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ABSTRACT

The 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine 
(MPTP)-induced parkinsonism model, particularly 
in non-human primates, remains the gold-standard 
for studying the pathogenesis and assessing novel 
therapies for Parkinson’s disease. However, whether 
the loss of dopaminergic neurons in this model is 
progressive remains controversial, mostly due to the 
lack of objective in vivo assessment of changes in 
the integrity of these neurons. In the present study, 
parkinsonism was induced in cynomolgus monkeys 
by intravenous administration of MPTP (0.2 mg/kg) 
for 15 days; stable parkinsonism developed over 90 
days, when the symptoms were stable. Noninvasive 
positron emission tomographic neuroimaging of 
vesicular monoamine transporter 2 with 9-[18F]
fluoropropyl-(+)-dihydrotetrabenazine ([18F]AV-133) 
was used before, and 15 and 90 days after the 
beginning of acute MPTP treatment. The imaging 
showed evident progressive loss of striatal uptake of 
[18F]AV-133. The dopaminergic denervation severity 
had a significant linear correlation with the clinical 
rating scores and the bradykinesia subscores. These 

INTRODUCTION

Parkinson’s disease (PD) is one of the most common 
neurodegenerative disorders and  affects ~2% of the 
world’s population aged over 65[1]. The cardinal clinical 
symptoms are bradykinesia, tremor, rigidity, and postural 
instability with the pathological characteristic of evolutional 
nigrostriatal dopaminergic neurodegeneration[2, 3]. 1-Methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin 
that induces parkinsonism in both humans[4] and non-human 
primates[5] with the cognitive, biochemical, histological and 
classical behavioral changes that occur in PD[6]. Therefore, 
MPTP-lesioned monkeys have been used to evaluate the 
effi cacy of anti-parkinsonian therapy. However, whether the 
acute MPTP-induced loss of dopaminergic neurons is a 
progressive process remains controversial, so a biomarker 

fi ndings demonstrated that [18F]AV-133 PET imaging 
is a useful tool to noninvasively evaluate the evolution 
of monoaminergic terminal loss in a monkey model of 
MPTP-induced parkinsonism.

Keywords: Parkinson’s disease; non-human primate; 
[18F]AV-133; VMAT2; positron emission tomography 
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that can non-invasively monitor this change longitudinally is 
critical.

Increasing evidence has suggested that single photon 
emission computed tomography (SPECT) and positron 
emission tomography (PET) imaging can be used to 
sensitively and objectively evaluate the integrity of the 
nigrostriatal dopaminergic system and may be useful tools 
for providing diagnostic information on PD[7-10]. There are 
numerous SPECT and PET imaging tracers for monitoring 
the integrity of dopaminergic neurons. 6-[18F]fluoro-DOPA 
has been used to evaluate dopamine synthesis[11], 123I-
labeled 2β-carbomethoxy-3β-(4-[123I]iodophenyl)tropane 
targets the membrane dopamine transporter[12, 13], [11C]-
raclopride[14] specifi cally binds to dopamine receptors, and 
[18F]AV-133 targets the vesicular monoamine transporter 
type 2 (VMAT2). VMAT2, located on vesicle membranes 
in monoaminergic neurons, carries out the reuptake 
and packaging of monoamines (including dopamine, 
norepinephrine, and serotonin) into vesicles.

