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Considerable debate and controversy surround the cause(s) of Alzheimer’s disease (AD). To date, 
several theories have gained notoriety, however none is universally accepted. In this review, we provide 
evidence for the oxidative stress-induced AD cascade that posits aged mitochondria as the critical origin of 
neurodegeneration in AD.
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Introduction

Alzheimer ’s disease (AD) is a neurodegenerative 
disorder responsible for the cognitive deterioration of 26.6 
million people worldwide. The prevalence is projected 
to increase by ~3 fold to 106.8 million by the year 2050, 
with 1 in 86 people living with AD and 59% of the cases 
in Asia[1]. Age is the primary risk factor for AD such that 
its incidence is 15% among individuals >65 years old 
and reaches ~50% among those >85[2]. While many 
specific aspects of AD have been documented, there 
has yet to be any clear understanding of its pathological 
initiation and progression. Molecular aberrations in the 
cell elicit neuronal failure through various well-established 
mechanisms, including oxidative stress[3], abnormal protein 
folding and aggregation[4], cell cycle dysregulation[5], 
mi tochondr ia l  dysfunct ion [6],  synapt ic  fa i lure [7,  8], 
inflammation[9], loss of calcium regulation[10], defective 
cholesterol metabolism[11, 12], vascular alterations[13, 14], 
and neurotrophin deprivation[11]. However, the causal 
relationships governing these factors remain unknown. 

AD is characterized by the successive degeneration of 
neurons fi rst in the entorhinal cortex of the mediotemporal 

lobe, followed by the CA1 region of the hippocampus, 
CA2/3, CA4, and the neocortex[15]. Despite this predictable 
vulnerability, the molecular mechanisms governing it are 
unclear.

Amyloid-β (Aβ) and the hyperphosphorylated form of 
the microtubule-associated protein tau are hallmarks of 
AD pathology, and are critically involved in neuronal death. 
While the function of Aβ is unclear, its accumulation into 
insoluble fi brils and plaques increases over the course of 
AD progression, causing a severe cellular burden. The 
Aβ peptide is formed by the proteolytic cleavage of its 
protein precursor, amyloid-β protein precursor (AβPP), via 
the sequential actions of β-site AβPP-cleaving enzyme 1 
and γ-secretase, a protein complex with presenilins 1 and 
2 at its catalytic core[11, 16]. Aβ is associated with multiple 
cascades that are thought to result in neuronal damage[17, 18] 
and as such, it is generally considered to be the primary 
mediator of neurodegeneration in AD[19]. However, the lack 
of therapeutic translation has become a major criticism of 
the amyloid cascade hypothesis[20].

The microtubule-associated protein tau is similarly 
associated with AD progression, and its accumulation in 
the form of neurofi brillary tangles (NFTs) strongly correlates 
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with dementia in AD[11, 21]. NFTs are used as a post-mortem 
diagnostic criterion for AD[22]. Tau is phosphorylated at 
serine and threonine residues that flank the microtubule-
binding domain. Upon hyperphosphorylation, tau is unable 
to bind and stabilize cytoskeletal microtubules; instead it 
self-aggregates into NFTs in and around the cell[23]. 

AD is typically sporadic; nearly 90% of all cases 
are sporadic in nature and characterized as late-onset 
AD (LOAD), with an age of onset of ~65 years. Familial 
AD (FAD), on the other hand, is an early-onset, genetic 
condition caused by several known autosomal dominant 
mutations; its age of onset is typically ~40–60 years[24]. 
Mutations that yield FAD all involve or result in an alteration 
in the ratio of Aβ42 to Aβ40; this is perhaps the most touted 
evidence both for and against[25, 26] the amyloid cascade 
hypothesis[27]. Dominantly-inherited mutations in presenilin 
1 (PS1), an essential component of the γ-secretase 
complex, account for the majority of FAD cases, and 
>170 such mutations in PS1 have been identified on 
chromosome 14[28]. In addition, mutations in presenilin 2 
(PS2) (on chromosome 1[29]) and AβPP (on chromosome 
21[30]) also elicit FAD, although they are less prevalent. 
These mutations also affect the Aβ42/40 ratio. Importantly, 
both LOAD and FAD present identical brain lesions and 
patterns of neurodegeneration. Notably and somewhat 
contradictory, LOAD leads to a reduced Aβ42/40 ratio, 
whereas FAD leads to an increase[31].

