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Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate 
the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal 
has progressed from regional data quantifi cation to parametric mapping that produces images of kinetic-model 
parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a 
major parametric mapping technique that is independent on any compartmental model confi guration, robust to 
noise, and computationally effi cient. In this paper, we provide an overview of recent advances in the parametric 
mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic 
modeling are presented, including commonly-used compartment models and major parameters of interest. 
Technical details of GA approaches for reversible and irreversible radioligands are described, considering both 
plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric 
imaging.
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·Review·

Introduction

Tracer kinetic modeling in dynamic positron emission 
tomography (PET) has played a leading role in quantitative 
in vivo studies on the functional and molecular bases of 
brain diseases, mainly because of its high sensitivity and 
quantitative accuracy[1-5]. Using a tiny amount of radioactive 
tracer or radioligand injected into the living body, dynamic 
neuroreceptor PET can accurately capture the temporally 
changing spatial distribution of the radioligand in the brain, 
which refl ects the targeted receptor’s density and dynamic 
interaction with the radioligand[6-8]. Nevertheless, the 
spatiotemporal distribution also contains other distracting 
information such as the inherent statistical noise associated 
with radioactive decay, and physiological factors of 

secondary interest[3, 7, 9]. The techniques of tracer kinetic 
modeling, through a mathematical framework, can refi ne this 
noisy information from PET data into several quantitative 
parameters that characterize the receptor distribution and/
or the binding process in the brain[1, 6, 10]. Therefore, in both 
clinical and basic research, this method has been widely 
used to investigate the characteristic distribution patterns of 
neuroreceptors or their dysfunction, which is related to brain 
diseases, and the effects of new drugs[11-16]. 

Over the last few decades, the practical goal of 
tracer kinetic modeling in PET has progressed from an 
analysis of regional data to the production of images of 
kinetic-model parameters[17-19]. The typical procedure 
of tracer kinetic modeling involves fitting a suitable 
kinetic model to the tissue time-activity curves (TACs) 
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at the regional or voxel level that are collected from the 
reconstructed dynamic PET images[3, 17, 20]. The regional 
analysis can be easily performed at a lower computational 
cost and with better statistical properties owing to the 
smaller number and lower noise-level of the regional TACs 
that are usually obtained by averaging the voxel TACs 
within a predefi ned region-of-interest (ROI). However, the 
delineation of ROIs requires prior knowledge of the receptor 
distribution and is operator-dependent and time- and labor-
consuming when done manually[5, 8]. More importantly, 
the results from regional analysis can provide only the 
average information within a given ROI, and their accuracy 
is dependent on the size of the ROI. On the contrary, the 
analysis of voxel TACs can fully exploit the spatiotemporal 
information captured in dynamic PET frames, and produce 
images of kinetic-model parameters that quantitatively 
characterize the targeted neuroreceptor system[8, 21]. 
Furthermore, such parametric images allow the analysis 
of the entire brain volume regardless of specifi c anatomy, 
such as in voxel-based statistical analysis using the SPM 
package (Statistical Parametric Mapping, University 
College London, UK)[16, 19, 22]. Therefore, the estimation of 
parametric images is becoming preferable, though regional 
analysis is still important for the exploration of the overall 
characteristics of tracer kinetics.

Because of the huge numbers of voxels in dynamic 
images and the high-level noise therein, parametric imaging 
is more challenging in terms of computational complexity 
and statistical reliability than ROI-based analysis[4, 8, 18, 19, 22]. 
This issue will become more crucial as the resolution of 
PET images improves or the injection dose of a radioligand 
diminishes, based on the advancement of PET scanners 
(e.g., high-resolution research tomography[23]). Thus, 
parametric imaging techniques need to be very robust 
to noise, computationally efficient, and moreover user-
independent and automatic[17, 19]. 

Conceptually, most kinetic analysis techniques are 
applicable for the estimation of both regional parameters 
and parametric images. In practice, however, methods 
based on nonlinear parameter estimation are undesirable 
for parametric imaging because of a higher computational 
burden and less reliability than those relying on linear 
techniques[8, 21, 22]. Therefore, the use of compartmental 
analysis has long been limited mostly to regional data, 

although it is now being extended to voxel data thanks 
to the recently increased computational power and 
regularization techniques[24-27] developed to address 
the high noise-susceptibility issue. In parametric image 
generation, instead, preferable approaches have relied on 
the linearization of t   he standard compartment models in 
various ways so that computationally effi cient and reliable 
linear estimation techniques are applicable.

One major linearization technique is to integrate the 
compartment model equations to produce a simple linear 
regression model that is linear in the parameters[17]. This 
method based on the simple model is called graphical 
analysis (GA), and its parameter estimation depends 
on a linear estimation technique that has a closed form 
solution and is thus computationally simple. In contrast 
to compartment modeling, in which the best model 
configuration needs to be determined in advance, this 
method achieves a level of model independence by fi tting 
only the later portion of the measured data to a simple 
linear model with only two parameters[17]; this strategy 
enables the use of common properties among the 
compartmental models (steady state of specific binding). 
Furthermore, the results are relatively stable because they 
are estimated using only late time frames, which have a 
relatively higher signal-to-noise ratio (SNR) than earlier 
time frames[8]. In sum, both the simplicity of the model and 
the closed-form linear least squares (LLS) solution enable 
simple, reliable, and computationally efficient parameter 
estimation.

In this article, we introduce recent advances in these 
GA approaches, focusing on parametric image generation 
for neuroreceptor ligand PET studies. Although extensive 
applications of these approaches are based mostly on 
relatively fast, simple, and reliable parameter estimation 
rather than various other techniques, they may suffer from 
complicated noise structures or a limited amount of data. 
Hence, their statistical properties are discussed.