Increasing numbers of studies have found that the 
former three biomarkers are susceptible to disease-related 
compensation and dopaminergic drug-induced regulation, 
limiting their utility for accurately quantifying the lesion 
severity in PD. VMAT2-binding sites are not readily affected 
by dopaminergic regulation. Further, their density correlates 
well with the number of nigrostriatal dopaminergic 
neurons[15-17]. Thus, neuroimaging with markers targeting 
VMAT2 may be a more reliable and sensitive tool to monitor 
the progression of dopaminergic neuronal degeneration. 
Previous immunochemical analysis of VMAT2 showed 
that dopaminergic terminals are responsible for >95% 
of VMAT2 expression[18]. Multi-tracer PET imaging in a 
monkey model of PD induced by chronic MPTP treatment 
at a low dose shows progressive nigrostriatal dopaminergic 
neurodegeneration, and this results in a reduced storage 
capacity of VMAT2 and decreased uptake of [11C]DTBZ 
in the nigrostriatal system. The level of VMAT2 staining 
with [3H]DTBZ in MPTP-treated animals is reduced in 
tyrosine hydroxylase-positive neurons compared with that 
in controls[19], suggesting that VMAT2 binding sites are 
proportionally associated with the presence of functional 
dopaminergic neurons. Imaging VMAT2 is thus regarded as 
an effective tool to follow the degeneration of dopaminergic 
terminals. 9-[18F]fl uoropropyl-(+)-dihydrotetrabenazine ([18F]

AV-133) is a novel 18F-labeled tetrabenazine derivative that 
selectively binds to VMAT2 with high affi nity[20, 21]. [18F]AV-
133 PET studies in an MPTP-lesioned PD mouse model 
indicate that the specifi c uptake ratio (SUr) of [18F]AV-133 
declines significantly in the striatum. The imaging results 
correlate well with the results of immunohistochemical 
studies of tyrosine hydroxylase[22]. Moreover, preliminary 
clinical studies clearly demonstrate that [18F]AV-133 
sensitively detects VMAT2 reduction in PD patients, 
supporting [18F]AV-133 as a potential tool to identify 
presymptomatic patients with nigrostriatal movement 
disorders[23].

So far, no study has used [18F]AV-133 as a biomarker 
to evaluate parkinsonism in non-human primates, 
particularly in the model using the acute intravenous 
infusion of MPTP which has been extensively used for 
the preclinical evaluation of anti-parkinsonian drugs. The 
current study was designed to investigate the utility of [18F]
AV-133 as a biomarker for assessing the longitudinal loss 
of VMAT2 function and dopaminergic terminal degeneration 
in monkeys with acute MPTP-induced parkinsonism.

MATERIALS AND METHODS

Animals
Nine 10–15-year-old cynomolgus monkeys (5.2–8.0 kg, 2 
females and 7 males) were purchased from Grandforest 
Co. (Nanning, China), a local primate-breeding company. 
All the animals were healthy, without any physical injury. 
For MPTP administration, the animals were anesthetized 
with a mixture of 3% isoflurane and 97% O2 prior to 
treatment, and a low level of isofl urane (1%) was continued 
for maintenance. MPTP was injected intravenously as 
MPTP-HCl (Sigma Aldrich, St. Louis, MO) diluted in sterile 
saline at 0.2 mg/kg. Injection was performed daily for 15 
days. No animal was euthanized in this study.

Ethics Statement
All animals were housed with a 12:12 h light/dark cycle at 
the facility of Wincon TheraCells Biotechnologies Co., Ltd., 
which is certifi ed by and meets the guidelines of the Council 
on Accreditation of the Association for Assessment and 
Accreditation of Laboratory Animals Care (International). 
The ambient temperature was 24 ± 2 °C, and humidity was 
65 ± 4%. RO (Reverses Osmosis) water was available 



Yajing Liu, et al.    Loss of striatal dopamine terminal in PD monkeys 411

ad libitum. Fresh fruit and vegetables were supplied twice 
daily. This study was approved by the Institutional Animal 
Care and Utilization Committee of Wincon TheraCells 
Biotechnologies (Permit Number: W00019).

Radiosynthesis of [18F]AV-133
Radiosynthesis of [18F]AV-133 was carried out on a custom-
made automated radiosynthesis apparatus according to a 
previously described method[24]. The mesylate precursor of 
[18F]AV-133 was nucleophilic-substituted by [18F]F- under the 
Kryptofi x 222 catalyst. After [18F] fl uorination, the crude [18F]
AV-133 was purified via a solid-phase extraction column 
(Oasis HLB 3mL cartridge, Waters, Milford, CT). The 
radiosynthesis yield of [18F]AV-133 was 45–50% (decay-
corrected) at 350–500 mCi with radiochemical purity >95%. 
The mean specifi c radioactivity was 1000 Ci/mmol.