Neuronal  Oxidat ive Stress:  Sources and 

Vulnerabilities

Aerobic respiration, like any other biochemical or physical 
process, is not 100% efficient. The mechanism by which 
mitochondria process carbohydrates and establish a proton 
gradient for the synthesis of ATP (i.e., the tri-carboxylic acid 
(TCA) cycle and oxidative phosphorylation) involves the 
controlled transfer of electrons from strong reducing agents 
to strong oxidizing agents. Some of the free radicals thus 
generated escape; rather than appropriately transporting 
their electron to the next molecule in the cascade, they 
abandon the inner membrane of the mitochondrion and 
impose alterations on other macromolecules within the 
cell. These alterations are often detrimental: DNA/RNA 
oxidation may yield fragmentation and deficiencies in 
repair machinery[32, 33]; oxidative modification of enzymes 

and metabolic signaling proteins may lead to metabolic 
impairments[34]; and protein cross-linkages and an impaired 
proteolysis network resulting from oxidative modification 
may render proteins insoluble and prone to abnormal 
aggregation[35-37].

The ability of the cell to adapt to oxidative damage is 
robust, yet finite. Endogenous antioxidants are intended 
to sequester the formation of free radicals. Superoxide 
dismutase, for instance, catalyzes the conversion of the 
potent free radical superoxide to hydrogen peroxide and 
water. Other important oxidative stress-handling proteins 
include catalase, glutathione peroxidase, glutathione 
reductase, and heme oxygenase[38].  Under normal 
conditions, the majority of free radicals are sequestered 
within the mitochondria (i.e., their place of origin). Notably, 
however, three important factors (age, metabolic demand, 
and disease) exacerbate the vulnerability of cells to 
oxidative burden. 

Statistically, the longer a cell is respiring, the more 
reactive oxidative species (ROS) go unsequestered within 
that cell. It is estimated that cells use 1013 molecules of 
oxygen on average per day, with 1% of the associated 
reactions producing unsequestered ROS. Therefore, 1011 
molecules of ROS are generated in a given cell every 
day. Even with efficient antioxidant mechanisms, some 
ROS unavoidably escape and cause damage to the 
surroundings that may accumulate with time, especially in 
long-living cells. Age is thus a great risk factor for oxidative 
stress. Likewise, high metabolic activity, which requires 
more oxidative phosphorylation per unit time and thus 
involves a greater number of toxic species generated 
per unit time, also renders a cell more vulnerable to 
oxidative insults. In particular, the neuron, which requires 
energy for axonal transport, vesicular release, ion pump 
operation, electrochemical gradient maintenance, and the 
like, requires much more oxygen per unit time than any 
other cell type in the body. Metabolic demand is therefore 
another risk factor for oxidative stress. Disease conditions 
that produce mutations in cellular antioxidant defensive 
machinery provide a third risk factor for oxidative damage.

Altogether, the brain is tremendously vulnerable to 
oxidative damage. Although it constitutes only 2–3% of 
total body mass, 20% of the basal oxygen supply is used 
by the brain. Moreover, neurons are among the longest-
living cells in the body and need the same metabolic 
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machinery for continuation of survival and functioning for 
decades. The presence of transition metals in the brain 
that catalyze oxidative reactions further increases the 
appearance of oxidative pathologies. Iron and copper, for 
instance, increase the likelihood of an oxidation/reduction 
reaction[39], and increases in the regional concentrations 
of these metals in brain compound the risk factors 
described above. Furthermore, the brain suffers a relative 
paucity of antioxidant systems as well as an increase in 
polyunsaturated fatty acids (prime targets for ROS)[40]. So 
an aging brain is tremendously susceptible to oxidative 
deterioration.