Basic Theory in Tracer Kinetic Modeling

Before introducing the GA methods, we briefl y describe the 
basic concepts in tracer kinetic modeling for neuroreceptor 
PET studies. Throughout this paper, we follow the 
consensus nomenclature suggested by Innis et al.[28] as 
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much as possible. More detailed concepts and principles of 
tracer kinetic modeling have been presented in numerous 
studies[3-5, 7-9, 29-31].
Dynamic PET Acquisition
In dynamic neuroreceptor PET studies, a very small amount 
of radioligand with high specifi c activity, which is designed 
to follow a substrate physiological and biochemical process 
of interest without disturbing the associated system, is 
introduced into the bloodstream of an individual participant 
(mostly by a single intravenous bolus). The radioligand 
administered is delivered to capillaries in the brain by 
arterial blood fl ow, is subsequently extracted from arterial 
blood into tissue space across the blood-brain barrier in 
the capillaries, and finally binds to high-affinity receptors 
in the tissue through the targeted biochemical process[9]. 
Accordingly, the radioligand is differentially accumulated 
into and cleared from diverse brain tissues over time, along 
with the physiological and biochemical properties of the 
radioligand as well as the target process[8].

The characteristic spatiotemporal distribution of the 
radioligand in the brain can be imaged by a dynamic 
PET scan in which the radioactivity from the delivered 
radioligand is counted and then recorded in a series of 
image frames over irregular time intervals. Although an 
individual ith dynamic frame represents the average spatial 
distribution of radioactivity during the frame duration, it is 
usually assumed to be instantaneous at the midpoint of 
the frame (ti). After a number of corrections (including a 
radioactivity-decay correction), reconstruction, and calibration, 
each dynamic PET image then represents the instantaneous 
measurement (C*T(ti)) at the frame time of the time-varying 
radioligand concentration in each tissue region, CT(t), (Bq/
mL); t is the post-injection time and the superscript * denotes 
noisy measurement. Therefore, by collecting the time course 
of the measurements from each voxel of dynamic PET 
images (or averaging them over the voxels within a specifi c 
ROI), we obtain voxel-wise TACs (or ROI TACs). 
Compartmental Models
The measured PET data can be described with a 
mathematical model or a comprehensive description of the 
underlying processes that is developed based on a prior 
understanding of the kinetic behavior of radioligands in 
brain tissue[7-9]. Most widely used is a compartmental model 
that forms the basis for tracer kinetic modeling in PET[3, 29].

With prior knowledge of their expected in vivo kinetics, 
the injected radioligands can be assumed to form a 
limited number of separate pools, called compartments, 
according to their physical and chemical states. In general, 
the concentration of unmetabolized parent radioligand in 
plasma (CP) (Bq/mL) is considered as one compartment 
because it serves as the input for the radioligands delivered 
into the tissue. As for the radioligands in the tissue, the 
following pools are considered plausible in studies of 
receptor-ligand binding: those in free form (CF), those 
specifi cally bound to the receptor of interest (CS), and those 
nonspecifically bound to other proteins (CNS). Then, we 
have the following relationship:

Together  wi th  severa l  assumpt ions,  such as 
homogeneous concentration and instantaneous mixing of 
radioligands within a compartment, the small injection dose 
and high specifi c activity enable the use of fi rst-order rate 
constants to describe exchanges of radioligand between 
compartments[1, 2, 6, 9, 32]; so, the transport and binding rates 
of the radioligand are assumed to be linearly related to the 
concentration differences between compartments. These 
considerations lead to linear compartment models.

Figure 1 (top) depicts the standard two-tissue 
compartment model (2TCM) that involves only two 
compartments to represent the radioligand concentration 
within the tissue and that is commonly used to study 
neuroreceptor ligand binding. By assuming a rapid 
equilibrium between free and nonspecifi cally-bound tissue 
compartments, the two compartments can be considered 
as one unified compartment, called the non-displaceable 
compartment (CND)[1, 2, 10]. This assumption applies well to 
most neuroreceptor ligand studies because of the limited 
temporal resolution and statistical quality of the PET data; 
usually, the aforementioned model containing three tissue 
compartments is in practice too complex to provide reliable 
results[3, 10]. In this model, the exchanges of radioligand 
are described by four rate constants: K1 (mL/cm3 per min) 
is for the delivery of the radioligand from arterial plasma 
to tissue while k2 (min-1) is for its efflux from tissue; and 
k3 and k4 (min-1) are for the binding and release from the 
neuroreceptor, that is, the exchange between CND(t) and 
CS(t).
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For radioligands showing fast kinetics, i.e., where 
the binding and release of the radioligand from the 
receptor are rapid enough and thereby CND(t) and CS(t) are 
indistinguishable, the model can be further simplifi ed into a 
one-tissue compartment model (1TCM)[10, 33]. In this case, 
the efflux rate constant k2 is replaced by the apparent 
one                               . Furthermore, the 2TCM is also 
commonly used for irreversibly-binding radioligands whose 
binding process is intrinsically irreversible or seems so 
during the time period of PET studies. The irreversible 
accumulation of these radioligands can be analyzed by 
assuming that k4 = 0.

In compartmental modeling, the final goal is to 
estimate the rate constants, which characterize the kinetics 
of the radioligand, from the measured data. Besides the 
measured PET data C*T(ti), the input function CP(t) also 
needs to be measured to obtain the rate constants. The 

process of measuring CP(t) generally relies on frequent 
invasive arterial blood sampling[34, 35] under the assumption 
that the arterial plasma concentration is the same as the 
capillary plasma concentration[8]; arterial blood samples are 
measured separately during the dynamic PET acquisition 
and subsequently are corrected for metabolites since the 
standard model assumes that no plasma metabolites cross 
the blood-brain barrier. As the sampling times of blood data 
are incompatible with dynamic frame times, some simple 
signal processing may be required to match them. Contrary 
to the measured tissue data C*T(ti), where ti is the matched 
sampling time for the ith measurement, we also maintain 
CP(ti) without the superscript for the measured input data, 
because the data are usually refi ned through plasma input 
modeling[36].