PET Image Acquisition and Analysis
Each monkey underwent three [18F]AV-133 PET scans at 
different times. The fi rst scan was prior to MPTP infusion, 
and the second and third scans were performed at 15 
days (immediately after MPTP cessation; acute phase) 
and at 90 days (chronic parkinsonism phase) after MPTP 
injection. The PET system used was a Biograph Sensation 
16HR (Siemens/CTI, Knoxville, TN). The PET images were 
attenuation-corrected using low-dose helical CT. The scan 
protocol for CT was as follows: peak voltage 120 kV, 420 
mA, pitch 6 mm, and collimator 0.75 mm. Each monkey was 
anesthetized with ketamine (15 mg/kg) via intramuscular 
injection, and then injected with ketamine (7.5 mg/kg) every 
30 min. [18F]AV-133 in 1.0 mL sterile 10% ethanol saline was 
injected as a bolus into the femoral vein, and the cannula 
was immediately flushed with 10 mL saline. The total 
radioactivity injected was 0.2 mCi/kg. One 10-min frame of 
PET emission data from 30–40 min post-injection was used 
to estimate the [18F]AV-133 binding. A transient equilibrium 
was achieved for [18F]AV-133 from 30 min after intravenous 
injection according to our preliminary study[25].

The data were reconstructed using a 3D iterative 
algorithm after correction for randomness, scatter, and 
attenuation. All PET scans were analyzed simultaneously 
following the same protocol. Because of the negligible 
density of VMAT2 in the cerebellum, this region was used 
as a nonspecifi c reference. Two irregular regions of interest 
encompassing the whole right and left striatum were 

drawn on four consecutive slices through the striatum, 
and the background was readily identifi ed and delineated 
on the cerebellum guided by detailed CT images and with 
reference to a stereotaxic brain atlas[26, 27]. The results are 
expressed as SUr, calculated as: (mean striatal uptake − 
mean cerebellar uptake)/mean cerebellar uptake[22], and 
dopaminergic denervation severity (DS) after MPTP 
treatment, calculated from SUr: (SUrbaseline − SUrlesioned)/
SUrbaseline

[28, 29].

Clinical Rating Scores
The behavioral changes were observed and quantified 
twice a week on a previously-validated parkinsonian 
monkey clinical rating scale[30, 31]. Animal behaviors in 
testing cages were recorded by a videotape system. The 
scale rated nine items: bradykinesia (0–5), posture (0–2), 
rigidity (0–2), gait (0–5), balance (0–2), resting tremor on 
each side (0–3 for each side), gross motor skill (0–4) for 
each upper limb, gross motor skill (0–4) for each lower 
limb, and defense reaction (0–2). The minimum score 0 
corresponds to normal, and the maximum total score 32 
corresponds to severe disability. The scores were rated by 
both an experienced neurologist and a technician who were 
blinded to the study protocol.

Statistical Analysis
Comparisons of group characteristics were performed with 
paired-sample t-tests. Correlations between the clinical 
data and PET imaging results were evaluated using 
nonparametric Pearson analysis. P <0.05 was defi ned as 
statistically signifi cant. Data are presented as mean ± SD.

RESULTS

PET Images
The images from PET scans at different time points (Fig. 
1) revealed a progressive reduction of striatal [18F]AV-133 
uptake after MPTP lesioning. Before MPTP intoxication, 
[18F]AV-133 had symmetrical uptake and retention in the 
bilateral striatum. The right and left striatal SUrs were 1.59 
± 0.48 and 1.63 ± 0.48 (n = 9), respectively (Fig. 2). At 15 
days (cessation of MPTP infusion), the right and left striatal 
SUrs were decreased to 1.01 ± 0.35 (t = 2.930, P = 0.019) 
and 1.04 ± 0.33 (t = 2.985, P = 0.017) (n = 9) (Fig. 2) and 
the partial striatal DS values were 0.36 ± 0.30 (t = 3.475, 
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P = 0.008) and 0.34 ± 0.28 (t = 3.662, P = 0.006) for the 
right and left sides, respectively (n = 9) (Fig. 3). At 90 days, 
when the parkinsonian symptoms were stable, a further 
reduction in striatal uptake was found. The right and left 
striatal SUrs were 0.26 ± 0.13 (t = 8.179, P = 0.000) and 0.24 
± 0.16 (t = 7.828, P = 0.000) (n = 9) (Fig. 2), and the right 
and left DSs were 0.84 ± 0.11 (t = 20.534, P = 0.000) and 
0.84 ± 0.12 (t = 20.773, P = 0.000) (n = 9), respectively (Fig. 
3). The values of [18F]AV-133 uptake in the striatum did not 
overlap between baseline and 90 days (Fig. 2).