Oxidative Stress: a Prominent and Early Feature 

of Alzheimer’s Disease

Free radical-induced damage to macromolecules has 
been well documented in AD. Deposition of redox-active 
ions, which are capable of generating the most damaging 
hydroxyl radicals through the Fenton reaction, is likely 
to exacerbate both the spectrum of molecules and the 
cellular areas affected. DNA and RNA oxidation, marked 
by increased levels of 8-hydroxy-2-deoxyguanosine 
and 8-hydroxyguanosine (8-OHG), suggest a higher 
frequency of DNA fragmentation and aberration in DNA 
repair[41]. Oxidative modification of metabolic proteins, 
such as creatine kinase BB, cytochrome c oxidase (COX), 
and ketoglutarate dehydrogenase complex (KGDH), 
has been demonstrated by elevated levels of protein 
carbonyl and nitration of tyrosine residues[42] and indicates 
impaired metabolic activity. Lipid peroxidation, marked by 
thiobarbituric acid reactive substances, malondialdehydes, 
4-hydroxy-2-transnonenal (HNE), and isoprostane, as 
well as by altered phospholipid composition, suggests 
altered membrane integrity. Oxidative modification of 
sugars, marked by increased glycation and glycooxidation, 
indicates an impaired cellular ability to adequately process 
critical carbohydrates[43]. Each of these aspects is elevated 
in AD compared to control cases[42].

Moreover, mitochondrial abnormalities, attributed to 
oxidative stress-related damage, are well-established in 
AD. As stated above, specifi c enzymes involved in electron 
transport and the TCA cycle, such as KGDH and COX, are 
modifi ed via ROS in AD[44,45]. Mitochondrial DNA (mtDNA) 
modification[46] and calcium dysregulation[47-49] occur 

in AD to a great extent, and increased numbers of 
mitochondria with broken cristae, altered size and shape, 
and aberrant intracellular localization are elevated in AD 
neurons[47, 50, 51]. These latter phenomena are the result of 
impaired mitochondrial dynamics that can be caused by 
and also amplify oxidative stress[52]. Mitochondrial fission 
and fusion, the ongoing processes that ensure organelle 
stability within the dynamic cellular environment, rely on 
critical membrane proteins. Fusion enables the exchange 
of lipid membrane in inter-mitochondrial components (i.e., 
mtDNA and fission/fusion proteins) such that the cell is 
populated by healthy, normal mitochondria[53]. Fission, on 
the other hand, coupled with fusion and autophagy, enables 
the sequestration and elimination of irreversibly damaged 
mitochondria and mitochondrial content[54]. These dynamics 
are the necessary means by which the cell dampens its 
inevitable accumulation of oxidative free radical-induced 
damage. Over the lifetime of a cell, however, oxidative 
damage and transcriptional errors (due to alteration 
of mtDNA) reach a critical threshold. Oxidative stress 
ultimately propagates throughout the cell as mitochondria 
become abnormally shaped and localized[47, 55-58]. 

Importantly, increasing evidence demonstrates that 
the oxidative modifications in vulnerable neurons in AD 
occur prior to the hallmark pathologies of the disease[35]. 
That is, the markers of oxidative damage are found in the 
cytoplasm of neurons prior to any indication of degeneration 
in AD brains[59, 60]. In fact, the hallmark pathologies such 
as amyloid plaques and NFTs may be an adaptation in 
response to elevated oxidative stress. More recent studies 
showed that patients who suffer from mild cognitive 
impairment (MCI), considered to be a prodromal stage of 
AD, are depleted in antioxidants along with increased lipid 
peroxidation in the plasma and lymphocytes[61]. Elevated 
protein/RNA oxidation and redox-active iron are also 
documented in the brains of MCI patients[32,62,63]. Transgenic 
mouse models of AD also demonstrate that oxidative 
damage precedes Aβ deposition[64]. The mitochondrial 
abnormalities described above provide considerable 
support for this primacy. Specifi cally, vulnerable neurons in 
AD and MCI exhibit severe metabolic deficiencies before 
any clinical manifestations of disease. Neuroimaging 
studies and neuropsychological tests have shown 
impaired cerebral metabolism prior to any evidence of 
functional impairment or brain atrophy induced by AD 
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pathologies[51, 65]. This metabolic impairment is likely the 
result of the alterations in mitochondrial dynamics and 
intracellular localization[66], which, in turn, increases the 
production of oxidative damage to mtDNA and membrane 
proteins leading to a vicious cycle. 