Although the arterial blood sampling method is 
considered to be the gold standard of measuring CP(t) 
based on its accuracy[8], it has several disadvantages such 
as invasiveness and technical demands[8, 31, 37]. Therefore, to 
minimize or eliminate the need for invasive and technically-
demanding blood sampling and metabolite correction, the 
following approaches have been proposed and applied[37, 38]: 
image-derived methods[39-41], model-based methods[42-44], 
reference region methods[33, 45-48] and other sophisticated 
approaches[49-55].

In reference region methods, the kinetics of the 
radioligand in the tissue is described as a function of a 
reference region by assuming that there exists a reference 
area of brain tissue effectively devoid of specific binding 
sites[29]. Therefore, they require an additional compartment 
CR(t) and related rate constants K’1 (mL/cm3 per min) and  
k’2 (min-1) as shown in Figure 1 (bottom) (hereafter, the 
superscript ’ is used for the parameters in reference tissue). 
As these additions increase the complexity of the model 
and thus uncertainty in the resulting estimates, a series of 
assumptions is usually made to reduce the complexity[21]: 
(1) nonspecific binding is the same in both areas though 
delivery is not, and (2) an equilibrium is rapidly achieved 
between CND and CS so that tissue kinetics effectively 
follows the 1TCM.
Parameters of Interest in Neuroreceptor Ligand 
Study
In studies of reversible neuroreceptor-ligand binding, 
the primary outcome is the equilibrium concentration of 

Fig. 1. Standard two-tissue compartment model for a target 
region or tissue (top) and one-tissue compartment model 
for a reference region (bottom) to describe the in vivo 
kinetic behavior of neuroreceptor radioligands. Top: 
concentrations (Bq/mL) of radioligands in the same states 
are represented as compartments: plasma concentration 
of unmetabolited parent radioligand (CP), that of non-
displaceable (free and nonspecifi cally bound) radioligand 
(CND), that of specifically bound radioligand (CS); their 
exchanges between compartments are explained with the 
rate constants: K1 (mL/cm3 per min) and k2–k4 (min-1); and 
CT represents the total tissue concentration, that is, the 
sum of CND and CS. In addition, k2a denotes the apparent 
efflux rate constant from tissue when the tissue region 
can be approximately described with one compartment 
(dashed box) because of the equilibrium between CND and 
CS. Bottom: CR represents the total concentration in the 
reference region and K'1  (mL/cm3 per min) and K'2 (min-1) 
are the rate constants for their infl ux and effl ux from CP.
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the radioligand specifically bound to the target receptor 
(CS) that reflects the density and affinity of the receptors 
available to react with the radioligand in vivo[28]. Since 
the density and affinity are inseparable under the single 
tracer injection protocol, the concentration of specific 
radioligand binding is usually quantified as its equilibrium 
ratio to another pool of radioligand concentration, termed 
binding potential (BP)[6]. In the literature, there are three 
different practical definitions of in vivo BP depending 
on the use of distinct normalization factors (or the input 
measurements): non-displaceable concentration in tissue 
(CND), total concentration in plasma (CP), or its free fraction 
(fPCP)[28]. These in vivo BPs represent the potential of 
available receptors to bind with the radioligand, and refl ect 
the density of available receptors under the assumption 
that there are no substantial regional changes in receptor 
affi nity.

For consistency throughout this article, however, we 
limit ourselves to BPND = CS(t)/CND(t) (unitless) because 
only BPND can be obtained from both the reference 
region model (usually directly) and from the plasma input 
model (indirectly) that we describe. Although the other 
parameters, BPP = CS(t)/CP(t) and BPF = CS(t)/(fPCP(t)), are 
considered to be more suitable to describe specifi c binding 
than BPND, the measurement of plasma concentration or its 
free fraction is necessary to estimate them. Therefore, BPND 
is also frequently used (in a variety of applications) mainly 
because of practicality. However, the interpretation of BPND 
requires careful attention because its use is based on the 
assumption that VND (more precisely, its free fraction) has 
no regional or group difference; the comparison of BPND 
may not clearly reveal the group difference associated 
with specific binding when VND has a group difference or 
treatment effect[28, 56]. 

Another common endpoint is the volume of distribution 
of total radioligand concentration in tissue (VT). In the 
field of in vivo imaging, volume of distribution refers to 
the volume (mL) of plasma (with a certain concentration) 
required to account for the amount at equilibrium of 
radioligand in the unit volume (1 cm3) of the target 
region, and is therefore usually represented as the ratio 
of the radioligand concentration in the target (tissue or 
compartment) to that in the plasma (mL/cm3). Thus, VT has 
the following relationship with the volume of distribution of 

each compartment:

where VND and VS are the volumes of distribution for 
nondisplaceable and specific binding compartments, 
respectively.

Though VT does not directly reflect specific binding, 
but rather total radioligand uptake in tissue, it is also widely 
used in studies of neuroreceptor binding[57]. Indeed, most 
GA using the plasma input function provides VT as a major 
outcome. Because these methods yield a VND estimate for 
a receptor-free region, BPND can be indirectly computed as 
BPND = VT/VND − 1. Similarly, even most reference region 
methods produce estimates of the tissue-to-reference ratio 
of VT (VT/VND), called the distribution volume ratio (DVR), 
to derive BPND. Furthermore, it is noteworthy that the VS is 
BPP in itself; thus, for a tracer with a high level of specifi c 
binding and/or a low level of nonspecifi c binding (e.g. [11C]
fl umazenil), VT ( ≈ VT − VND = VS) can yield a good estimate 
of the receptor density[10].

Meanwhile, the concept of BP or volume of distribution 
is not useful for irreversibly binding radioligands. The major 
outcome of interest for these radioligands is the influx 
rate constant (Kin, mL/cm3 per min) which is the net influx 
rate of the radioligand from plasma into the irreversible 
compartment. Kin can be directly obtained from GA using 
the plasma input function, while only relative values 
normalized by reference region information such as Kin/V'T 
or Kin/K'in can be acquired from reference region methods[29].