Correlation between [18F]AV-133 Uptake and Clinical 
Rating Scores
At 15 days, the mean total clinical rating score was 14.56 
± 6.76. The increased DSs in the right side striatum were 
accompanied by signifi cantly increased total clinical rating 
scores and bradykinesia subscores. Also, significant 
correlations were found between SUrs of right side striatum 
and clinical rating scores and bradykinesia subscores. 
However, no significant correlation was found between 
the rigidity subscores and SUrs or DSs of the right side 

Fig. 3. Dopaminergic denervation severity (DS) of [18F]AV-133 
prior to MPTP treatment (baseline), 15 days after the fi rst 
MPTP injection (acute phase), and 90 days after the first 
MPTP injection (chronic parkinsonism phase). The DS 
values (mean ± SD) were 0.00 ± 0.00 for baseline, 0.36 ± 0.30 
(right side) and 0.34 ± 0.28 (left side) for day 15, and 0.84 ± 
0.11 (right side) and 0.84 ± 0.12 (left side) for day 90 (n = 9 
monkeys, colored symbols in the boxplot).

Fig. 2. Striatal specifi c uptake ratio (SUr) of [18F]AV-133 prior to MPTP 
treatment (baseline), 15 days after the first MPTP injection 
(acute phase), and 90 days after the first MPTP injection 
(chronic parkinsonism phase). The values of striatal SUr (mean 
± SD) were 1.59 ± 0.48 (right side) and 1.63 ± 0.48 (left side) for 
baseline, 1.01 ± 0.35 (right side) and 1.04 ± 0.33 (left side) for day 
15, and 0.26 ± 0.13 (right side) and 0.24 ± 0.16 (left side) for day 
90 (n = 9 monkeys, colored symbols in the boxplot).

Fig. 1. Representative PET images of [18F]AV-133 in an MPTP-lesioned monkey. A: Prior to MPTP treatment (baseline), B: 15 days after 
the fi rst MPTP treatment (acute phase), C: 90 days after the fi rst MPTP treatment (chronic parkinsonism phase). Images show 
transverse slices at the level of the striatum.
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striatum (Fig. 4).
At 90 days, when stable experimental parkinsonism 

was developed, the mean total clinical rating score reached 
22.19 ± 5.34. The clinical rating scores and subscores for 
rigidity and bradykinesia were all positively correlated with 
DSs (right side), and signifi cant negative trends were found 
for SUrs (right side) (Fig. 5).

DISCUSSION

The MPTP-lesioned monkeys showed degeneration of 
nigrostriatal dopaminergic neurons, as seen in PD patients. 

The present data confi rmed that [18F]AV-133 PET imaging 
is a useful tool for assessing parkinsonism in a monkey 
model of PD, and demonstrated a progressive reduction 
of VMAT2 expression in the MPTP-treated monkeys. Our 
PET studies showed that [18F]AV-133 had high specific 
uptake in the bilateral striatum, and the PET images 
provided signifi cant signal-to-noise ratios. The striatal [18F]
AV-133 uptake assessed here is consistent with previous 
studies of the primate brain[21, 25, 32]. MPTP administration 
induced striatal dopaminergic denervation, and resulted 
in a decrease in VMAT2 expression (Fig. 2). After 15 days 
of MPTP exposure, the SUrs of right and left side striatum 

