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Since abnormal post-translational modifi cations or gene mutations of tau have been detected in over twenty 
neurodegenerative disorders, tau has attracted widespread interest as a target protein. Among its various 
post-translational modifications, phosphorylation is the most extensively studied. It is recognized that tau 
hyperphosphorylation is the root cause of neurodegeneration in Alzheimer’s disease (AD); however, it is 
not clear how it causes neurodegeneration. Based on the findings that tau hyperphosphorylation leads to 
the escape of neurons from acute apoptosis and simultaneously impairs the function of neurons, we have 
proposed that the nature of AD neurodegeneration is the consequence of aborted apoptosis induced by 
tau phosphorylation. Therefore, proper manipulation of tau hyperphosphorylation could be promising for 
arresting AD neurodegeneration. In this review, the neuroprotective and neurodegenerative effects of tau 
hyperphosphorylation and our thoughts regarding their relationship are presented.
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·Review·

Mechanisms Underlying Tau Hyperphosphoryla-

tion in Alzheimer’s disease
Tau accounts for >80% of the microtubule-associated 
proteins. The major biological function of tau is to promote 
microtubule assembly and maintain the stability of 
microtubules, the track of axonal transport. In Alzheimer’s 
disease (AD), tau is abnormally hyperphosphorylated 
and aggregated into paired helical filaments (PHFs)/
neurofibrillary tangles in neurons[1, 2]. Activation of protein 
kinases and/or inhibition of protein phosphatases are the 
direct cause of tau hyperphosphorylation. Many kinases 
and phosphatases are reportedly involved in AD-like tau 
hyperphosphorylation; among them, glycogen synthase 
kinase-3β (GSK-3β) and protein phosphatase-2A (PP2A) 
are the most involved[3-5].

GSK-3β phosphorylates tau at multiple AD-associated 
sites[6, 7]. Activation of GSK-3 inhibits long-term potentiation 

(LTP) through mechanisms involving the presynaptic 
release of neurotransmitter, as well as causing tau 
hyperphosphorylat ion and spatial memory defici t . 
Conversely, spatiotemporal inhibition of GSK-3β to ~70% 
of the normal control level potentiates LTP, attenuates 
tau hyperphosphorylation, and improves memory[8-13]. 
Many factors can cause tau hyperphosphorylation by 
activating GSK-3β, such as peroxide nitrite, advanced 
glycation end-products, endoplasmic reticulum (ER) stress, 
β-amyloid (Aβ), and proteasome dysfunction[14-18]. Priming 
phosphorylation of tau by protein kinase A makes it a better 
substrate for GSK-3β, then tau can be hyperphosphorylated 
by basal activity of GSK-3β[19], suggesting a synergistic 
effect of kinases and/or phosphatases on tau hyperphos-
phorylation that deserves further clarifi cation. Interestingly, 
tau hyperphosphorylation by GSK-3β seems to be required 
for neurogenesis in the hippocampal dentate gyrus but not 
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in the sub-ventricular zone of rat brain[20]. 
The activity of protein phosphatases is decreased 

in the AD brain[21].  Several phosphatases such as 
PP2A, PP2B, and PP1 can dephosphorylate abnormally 
hyperphosphorylated tau isolated from AD brains; among 
these, PP2A is the most effective[22-24]. In vitro, PP2A 
can dephosphorylate abnormal tau at multiple sites 
and thus restore its biological activity[5]. Inactivation of 
PP2A by okadaic acid, homocysteine, or zinc induces 
tau hyperphosphorylation/accumulation and axoplasmic 
transport deficits[25-27]. PP2A activity is regulated in vivo 
by a constitutive protein inhibitor called inhibitor 2 of 
PP2A (I2PP2A) that is increased in the AD brain, and 
phosphorylation of I2PP2A at serine-9 results in its 
cytoplasmic accumulation, as seen in the AD brain[28]. 
Conversely, betaine and nicotinamide mononucleotide 
adenylyltransferase 2 can activate PP2A and attenuate 
tau hyperphosphorylation[29, 30]. In the astrocytes of tg2567 
mice, a widely-used amyloidogenic model of AD, PP2A 
is activated. This stimulates the migration of astrocytes 
towards amyloid plaques by inhibiting p38 MAPK, indicating 
that the PP2A deficit in the AD brain may cause Aβ 
accumulation by hindering astrocyte migration[31].