The aforementioned parameters can be related to 
the rate constants of the 2TCM for reversibly binding 
radioligands as follows[10]:

Similarly, when the 2TCM can be simplified, we can 
consider the following relationship:

For a reference region commonly described by the 1TCM[57, 58], 
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we have

Therefore, under the assumption 

reference region methods can provide direct estimation of 
BP by using reference region data to acquire information 
about the non-displaceable component in tissue. Hence, 
the identification of a reliable reference region effectively 
devoid of specific binding is crucial[56]. On the other 
hand, when modeling the kinetics of irreversible binding 
radioligands using the 2TCM with k4 = 0, we have

Limitations in Parametric Image Generation
Although the standard compartment model describes a 
linear system, it is not linear in parameters. Therefore, 
the estimation of parameters in compartment models 
requires nonlinear estimation techniques. Because 
of its optimal statistical accuracy and reliability[59], the 
NLS  method is considered to be the method of choice 
for tracer kinetic modeling and is often used as the gold 
standard to assess the performance of other methods in 
terms of ROI parameters[8, 17]. However, nonlinear fitting 
approaches have no closed-form solution and are usually 
solved in an iterative way. This iterative approach imposes 
a tremendous computational burden when applied to 
voxel-by-voxel analysis. Furthermore, the performance 
of nonlinear fitting is dependent on the initial guessing of 
parameters; poor initial values result in finding incorrect 
optima at local minima of the cost function and slow 
convergence. In addition, an appropriate convergence 
threshold and constraints on the parameters should be 
determined by experience[5].

Graphical Analysis

The GA method is the simplest approach that relies on a 
linear parameter estimation technique. In some literature, 
the term ‘graphical analysis’ has been used to indicate 
specific early methods such as the Gjedde-Patlak (GP) 
plot for an irreversible system[60-62] or the Logan plot for 
a reversible one[57, 63]. However, it is now considered as 
a category rather than a specific method, since several 
different GA models have also been developed to measure 

different parameters or to improve other models[64-67]. Table 1 
lists the characteristics of all GA methods.

In each GA approach, the kinetic behavior of the 
radioligand is described by only two variables (for a simple 
linear regression) that are transformed from the measured 
data, including input functions, and that establish a linear 
relationship partially and asymptotically. The slope and 
intercept of that asymptotic linear portion can be interpreted 
as physiologically meaningful parameters, such as VT 
or Kin

[68]. Hence, first the linearity of the relationship is 
examined graphically by plotting one variable versus the 
other (which is why it is called graphical analysis; see Fig. 2) 
and then the slope and intercept are estimated by fitting 
a straight line to the specified linear portion via the LLS 
method.

To model the linear portion, GA methods rely on a 
simple linear regression model, or a linear model with a 
single independent variable, of the following matrix form:

where y and x1 are n × 1 vectors of dependent and 
independent variables, respectively; X = [x1, 1] is an n × 
2 matrix of the x1 and all-ones vector (1) for the intercept 
term; β = [β1, β0]

T is a vector of the 2 parameters, slope (β1) 
and intercept (β0); and  is an n × 1 vector of 
the error term. Then, the slope (β1) and the intercept (β0) 
characterizing the linear portion are usually obtained by 
solving the LLS problem:

which has the following closed form solution or the LLS 
estimator:

The GA methods have several advantages that 
are mainly attained by linearizing compartment model 
equations into the simple linear model so that the LLS 
approach can be used[67, 68]. Both the simplicity of the 
model and the closed-form solution of the LLS method 
enable simple, reliable, and computationally efficient 
parameter estimation. Furthermore, in contrast to standard 
compartmental modeling, the GA methods are consistently 
applicable across different tissue data with no a priori 
knowledge on the best model structure for each tissue, 
because their equations are derived from a general multi-
compartment model in which an arbitrary number of 
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Fig. 2. Various graphical plots for the slow kinetic radiotracers, [11C]WIN (left) and [11C]MDL (right). (A) Relative equilibrium (RE), (B) 
Gjedde-Patlak, and (C) Logan plots (reprinted from Zhou et al. Neuroimage 2010[67] with permission).
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compartments is assumed[61, 63]. These strengths of GA 
methods can greatly facilitate the generation of parametric 
images in which numerous voxels covering various brain 
regions can be analyzed.

However, a series of assumptions underlie the 
linearization and simplification of kinetic models for GA 
that allows the use of simple linear regression and thus 
provides various advantages. First, GA methods require 
the determination of t*, the time when the plot becomes 
linear, because the model is valid only for the later part 
of the dynamic frames. A poor determination can yield 
erroneous estimates by violating the linearity requirement. 
In addition, slow kinetic tracers have a late starting point of 
the linear portion that reduces the amount of data available 
for estimation. Thus, the results can suffer from high 
uncertainty because of limited data. Moreover, unbiased 
parameter estimation in the simple linear regression 
depends on basic assumptions of LLS: that there are no or 
negligible errors in the independent variable of the linear 
model, and that the independent variables are uncorrelated 
with the error term. Any violation of these conditions can 
lead to inaccurate results.

Because most PET radioligands bind reversibly, 
revers ib le  rad io l i gand  mode ls  have  been  used 
extensively[1, 69]. Therefore, though most of them were 
extended from the GP plot for an irreversibly binding 
radioligand (the first GA method), we introduce the 
reversible radioligand models fi rst.
Reversible Radioligand Models
Logan plot  The Logan plot (Fig. 2) is a representative 
graphical method used to analyze a reversible radioligand-
receptor binding[57, 63]. The model equation using the plasma 
input function is given by

where VT,Logan is the total distribution volume, and t* is the 
time when the intercept βLogan becomes effectively constant. 
Given the measured noisy TAC, C * 

T (ti) (1 ≤ i ≤ n) obtained 
from n sequential dynamic frames, we have

and β = [VT,Logan, βLogan]
T for 1 ≤ i ≤ n. yi and x1i are the ith 

elements of y and x1, respectively. Here,

represents the numerical integration of C* 
T (ti) that are 

discrete sample data, not the integral of a continuous 
function.