Alzheimer-Specifi c Factors and Oxidative Stress

Besides the fact that oxidative stress characterizes aging, 
genetic and pathological factors associated with AD are 
also implicated in the regulation of oxidative stress. For 
example, presenilins are needed for the import of ~50% 
of cellular copper and zinc[67]. Increased presenilin 2 
expression increases DNA fragmentation and induces 
apoptotic changes[68], which are important consequences 
of oxidative damage. The translation of APP is regulated 
by iron influx via an iron-responsive element RNA stem 
loop in its 5'-untranslated region[69]. APP is the dedicated 
ferroxidase in neurons responsible for the export of iron, 
and the elevation of redox-active iron in neurons in AD 
is likely due to the reduced ferroxidase activity of APP 
inhibited by zinc[70]. ApoE is a strong chelator of copper and 
iron, both of which are important redox-active transition 
metals[68]. ApoE is beneficial against free radicals as it 
reduces neuronal death caused by hydrogen peroxide and 
Aβ through antioxidant activity in an isoform-dependent 
manner, the E4 isoform being the least effective[71]. 
Interestingly, apoE is sensitive to attack by free radicals, 
and this sensitivity is also isoform-dependent, E4 being 
the most vulnerable[72]. Indeed, cerebral cortex samples 
obtained at autopsy from patients with APP or presenilin 
gene mutations or the apoE4 allele demonstrate higher 
oxidative stress[73, 74]. 

Aβ itself may cause oxidative damage in surrounding 
cells through, for example, activation of microglia and 
astrocytes that activate multiple ROS pathways[75], 
including upregulating L-tryptophan metabolism through 
the kynurenine pathway[76]. Several intermediates in this 
pathway, namely 3-hydroxykynurenine and quinolinic 
acid, are neurotoxic, and the Aβ-induced increase in their 
production subjects surrounding neurons to oxidative 
damage[77, 78].  Aβ- induced l ipid peroxidation yields 
several reactive aldehydes (including HNE) that can 
harmfully modify membrane proteins. HNE production 
specifi cally disrupts iron homeostasis by impairing glucose 

transporters[79-82]. Iron and copper accumulation within 
neuritic plaques (mainly composed of Aβ) further facilitates 
free-radical generation[83]. When Aβ binds catalytic 
amounts of copper, hydrogen peroxide is generated, which 
contributes to oxidative stress as it produces hydroxyl 
radicals via the Fenton reaction. 

Aβ has antioxidant effects intracellularly and may 
actually be secreted as a compensatory measure against 
oxidative stress[35, 84]. In vivo and in vitro studies of neuronal 
responses to oxidative stress indicate an increase in 
Aβ production[85], which is followed by a corresponding 
reduction in oxidative stress[86, 87]. Moreover, markers of 
oxidative stress, such as 8-OHG, are reduced in neuronal 
populations characterized by Aβ deposition, and elevated 
in vulnerable regions lacking Aβ[86, 87]. The data suggest that 
neurons may be salvaged from oxidative stress by Aβ.

Tau hyperphosphorylation is a pathological result of 
oxidative stress[59, 84, 87-89]. Interestingly, most neuronal loss 
during the course of neurodegeneration occurs where the 
levels of oxidative stress are highest, and the subsequent 
deposition of NFTs decreases these levels[59]. Of note, 
neurons with accumulated NFTs are able to survive for 
decades and become functionally integrated in cortical 
circuits[90, 91]. Phosphorylated tau antagonizes apoptosis 
by stabilizing beta-catenin[92]. Regardless, the abnormal 
accumulation of hyperphosphorylated tau in the form 
of NFTs occurs subsequent to oxidative stress-induced 
damage.