GSK-3β activation can inhibit PP2A by upregulating 
protein tyrosine phosphatase 1B (PTP1B), which 
phosphorylates PP2A at tyrosine-307[32, 33], suggesting 
that activation of GSK-3β and inhibition of PP2A may form 
a vicious cycle that promotes tau hyperphosphorylation 
in the AD brain. Tau is also highly glycosylated through 
N-linked glycosidic bonds in the AD brain[34], while a 
negative correlation between tau O-glycosylation and 
phosphorylation has been reported in a rat model of 
starvation[35]. A study also showed that prion protein can 
also inhibit tau-mediated microtubule formation[36].

Evidence Supporting the Toxic Effects of Tau 

Hyperphosphorylation 
Since the formation of neurofibri l lary tangles from 
hyperphosphorylated tau is a hal lmark of several 
neurodegenerative disorders including AD, corticobasal 
degeneration (CBD), Down syndrome, frontotemporal 
dementia with parkinsonism linked to chromosome 17 
(FTDP-17), Pick disease, post-encephalitic parkinsonism, 
progressive supranuclear palsy (PSP), and Niemann-

Pick type C disease, tau hyperphosphorylation has been 
considered detrimental to neurons. The following evidence 
supports the idea that tau hyperphosphorylation is toxic to 
neurons.

Tau Hyperphosphorylation Disrupts Microtubule 
Dynamics 
Homeostatic microtubule assembly and disassembly 
is essential for normal cell morphology, functions, and 
viability, while microtubule dynamics is regulated by tau 
phosphorylation. The abnormally hyperphosphorylated tau 
isolated from AD brains and in vitro hyperphosphorylated 
recombinant human tau are no longer competent to promote 
microtubule assembly or bind to microtubules[37, 38], and 
dephosphorylation dissociates tau from PHFs and restores 
its biological activity[22]. Hyperphosphorylation of tau not 
only diminishes its biological activity, but also causes it to 
gain toxic functions. For instance, hyperphosphorylated 
tau detached from microtubules sequesters normal tau 
and other high molecular-weight microtubule-associated 
proteins, thus disrupting microtubule dynamics and 
causing somatodendritic accumulation of tau proteins. 
Hyperphosphorylation promotes tau aggregation that can 
block the intracellular traffi cking of neurotrophins and other 
functional proteins, and cause axonopathy[39-41]. Moreover, 
transgenic mice that overexpress the 4R human tau 
isoform develop axonal degeneration in specifi c neurons of 
the brain and spinal cord[42]. 

Tau Hyperphosphorylation Promotes Tangle 
Formation
Normal tau binds to tubulin and promotes its assembly into 
microtubules, while the abnormally hyperphosphorylated 
form binds to normal tau and disrupts microtubules[36]. In 
Drosophila, only the simultaneous expression of human tau 
and GSK-3 or cyclin-dependent kinase-5 (Cdk-5), but not 
human tau alone, stimulates the formation of neurofi brillary 
inclusions, while reducing tau phosphorylation decreases 
tau aggregation in P301L mice treated with LiCl, an 
inhibitor of GSK-3[43-45]. In vitro study has also shown 
that phosphorylation of all six recombinant human brain 
isoforms of tau promotes their self-assembly into tangles 
of PHFs[39] but the contribution of each isoform to tangle 
formation is not known. In addition, it has recently been 
reported that tau meditates the synaptic toxicity of Aβ, but 
the mechanisms are not clear. 
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Tau Hyperphosphorylation Inhibits Proteases
Polyubiquitylated tau proteins are present in tangles 
and proteasome activity is decreased in the AD brain[46]. 
Inhibi t ion of  proteasomes by lactacyst in induces 
phosphorylation and accumulation of tau[47]. The extensive 
tau hyperphosphorylation induced by inhibition of PP2A 
or activation of GSK-3 inhibits proteasomes in HEK293 
cells stably expressing human tau441, while moderate 
tau phosphorylation stimulates proteasome activity[48]. 
Incubation of proteasomes with PHF-tau isolated from AD 
brains inhibits their activity[49], providing direct evidence 
for the inhibition of proteasomes by tau. It seems that tau 
hyperphosphorylation and proteasome inhibition can form 
a vicious cycle, though the causality needs to be clearly 
established.