As in other GA methods, the Logan plot is consistently 
applicable to data from different voxels or ROIs regardless 
of their underlying model configurations. However, if a 
particular model configuration is assumed for the given 
data, VT,Logan and βLogan can be related to the specific rate 
constants included in that confi guration; usually the 1TCM 
or the 2TCM is considered for receptor-ligand studies. 
The slopes are differently interpreted as Equations (3) or 
(7), according to the model confi gurations. For the 1TCM 
(without k3 and k4), the linearity is simply met for all the 
frame times since βLogan = −1/k2. On the contrary, for the 
2TCM, we have to determine t* because the intercept is not 
actually a constant:

The limit value −1/k * 
2a is defi ned at the steady-state condition 

of tissue tracer kinetics

However, the constancy of βLogan can be approximately 
achieved before the steady state, yielding a good estimate 
of VT,Logan

[63, 68, 70].
Meanwhile, the Logan equation can be re-written for a 

reference region: 

Rearranging Equation (15) gives

Then, by approximating the plasma integral in Equation (12) 
using Equation (16), the noninvasive Logan plot based on 
a reference TAC can be obtained as follows: 

If the reference region is approximately devoid of receptor 
sites, BPND can be determined as VT,Logan/V′T,Logan−1 under 

the assumption that

There are several t ips for technical eff iciency 
in the implementation of the noninvasive Logan plot. 
The slope in Equation (17), the DVR, may be stably 
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estimated by using a population average of β′Logan, 
(or the more physiologically meaningful      in place of 
the individual β′Logan (or k′2). In this case, the inter-subject 
variability in β′Logan is blended into an error term of the 
model and then removed by the fi tting process. In addition, 

the term                         can be ignored when it is relatively 

small or becomes constant[57]; in fact, the term is merged 
into the error or the intercept term. It is noteworthy that, 
although the term in parenthesis in Equation (17) is treated 
as one independent variable in the noninvasive Logan 
plot method, it can be used as two separate variables for 
the parameter estimation[71] that requires multiple linear 
regression analysis.

Because of i ts diverse merits, such as model 
independence,  computat iona l  e f f ic iency,  s imple 
implementation, and statistical reliability under low-
noise data, the Logan plot has been extensively used in 
neuroreceptor binding studies. However, the Logan plot 
suffers from a crucial limitation, especially in parametric 
imaging (Figs. 3 and 4), in that it produces a severe 

negative bias in VT,Logan or                 when CT(t) is highly 

contaminated[72-74]. As shown in Equations (12) and (17), 
the noise in CT(t) is entered into both the independent 
and dependent variables of its model equation while 
establishing a correlation between them, which therefore 
makes the model violate the LLS assumptions mentioned. 
Furthermore, the magnitude of the bias depends on the 
noise level that is also dependent (but not linearly) on 
the radioactivity concentration[72-75]. The effect of noise 
is also not consistent throughout the parametric image 
space; high-binding regions usually undergo more severe 
underestimation. One minor disadvantage of the Logan plot is 
the requirement of full dynamic scanning to compute
though only the later parts of the measurements (after t*) 
are used for parameter estimation.
Relative equilibrium plot  To address the noise-dependent 
bias issue in the Logan plot, the relative equilibrium-based 
graphical method (RE plot) was developed for both plasma 
and reference tissue input functions[66]. When the tissue to 

plasma concentration ratio,            becomes a constant, i.e., 

the RE established after a certain time t* (Fig. 5, left), tracer 

concentrations satisfy the following relationship: 

This model can be derived from compartment model 
equations or by multiplying the Logan plot model (Equation 

(12)) by         Note that the constant ratio of tissue-to-

plasma concentrations can be achieved at the steady state, 
but it is also possible to achieve it earlier than the steady 
state. However, this generally requires somewhat longer 

times than the Logan linearity condition 

In addition, when a reference region is also in the RE 

state for t > t*                      we have the noninvasive RE 

plot model as follows:

where V′T,RE and β′RE are the slope and intercept of the RE 
plot in the reference region. Thus, the invasive RE plot 
can provide BPND if the non-receptor region is used for the 
reference region.

One merit of the RE plot is its high computational 
efficiency. As shown in Equations (18) and (19), the 
independent variable is not dependent on the tissue data 
and is common over all voxel TACs. Therefore, once X

is computed from the input function, it can be used for all 
tissue data, that is, only one matrix conversion is required 
for parametric image generation. However, in the case of 
the Logan plot, X needs to be computed and inverted for 
every voxel. In addition, it is noteworthy that both 
independent and dependent variables in Equations (18) 
and (19) have a much lower noise level compared with 
C* 

T (t) because the integration reduces fluctuations in the 
later part of TAC, and CR(t) is obtained by averaging voxel 
TACs over a reference ROI. Therefore, the RE plot can 
achieve effectively unbiased estimation with low variance 
provided that linearity is established. However, for linearity, 
tissue tracer kinetics must be at a relative equilibrium state 
during PET scans, and thus only late data points can be 
used for the estimation. Thus, good precision properties 
obtained from a less noisy dependent variable could be 
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compromised with the data reduction because of the 
relatively late t*. 
Bias reduction for Logan plot  In addition to the RE plot, 
there have been a variety of attempts to reduce the bias in 

the LLS estimates from the Logan plot[19, 36, 56, 69, 76-80]. Those 
approaches can be categorized by (1) methods to increase 
the SNR in dynamic images, and (2) those that adopt more 
sophisticated estimation techniques. In this subsection, we 

Fig. 3. Top: parametric images of VT (represented as DVRE or DVT) and Kin (represented as KP) from various methods: RE plot, RE-GP plot, 
and Logan plot (reprinted from Zhou et al. Neuroimage 2010[67] with permission). Bottom: results from de-noised dynamic images 
(reprinted from Zhou et al. Neuroimage 2010[67] with permission).

