 11.46 32.97 ± 12.89 1.63 0.103

Years of education 11.63 ± 3.63 10.65 ± 3.47 4.12 < 0.01

Age at onset (years) 24.32 ± 8.88   

Table 2. SNPs in HTR2A and TPH2 genes associated with BP-I 

Gene     SNP                  Genotype*           MAF                           χ2 OR       P Bonf P

                                                          Cases         Controls

HTR2A rs1475196 C/A 0.04 0.09 14.31 0.44  1.55E-04 0.007 

HTR2A rs9567747 G/A 0.34 0.259 16.26 1.55  5.53E-05 0.002 

TPH2 rs17110566 A/G 0.10 0.17 13.79 0.58  2.04E-04 0.009 

*Minor alleles are underlined. MAF, minor allele frequency; Bonfp, Bonferroni P-value; OR, odds ratio.

Table 3. Multi-marker* haplotype analysis within the HTR2A 
gene in cases and controls 

Haplotype         Frequency    Frequency       χ2 (1 df)   P 
                           in cases      in controls

CAGAGG 0.06 0.08 1.16 0.29

CAAGAA 0.26 0.21 5.08 0.03

GAGGAA 0.09 0.06 5.74 0.02

CCGAAA 0.04 0.07 4.71 0.03

CAGAAA 0.56 0.60 2.69 0.10

*SNPs: rs1928038 - rs1475196 - rs9562689 - rs9567747 - rs1328684 - 

rs1328684. Global χ2 = 15.89; df = 4; P = 0.003.
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we included only patients with BP-I who had more than 
one manic episode. It should also be noted that there is 
an overlapping region in the HTR2A gene between the 
haplotype block in our study and the Australia cohort 
study, so it is possible that this overlapping region harbors 
variants that have severe biological effects.

Many studies have explored a possible association 
between the SLC6A4 gene and BPD but with inconsistent 
findings. Significant association has been found between 
5-HTTLPR polymorphism and BPD[38, 41, 59, 60], although 
confl icting results have also been reported[61, 62]. A study of 
BP-I with the SLC6A4 gene in a Chinese population from 
Taiwan by Sun et al. indicated no signifi cant association of 
any single polymorphism, including 5-HTTLPR. However, 
an SLC6A4 haplotype, which spans at least a 30-kb interval 
around the SLC6A4 gene, may play a signifi cant role in the 
etiology of BPD[39]. Our fi ndings did not show any statistical 
significance for either individual SNPs or haplotype 
analysis, providing no evidence for the SLC6A4 gene as a 
susceptibility gene of BPD-I.

Although many studies have shown associations 
between genes in the serotonin pathway and BPD, they 
mainly focused on several functional polymorphisms within 
these genes[14, 39, 50, 53]. There are two advantages in current 
study. First, we selected tagger SNPs throughout the 
candidate gene to investigate the association. Furthermore, 
only patients with BP-I were included in order to reduce 
phenotypic heterogeneity.

Previous studies showed that patients with BPD 
have better academic performance than controls[63-65]. 
This is partly in line with our finding that individuals with 
BP-I had a higher education level, probably due to their 
better academic ability. It has been suggested that genetic 
factors contribute to better academic performance as well 
as susceptibility to illness in patients with BPD[63, 66-68]. 
However, other studies have reported lower premorbid IQ 
scores or poorer school performance in such patients[64, 69-71]. 
It is worth exploring whether education level contributes to 
the susceptibility to BPD as an environmental factor; this 
would need a longitudinal study with sophisticated design.

Considering the small effect size of susceptibility 
genes for complex genetic disorders such as BPD, the 
sample sizes of 375 patients with BP-I and 475 controls in 
this study were still relatively small. Type II errors, through 

the lack of an observed association between the analyzed 
polymorphism and BP-I, cannot be ruled out. Ethnic 
differences should also be considered in explaining the 
results, as most previous studies were performed in other 
populations such as Caucasians[55]. Further analysis with 
a larger and independent sample is warranted. Another 
limitation of this study is that we performed the association 
analysis between genes in the serotonin pathway and 
BP-I only. In the future, it will also be important to explore 
the contribution of genes in the serotonin pathway (e.g. 
TPH2 and HTR2A) in the pathology of other affective 
disorders such as major depression and BP-II with the 
same analysis strategy, considering previous positive 
findings. Nevertheless, the findings reported in this 
preliminary investigation are encouraging, because of the 
high relevance of the serotonin pathway to mood disorders. 
Information from individual variants and haplotypes may 
therefore facilitate the search for the causative risk alleles 
in these genes by cutting-edge technologies such as 
second-generation sequencing.
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