The “Neuroprotective” Role of Tau Hyperphos-

phorylation
Although it is widely believed that tau hyperphosphorylation 
induces neuron loss, evidence that directly links wild-type 
tau proteins with cell death is still lacking. Instead, some 
recent studies suggest that tau hyperphosphorylation and/
or accumulation may be neuroprotective, especially when 
cells are exposed to an acute insult. 

Evidence Supporting the Protective Role of Tau 
Hyperphosphorylation
By quantitative analysis of neuron loss and neurofi brillary 
tangle formation as a function of disease duration, it was 
found that CA1 hippocampal neurons can survive with 
neurofibrillary tangles for ~20 years[50]. In a transgenic 
mouse model expressing human mutant P301L tau 
(rTg4510), neuron loss occurs before neurofi brillary lesions 
appear in the dentate gyrus and, conversely, neurofi brillary 
pathology appears without major cell loss in the striatum[51]. 
In P301S mice, tau hyperphosphorylation is signifi cant but 
no apoptosis is detectable[52]. Tau hyperphosphorylation 
occurs during hibernation, a model of neuroprotection[53, 54].

With ageing or evolution of AD, neurons in the brain 
are constantly exposed to an environment with enriched 
pro-apoptotic factors, such as oxidative stress and Aβ[55]. 
However, as noted above, there is surprisingly little 
evidence for the completion of apoptotic cell death in the 
AD brain, implying that certain mechanism may allow 

neurons to escape from apoptosis. Since abnormally 
hyperphosphorylated tau is the major protein component 
of the tangles in degenerating neurons of the AD brain at 
autopsy, researchers believe that tau hyperphosphorylation 
plays a crucial role in neurodegeneration, but how this 
happens is not clear. 
Mechanisms Underlying the Neuroprotection of 
Tau Hyperphosphorylation 
To understand how the abnormal tau hyperphosphorylation 
causes neurodegeneration, we expressed exogenous tau 
proteins in a human embryonic kidney cell line that does 
not express endogenous tau (HEK293) and a mouse 
neuroblastoma cell line that expresses very low levels 
of endogenous tau (N2a) and established lines with 
stable expression of tau or the vector. We treated these 
cells and primary hippocampal neurons with different 
types of pro-apoptotic factors, including staurosporine, 
camptothecin, hydrogen peroxide, ER stress, Aβ, death-
associated protein kinase-1, and GSK-3β. We found 
that tau hyperphosphorylation induced by these factors 
is accompanied by unexpectedly reduced apoptosis 
compared with controls[56-59], while tau dephosphorylation 
promotes apoptosis through failed dephosphorylation of 
Bcl-2[60].

As a cytoskeleton protein, how is tau phosphorylation 
and/or accumulation involved in cell viability or apoptotic 
arrest? Our data showed that tau hyperphosphorylation 
inhibi ts the phosphorylat ion of β -catenin through 
substrate competition, and the nuclear translocation 
of unphosphorylated β-catenin primes the expression 
of survival signals (the nuclear pathway). Tau hyper-
phosphorylation preserves Bcl-2 and suppresses the 
release of cytochrome-c from mitochondria into the 
cytosolic fraction, while also inhibiting Bax expression and 
caspase-9/3 activity; tau hyperphosphorylation mediated 
by GSK-3β and Cdk-5 inhibits p53 phosphorylation that 
may be linked to mitochondrial damage (the mitochondrial 
pathway). Mitochondrial dysfunction and cellular metabolic 
deficiency have also been reported in AD patients[61]. Tau 
hyperphosphorylation upregulates the unfolded protein 
response in the ER, including elevation of phosphorylated 
PERK, eIF2, and IRE1 with increased cleavage of 
ATF6 and ATF4 (the ER pathway)[57-59]. Furthermore, 
tau hyperphosphorylation induced by knockdown of the 
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endogenous protein inhibitor of PP2A, namely inhibitor-2 
of PP2A, is concomitant with the upregulation of p53 
and Akt[56]. Since p53 and Akt serve as pro- and anti-
apoptotic factors, respectively, we speculate that the 
anti-apoptotic effects of Akt may overwhelm the pro-
apoptotic role of p53, causing cells to abort apoptosis (Akt/
p53 signaling). Some of the currently verified molecular 
mechanisms underlying the apoptotic arrest associated 
with tau hyperphosphorylation are summarized in Fig. 1. 
Further studies are needed to reveal how intracellular 
tau accumulation affects the expression and/or activity-
dependent modifi cation of cell factors regulating viability as 
noted in this review. 
Nature of Tau Hyperphosphorylation-associated 
Neurodegeneration
Based on these fi ndings and the fact that apoptosis is not 