Fig. 4. VT images from the Logan plot with linear least squares (LLS), total least squares (TLS), and likelihood estimation in graphical 
analysis (LEGA). The images were made from the same original PET data using [11C]SA4503, a radioligand for the σ1 receptor 
(reprinted from Kimura et al. Ann Nucl Med 2007[75] with permission).
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introduce these two categories.   
Data de-noising  The most simple and straightforward 
solution to the bias issue in the Logan plot may be to 
apply smoothing techniques directly to the dynamic data. 
Although smoothing approaches are effective, they are not 
a direct improvement over the Logan plot[81] and thus can be 
applied not only to GA but also to all other methods that are 
affected by noise in the dynamic data. Logan et al.[76] used 
generalized linear least squares (GLLS)[42, 82] as a temporal 
smoothing technique to reduce noise in TAC data, and 
subsequently applied the Logan plot to the noise-reduced 
TACs, the result of GLLS. This combination of the Logan 
plot and GLLS yielded unbiased estimates of VT up to 
intermediate noise levels, but suffered from overestimation 
and significant variability at high noise levels. Joshi et 
al.[79] suggested the use of principal component analysis 
(PCA) for the temporal smoothing of TACs. This PCA-
based approach demonstrated good performance with both 
increased accuracy and precision. However, it requires 
pre-processing for the selection of optimal principal 
components, and too many components may reintroduce 
a bias. For spatial domain de-noising, grouping TACs 
with similar properties such as proximity or functional 
relations may also be useful[68, 77, 83]. The main drawback of 
spatial smoothing techniques is a loss of spatial resolution 
and additional partial volume effects (Fig. 3 bottom)[67]. 
Cselényi et al.[19, 80] proposed two wavelet-based de-noising 
techniques that can overcome the noise susceptibility 
with generally good accuracy and not much loss of spatial 
resolution. However, these techniques are computationally 
demanding compared with other approaches. In addition 
to these methods, many other approaches aimed at 
increasing the SNR of the reconstructed images are also 
applicable[27].
Total least squares (TLS)  Varga and Szabo[78] proposed 
the use of TLS estimation[84], also referred to as the 
‘perpendicular linear regression model’, instead of LLS for 
the Logan plot model because the TLS considers the noise 
in the independent as well as in the dependent variables. 
The TLS method seeks to minimize the following sum of 
squared orthogonal distances from the measured points 
to the fi tted line (or hyperplane), by perturbing all the noisy 
variables X and y, as follows: 

Although this approach may seem to be complicated, it has 
a closed form solution and thus maintains computational 
simplicity like LLS.

In the original work[78], using this TLS method showed 
that the bias was dramatically reduced and thus the 
resulting VT was consistent in accuracy regardless of the 
noise levels of the TAC but at the expense of increasing 
variance (Fig. 4). However, such good performance was 
not reproduced well in other studies where the TLS only 
partially removed bias[19, 68, 75, 85]. Although the reason for 
such discrepancy in the performance between studies is 
unclear, there are some speculated sources for the 
remaining bias: a heterogeneity of variances or a 
correlation between the noise in all the variables[84, 85]. We 
speculate that the poor performance of TLS in the Logan 
plot is mainly due to high noise correlation because the 
same noise is shared in all the variables of the Logan 
model through the denominator (C * 

T (t)).
Likelihood estimation in graphical analysis (LEGA)  
Ogden[36] proposed the LEGA method to suppress the 
noise-induced bias in the result of the Logan plot. However, 
the LEGA method implicitly uses the Logan model, unlike 
other bias-reduction approaches that transform the 
measured TAC and then directly use the Logan model 
equation[19, 69, 76-80]; the Logan model is converted into the 
following recurrence relation to generate the noise-free 
TAC predicted by the model, 

for k ≤ i ≤ n, where ∆ti denotes the duration of the ith frame, 
CT(ti) is the predicted tissue concentration at the mid-frame 
time ti (for k ≤ i ≤ n), and k is the index of the first frame 
satisfying ti > t*. Then, the solution of the following least 
squares problem,

provides maximum likelihood estimators for VT,Logan and 
βLogan under the assumption that errors in the values of the 
measured TAC, C * 

T (ti), are independently and identically 
distributed normal random variables with zero mean. 
Because Equation (21) is valid only for k ≤ i ≤ n, the 
measured values of C* 

T (ti) for 1 ≤ i ≤ k−1 are used for the 
calculation of CT(tk). The LEGA that was originally 
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developed for the plasma input function was also extended 
to a reference region method with more complicated update 
equations for both target tissue and reference tissue 
TACs[56].

Since the LEGA method applies the l ikelihood 
estimation not to the transformed data but to the original 
TAC (C* 

T (ti)), it can circumvent the bias issue associated 
with the Logan model. However, it does not provide any 
graphical inspection of the binding characteristic, in contrast 
to the Logan plot. Hence, to choose a proper value of t* or 
k, it needs to rely on the Logan plot or other t*-selection 
approaches[85]. Furthermore, because of the recurrence of 
predicted values and the nonlinear involvement of VT,Logan 

and βLogan, the solution must be computed using an iterative 
nonlinear optimization algorithm (at least over one-
dimensional parameter space for βLogan); the results of the 
Logan plot may be used for the initial values for the 
iteration, and for surrogate values when numerical 
instability occurs.

The major drawback of LEGA in parametric imaging is 
that the improved accuracy is accomplished at the expense 
of precision loss that contributes to noisy parametric 
images as shown in Figure 4[81, 86]. To improve the variance 
properties of LEGA, Shidahara et al.[81] suggested a new 
method based on a maximum a posteriori estimation, 
where a physiological range of parameters is incorporated 
as prior knowledge and the measured TAC is compared 
with the predicted TAC, not in the original TAC space, but 
in the lower-dimensional space that is reduced from the 
original space using PCA.
Instrumental variable (IV)  Logan et al.[69] introduced the 
IV method[87, 88] to address the bias problem encountered 

in the Logan plot because of the noise in the independent 
variable. In several disciplines including statistics, the IV 
method is basically used to remove a correlation between 
the independent variables (X) and the error term (ε) that 
can lead to biased estimates in standard linear regression. 