Oxidative Stress and Alzheimer’s Disease: Ubiquity 

versus Specifi city 

Disease is defi ned by defi cits in specifi c functional output, 
with the underlying anatomical and biochemical/structural 
changes elicited by insults and adaptations and/or failure 
of adaptations. Interestingly, oxidative stress is a prominent 
biochemical phenomenon not only in AD, but in almost 
all of the major neurodegenerative diseases, including 
Parkinson disease, amyotrophic lateral sclerosis, and 
Huntington disease[93]. Since oxidative stress contributes 
largely to aging, and age is the greatest risk factor for 
all neurodegenerative diseases, it is not surprising that 
oxidative stress is involved in pathogenesis of each of 
these diseases. However, given the different neuronal 
populations and distinct pathologies that characterize each 
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disease, the ubiquity of oxidative stress raises a question 
about the specifi city of its involvement. In AD, for example, 
elevated oxidative stress (and neuronal damage) occurs 
in areas such as hippocampus and cortex, but not in the 
cerebellum, midbrain, or pons[42]. Similarly in Parkinson 
disease, enhanced oxidative stress primarily localizes to 
the substantia nigra and the basal ganglia[94]. If oxidative 
stress is indeed a fundamental pathologic process in 
these diseases, the region-specifi c neuronal deterioration 
demands explanation. 

Although further study is necessary, it is likely that the 
specifi c characteristics of the neuronal populations involved 
contribute to such selectivity. Neurons with long axons and 
multiple synapses have higher metabolic demands that may 
render them more prone to oxidative attack at a steady-
state level and thus become more vulnerable to additional 
disease-related changes. For example, CA1 neurons have 
higher levels of superoxide anion than parietal cortical or 
CA3 neurons, which is at least one of the reasons why 
they are more vulnerable to global ischemia-induced 
cell death[95]. Dopaminergic neurons are also exposed 
to high steady-state levels of oxidative stress produced 
by the metabolism of dopamine, which make them more 
vulnerable to insults that affect dopamine metabolism[96].

The particular vulnerability of a given individual 
to developing cumulative oxidative damage to the 
hippocampus (and thus suffering from AD) rather than the 
basal ganglia probably reflects a particular arrangement 
of predisposing genetic and environmental factors. Such 
initiating factors may not be a single event, but more 
likely a complex interaction between individual genetic/
epigenetic backgrounds and the environment that ultimately 
determines the specific neuronal population affected. 
Overall, different diseases may display distinct oxidative 
stress patterns that likely will lead to a different homeostatic 
balance that is finely tuned to minimize cell death. More 
studies are needed to understand the role of oxidative 
stress in each disease.

The Age-Related Mitochondrial Cascade in 

Alzheimer’s Disease

The evidence listed above reveals the following: (1) AD 
is primarily an age-related disorder; (2) the brain is the 
most metabolically demanding organ in the body; (3) free 

radical release invariably results from the tremendous 
amount of oxidation/reduction reactions within neurons; (4) 
resident antioxidant systems, though robust, are finite in 
capacity; (5) mitochondria are the metabolic center of the 
cell and experience the earliest detriments in AD; and (6) 
Aβ peptides and NFTs accumulate after oxidative stress 
has already incurred severe damage, and seem to be a 
compensatory response to cerebral oxidative stress. 

Fitting the pieces together, we propose that over the 
course of a lifetime, statistically inevitable free-radical 
damage accumulates within mitochondria, affecting 
mtDNA, membrane proteins, and calcium homeostasis. The 
antioxidant response of neurons is able to hold back the 
effects of this stress for years or decades; metabolic defi cits 
resulting from mitochondrial dysfunctions and perturbed 
localizations do not appear until adult life, and are the very 
first aspect of dementia. However, the increasing levels 
of transition metals and polyunsaturated fatty acids in the 
brain render neurons particularly susceptible to damage, 
and once mitochondrial mutations become widespread 
within the cell, compensatory responses, such as Aβ 
secretion, are initiated to defend against further damage. 
Eventually, secreted Aβ becomes subject to oxidative 
stress (i.e., dityrosine cross-linkages inhibit its solubility, 
promoting aggregation[62, 97]). The cascade worsens as 
Aβ induces neuronal defects, producing further oxidative 
stress, inflammation, and synaptic dysfunction. The well-
established pathophysiological inclusions of AD, including 
cell cycle aberration, inflammation, synaptic dysfunction, 
and loss of calcium regulation, become increasingly 
relevant, and affected neurons ultimately die. Thus, after 
decades of stress and increasing malfunction, cognitive 
decline spreads and yields clinical AD (Fig. 1).