the major mechanism of cell loss in the AD brain, we have 
proposed that hyperphosphorylation of tau may play a 
dual role in leading neurons to abort acute apoptosis and 
simultaneously enter chronic degeneration[2]. We believe 
that tau hyperphosphorylation-associated apoptotic arrest 
is the first step of neurodegeneration in the AD brain; 
in other words, the apoptotic arrest associated with tau 
hyperphosphorylation triggers neurodegeneration. Our 
thoughts are as follows: during the evolution of AD, all 
neurons experience pro-apoptotic attack (such as by Aβ and 
oxidative stress); those without tau hyperphosphorylation 
die from acute apoptosis (as may be the case for the 
massive loss of cholinergic neurons in the early stage of 
AD), while those with tau hyperphosphorylation survive 
(apoptotic escape); however, surviving neurons bearing 
hyperphosphorylated and accumulated tau proteins are 

Fig. 1. Mechanisms underlying apoptotic escape and neurodegeneration associated with tau hyperphosphorylation. Tau 
hyperphosphorylation renders cells more resistant to apoptosis by rescuing nuclear β-catenin (the nuclear pathway); preserving 
Bcl-2 and inhibiting Bax, Cytc, and caspases (the mitochondrial pathway); and upregulating the unfolded protein response system 
(the ER pathway). Simultaneously, tau hyperphosphorylation results in its pathological actions, inhibiting proteasome activity, 
damaging axonal transport, and causing synaptopathies, which eventually lead to chronic neurodegeneration.



Jian-Zhi Wang, et al.    Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in AD 363

“sick” and destined for chronic neurodegeneration (Fig. 
2). Therefore, tau hyperphosphorylation/tangle formation 
allows neurons to escape from acute apoptosis and survive 
to the end-stage as seen in the AD brain at autopsy. 
Our findings reveal the nature of neurodegeneration. 
Since there is currently no specific molecular marker to 
measure neurodegeneration, researchers have used 
markers of apoptosis or necrosis to detect it. Clearly, 
neurodegeneration is different from apoptosis, rather, it 
may be a unique and precisely-regulated form of chronic 
cell death that we have termed “neurodegenerasis”[2]. 
How Should We Evaluate Tau Hyperphosphoryla-
tion? 
As mature neurons in the adult brain are rarely replenished, 
apoptotic escape induced by tau phosphorylation may be 
one of the mechanisms that evolved to allow neurons to 
survive apoptotic attack and so avoid rapid and massive 
neuron loss, while the “sick” neurons can wait for a chance 
to self-repair. 

However, “sick” neurons loaded with hyperphos-
phorylated tau proteins are no longer able to perform normal 
physiological functions, such as microtubule assembly and 

axonal transport. Moreover, the extended survival time of 
these “sick” neurons by apoptotic escape makes them less 
resistant to environmental/metabolic insults and also allows 
tangles to evolve from the hyperphosphorylated tau, which 
leads to slow but progressive retrograde degeneration. 
In addition, these “sick” neurons may “infect” neighboring 
neurons and cause transmissible degeneration through 
currently unknown mechanisms. Furthermore, since “sick” 
neurons may not be recognized by the “scavengers” of 
the brain, these dysfunctional neurons can occupy the 
limited space and so prohibit neurogenesis, which can 
normally compensate for neuron loss. Therefore, proper 
modulation of tau phosphorylation at different stages in 
the development of AD offers promising opportunities to 
prevent massive apoptotic neuron loss and to at least slow 
neurodegeneration. 
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