Although the correlation between X and  can stem 
from the noise in the independent variable (even if it is 
uncorrelated with the noise in the dependent variable) as 
well as several other sources, the IV method can eliminate 
the bias regardless of its source[89]. In addition, TLS can 
also be considered as a variation on the IV method with a 
specifi c instrument that is nonetheless not used explicitly; 
however, the IV method makes no assumptions about the 
noise models, unlike the TLS[90].

The key concept in the IV method is the use of 
one or more extra variables (not in the model), called 
instrumental variables or instruments, to separate the 

(exogenous) part of X that is uncorrelated with  from the 
remaining (endogenous) part that is correlated with . Only 
the segregated exogenous part of X is then used for the 
parameter estimation because the endogenous part is the 
source of bias in the LLS estimates; given the instruments Z, 
the IV estimator is defi ned as

This estimator yields unbiased estimates if Z is uncorrelated 

with , and if it is correlated with the endogenous 
independent variables after removing the effect on them 
of the other uncorrelated exogenous variables (i.e., 
conditional on the other independent variables).

The critical point of the IV method is to construct 
legitimate instruments satisfying these requirements. Logan 
et al.[69] suggested two methods for the construction: an 

Fig. 5. Left: relative equilibrium (RE) state after t* = 42.5 min in [11C]raclopride PET (reprinted from Zhou et al. Neuroimage 2009[66] with 
permission). Right: violation of RE condition in [11C]WIN PET (reprinted from Zhou et al. Neuroimage 2010[67] with permission).
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iterative approach proposed by Minchin[91] and another 
based on less noisy regional TACs. The main idea common 
to the two methods is to use                                          
the denoised version of X that can be considered as the 
exogenous part of X by itself when the correlation between 
X and  is primarily due to the noise in X. The fi rst method 
involves the prediction of CT(ti) using Equation (21) and the 
parameter estimates from the original Logan plot, and the 
subsequent computation of      ; this process is repeated 
until      converges. In the second method, a regional 
TAC of a large ROI is used for CT(ti), and       is estimated 
without any iteration. Because the iterative approach has 
convergence issues, the second method is preferable. 
Furthermore, according to Logan et al.[69], the second 
method showed good results when the smoothed reference 
TAC was used in Z. On the other hand, the IV approach 
was extended to the noninvasive Logan plot but Z was 
constructed using only the second method based on ROI 
TACs. 

The IV methods successfully reduce the bias but at 
the expense of variance, much as in other bias-reduction 
approaches. Instead of improving the IV method itself, 
to reduce both the bias and variability, Logan et al.[69] 
suggested the use of the median of the values determined 
by various modifi cations of the Logan plot as well as the IV 
method, methods that have different noise characteristics 
for the same data.
Irreversible Tracer Models
Invasive Gjedde-Patlak (GP) plot methods  For a tracer 
with an irreversible binding, the GP plot[60-62] (Fig. 2) has 
been widely used. Although the term ‘Patlak plot’ or simply 
‘graphical analysis’ is often used for this method, we keep 
the ‘GP plot’ for consistency with the RE-GP plot throughout 
the paper.

The model equation including the plasma input 
function (Equation (24)) can be obtained from the 2TCM 
by assuming k4 = 0 as well as from a general multi-
compartment model[61, 63]. When an equilibrium has 
been established between the plasma and reversible 

components (or               becomes effectively constant) for 

t > t*, the following linear model achieves an asymptotic 
linearity for an irreversibly-binding tracer: 

where the influx rate constant                      and the 

intercept term                          Thus, βGP has a positive 

value in contrast to its equivalents in the Logan or RE plots.
In addition to the common advantages of GA methods, 

the GP plot has a discriminative one in that it does not 
require a full dynamic scan because the integration of CT(t) 
is not involved, in contrast to other methods such as the 
Logan plot or the RE plot. Furthermore, it is noteworthy 
that the GP plot has a model equation very similar to the 
RE plot (Equation (18)), except for how CT(t) is involved 
in a dependent variable. Therefore, the two methods 
share similar bias properties and computational effi ciency 
owing to using the same independent variable. On the 
other hand, the variance of the parameter estimate from 
the GP plot is more sensitive to noise (Fig. 6) than that 
from the RE plot because CT(t) (i.e., more noisy data) is 
directly involved in the dependent variable of the GP plot, 
while its integration (i.e., less noisy data) is used in the RE 
plot. This noise sensitivity of the GP plot can be improved 
through multiple linear analysis for irreversible radiotracers 
(MLAIR) methods[22]. Moreover, for a tracer assumed to 
have effectively irreversible binding (k4 ≈ 0) over the scan 
duration, Kin,GP may be underestimated if the dissociation 
of binding is appreciable[8]; in such a case, a more general 
model equation is required to obtain unbiased results[62].
Noninvasive GP plot methods  Concerning the reference 
region model, the GP plot has two different model 
equations according to the tracer’s binding type in the 
reference region. When the reference region has only 
reversible binding sites, the relationship between CP(t) 
and CR(t) can be represented by the Logan plot equation 
with a slope V′T,Logan and an intercept β′Logan (for t > t*). Then, 

by multiplying both sides of Equation (24) by         and 

substituting Equation (16) into Equation (24), a noninvasive 
GP plot model can be obtained as follows:

Thus, the slope and the intercept terms can be estimated 

using simple linear regression when

and β′Logan become effectively constant for t > t*
[62, 68]. 

Meanwhile, for a reference region with irreversible uptake, 
the invasive GP equation is used to describe CP(t) using 
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CR(t). Then, another linear model of a noninvasive GP plot 
can be obtained as follows[37, 38],

where K′in,GP and β′GP  are the slope and intercept of the 
invasive GP plot applied to the reference region. This 
method requires that the kinetics of the radioligand in both 
the tissue and reference regions can be modeled using the 
invasive GP plot (Equation (24)).