Though its logic is appealing, this description of AD, 
like all previous hypotheses posited as explaining the 
disease, suffers signifi cant shortcomings. First, it does not 
adequately explain the predictable and consistent spread 
of neurodegeneration from the entorhinal cortex of the 
mediotemporal lobe, through the hippocampus, and into 
the neocortex. Perhaps this orderly passage reflects the 
metabolic demands of distinct regions within the brain; 
the entorhinal cortex may require the highest metabolic 
activity due to its involvement in memory formation and 
retrieval (an ongoing process throughout life). It is thus the 
first to be affected by oxidative stress accumulation that 
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leads to degeneration by a matter of simple probability. 
The remaining neurons in the pathway would suffer by 
connective association, and the disease would spread. 
Notably, this postulate lacks evidence, and its potential 
validity merits further investigation.

The mitochondrial cascade also seems to fail to 
explain the critical role of AD mutations in FAD and Down 
syndrome. A more careful look, however, ameliorates this 
misperception. In particular, the timeline of LOAD is such 
that Aβ accumulation and aggregation occurs late in adult 
life, causing deficits in cognition typically after age 65. 
The mitochondrial cascade attributes this latency to the 
prolonged period of oxidative stress accumulation, which 
takes years to have any metabolic defi cits and subsequent 

Aβ secretion. Once secreted, Aβ, however, is oxidatively 
processed into insoluble fi brils, and damages surrounding 
cells via a variety of mechanisms. FAD represents a 
shortcut in this otherwise lengthy process. Mutations that 
increase the cleavage and processing of AβPP subject 
neurons to the early secretion and aggregation of Aβ. 
Thus, affected patients skip the necessary accumulation of 
mitochondrial damage, and with aberrantly produced Aβ, 
display clinical symptoms much earlier than LOAD patients, 
regardless of the endogenous oxidative environment. Still, 
little experimental evidence supports this postulate, but it 
seems quite likely given the mountains of data.

Therapeutic Implications and Conclusions

We are currently faced with a strong incentive to produce a 
therapeutic agent that prevents AD. Based on the evidence 
presented here, the most likely method of adequate 
prevention may come from antioxidation. Preventing the 
accumulation of damaging species within vulnerable 
neurons would ideally protect them from the deleterious 
cascades that ROS accumulation yields. Unfortunately, 
antioxidant therapies have had little success thus far[98]. 
It should be emphasized that the failure of antioxidant 
clinical trials does not necessarily nullify the contribution 
of oxidative stress to the disease; other factors such as 
patient selection (it would be preferable to select patients 
with low antioxidants) and monitoring/analysis of the 
responders (it would be preferable to monitor oxidative 
stress surrogate markers before and during the treatment 
to make certain of compliance) are important for clinical 
studies. Better antioxidants, especially those that target the 
major ROS production sites, are needed. Several agents 
under investigation, such as MitoQ, acetyl-L-carnitine, 
and α-lipoic acid, do show potential; however, an effective 
method of treatment is far from complete[47, 99-110]. Based 
on the many prospective studies and the complexity of the 
redox system in vivo, a balanced combination of several 
antioxidants may also be needed to have a significant 
effect on the prevention of AD, but it appears that not 
much has been done on this aspect. Although agents 
that ameliorate pathologies secondary to AD are under 
increasing scrutiny[22], these treatments would only slow the 
course of disease progression and could not achieve its full 
eradication. To do so, the community must acknowledge all 

Fig. 1. Oxidative stress-induced cascade of Alzheimer disease 
(AD). The inevitable generation of free radicals within 
neurons eventually compromises the integrity of 
mitochondria, leading to a cascade of destructive events 
that elicits the hallmark features of AD. After years of 
accumulation, neuronal death and cognitive decline occur. 
MCI, mild cognitive impairment; NFTs, neurofibrillary 
tangles; ROS, reactive oxidative species.
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aspects of disease pathogenesis and establish an unbiased 
understanding of its progression. Only then can research 
be adequately focused such that appropriate therapeutic 
intervention is possible. We here pose the oxidative stress 
“looking glass” as our best hope.
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