Fig. 4. Correlation of clinical rating results with [18F]AV-133 PET imaging results at day 15 after MPTP injection. Significant negative 
correlations were found between SUrs and clinical rating scores (A) and bradykinesia (C) (n = 9). Signifi cant positive correlations 
were also found between DSs and clinical rating scores (D) and bradykinesia (F) (n = 9). There was no correlation between rigidity 
and SUr (B)/DS (E) (n = 9).
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were decreased by 36% and 34% compared to the baseline 
respectively. When stable parkinsonism developed, as 
demonstrated by high clinical rating scale scores, the PET 
imaging by [18F]AV-133 in the striatum showed signifi cantly 
lower VMAT2 density; bilateral striatal SUrs for [18F]AV-
133 were only 16% of baseline. Okamura et al. found the 
greatest VMAT2 reduction in the posterior putamen (−81%) 
of PD patients, next in the anterior putamen (−70%), and 
then in the caudate nucleus (−48%)[23], which is consistent 
with our results. In 2010, [11C]DTBZ PET imaging was 
used to evaluate the model of chronic MPTP-induced 
parkinsonism in monkeys induced by a low dose of MPTP 
administered over several months[33]. Different from the 

previous study, we used a model of acute infusion of MPTP 
(0.2 mg/kg/day for 15 days), which is the standard model 
for anti-parkinsonian drug studies. In the Obeso study, 
the comparisons were made among four groups, controls, 
asymptomatic, recovered, and stable parkinsonism[34]. 
In the present study, changes of [18F]AV-133 uptake in 
the striatum between three stages were analyzed based 
on self-comparison. Because of individual differences 
in striatal uptake of [18F]AV-133 in the healthy state, the 
self-comparison of SUrs was more reliable for evaluating 
nigrostriatal dopaminergic neuronal degeneration.

Bezard et al. reported that after receiving daily 
injections of MPTP (0.2 mg/kg, i.v.) for 15.5 ± 1.1 days, 

Fig. 5. Correlation of clinical rating results with [18F]AV-133 PET imaging results at day 90 after MPTP injection. Significant negative 
correlations were found between SUrs and clinical rating scores (A), rigidity (B), and bradykinesia (C) (n = 9). Signifi cant positive 
correlations were found between DSs and clinical rating scores (D), rigidity (E), and bradykinesia (F) (n = 9).
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monkeys appeared to have parkinsonian symptoms, and 
reached a score >8 on their clinical rating scale[6]. Because 
of the different clinical rating scales used, in our study the 
clinical rating score was 14.56 ± 6.76 after 15 doses of 
MPTP. Compared with the striatal SUrs for [18F]AV-133, 
the DSs in the striatum showed a strong linear correlation 
with the clinical rating scores on days 15 and 90 (Fig. 4A, 
D; Fig. 5A, D). This indicated that the DS is a better index 
to evaluate VMAT2 loss than striatal SUr. Our PET results 
also showed that the subscores for bradykinesia were 
negatively correlated with SUrs and positively correlated 
with DSs in the MPTP-lesioned monkeys at days 15 and 
90 (Fig. 4C, F; Fig. 5C, F). This is consistent with previous 
studies on PD patients[23]. On day 15, no significant 
correlation was found between the subscores for rigidity 
and SUrs or DSs, suggesting a weak association between 
this symptom and [18F]AV-133 uptake in monkeys with mild 
parkinsonism. However, on day 90, when the parkinsonian 
signs were marked, there was a significant correlation 
between the rigidity subscores and the PET imaging 
results. Additional studies with a larger sample size and a 
high PET scan frequency are warranted to fully determine 
the usefulness and application of [18F]AV-133 PET imaging.

In conclusion, a rapid and progressive VMAT2 
reduction was detected in the striatum with [18F]AV-133 PET 
imaging in acute MPTP-lesioned monkeys. These fi ndings 
indicated that PET with [18F]AV-133 is a sensitive marker 
to follow the progress of dopamine depletion in MPTP-
induced acute parkinsonism in non-human primates.
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