The former noninvasive model would inherit all the 
properties of the original invasive GP plot model, provided 
that a sufficiently large ROI size is used so as to obtain 
CR(t) with as low a noise-level as that of CP(t); otherwise, 
the accuracy of the resulting estimates can be damaged 
by the noisy independent variable, like in the Logan plot. 
On the contrary, the latter noninvasive model has several 
distinct features compared with the original invasive and the 

Fig. 6. Kin parametric images from 90-min [11C]MeNTI PET of a healthy volunteer obtained using various methods: (A) GP plot using t* = 
10 min, (B) GP plot using t* = 20 min, (C) GP plot using t* = 30 min, (D) MLAIR1, and (E) MLAIR2 (reprinted from Kim et al. J Cereb 
Blood Flow Metab 2008[22] with permission; GP: Gjedde-Paltak, MLAIR: multiple linear analysis for irreversible radiotracers).

former noninvasive models. First, this model is not a simple 
linear regression model but a multiple linear regression 
model. Therefore, a graphical plot with a straight-line fi t is 
not provided; although the visualization of 3-dimensional 
hyper-plane fi t is possible instead, its interpretation is not 
as straightforward as that of GA. In addition, this model 
includes the integration of CT(t) in contrast to the others. 
Nevertheless, it also avoids the requirement of a full 
dynamic scan like the others; this property of the original 
GP plot model is just transformed into the integration from 
t* to t.

One drawback of these noninvasive methods is that 
the net accumulation of radioligand is acquired only in 
a relative or normalized form. Nevertheless, the former 
noninvasive model has found applications because of its 
history going back to 1985; the method has been frequently 
used in 6-[18F]fluoro-L-dopa studies because of a good 
correlation between its own results and those from the 
invasive counterpart[92-95]. However, the latter method was 
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introduced in relatively recent years and thus has not been 
suffi ciently investigated or used, and has been applied only 
to ROI data. Although the ROI results have shown good 
accuracy and precision, future parametric imaging may 
suffer from severe underestimation because CT(t) is used 
for independent variables.
Bi-graphical Analysis
Although GA generally provides robust parameter 
estimation by focusing on only two parameters, it may end 
up missing some information or exploiting only fragmentary 
information from given data. However, a combination of two 
methods or a dual application to different parts of the data 
may take full advantage of the data. In this sense, graphical 
methods to estimate VT, which we went through in the 
previous subsections, can also be viewed as a bi-graphical 
technique when they are applied to target and reference 
regions separately to provide BPND computation.
RE-GP plots  Recently, a bi-graphical analysis, named 
the RE-GP plot, has been proposed for the quantifi cation 
of reversible tracer binding that may not be at the RE 
state during a PET scan because of slow binding kinetics 
as shown in Fig. 5 (right). Its model equation is given as 
follows,

where VT,RE and βRE, (or Kin,GP and βGP) are the slope and 
intercept of the RE plot (or the GP plot) based on a plasma 
input function, respectively. Note that this RE-GP equation 
is the same as Equation (12) of the Logan plot except for 
the parameters. However, the parameters VT,REGP and βREGP 
are estimated not by regression as in the Logan plot, but by 
arithmetic operations on the parameter estimates obtained 
by applying the RE plot and the GP plot separately. Thus, 
the RE-GP method requires the measurement of the 
plasma input function to estimate the parameters of the RE 
and GP plots.

The linearity period t > t* for the RE-GP method mainly 
follows that of the Logan plot[67]. It is better to use the t* 
suitable for the Logan plot in each application of the RE 

plot and the GP plot rather than to determine and use the 
individual t* for each plot; the t* for each may be uncertain 
because of the slightly curved shape of the RE plot or high 
fl uctuation in the GP plot as shown in Fig. 2.

The RE-GP plot maintains the properties of both 
plots, such as computational efficiency and statistical 
characteristics. As the RE plot and the GP plot have the 
same effectively noise-free independent variable in their 
model equation, accuracies of their target parameter 
estimates and thus those of the RE-GP method are not 
affected by noisy CT(t) in contrast to the Logan plot. 
However, the GP parameters are usually of high variance 
because of noisy CT(t) in the dependent variable (Figs. 3 
and 6). Therefore, it is advantageous to apply a spatial 
smoothing filter to the GP parametric images before 
computing the parametric images of VT,REGP and βREGP

[67].
The original RE-GP can circumvent not only the 

bias issue in the Logan plot but also that of the RE plot 
(Fig. 3). As we introduced previously, the RE plot yields 
an underestimated VT when sufficient time is not allowed 
for the tracer kinetics to reach the RE state (Fig. 3). The 
missing information, which the RE plot failed to capture 
because of the violation of the RE requirement, can be 
compensated for by the results from the GP plot (Fig. 3). 
In other words, the results of the RE plot describe the 
components achieving the RE state during the PET scan 
while those of the GP plot compensate for non-relative 
equilibrium components.
Ito plot  Ito et al.[65] developed a form of bi-graphical 
analysis where the Yokoi plot[64] is applied to the early part 
of the data frames and the later part separately, and then 
the resulting parameters from the separate applications are 
combined to generate BPND, the parameter of interest; the 
Yokoi plot was originally proposed to estimate the cerebral 
blood flow (K1) and the total distribution volume (VT) only 
for tracers well described by the 1TCM, and was recently 
generalized into the Ito plot[65] for the neuroreceptor-
radioligand binding studies where the 2TCM is involved. 
The Yokoi plot and thus the Ito plot rely upon the following 
linear relationship: 

Equation (30) yields a straight line through all data 
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frames (Fig. 7) when there is no specifi c binding in a target 
region (e.g., the Yokoi plot for 1TCM confi guration tracers), 
and the slope (β1), y-intercept (β2), and x-intercept (β2/
β1) of the regression line represent −k2, K1, and VT (= VND), 
respectively. On the contrary, when applied to regions with 
specific binding (e.g., the Ito plot for 2TCM configuration 
tracers), Equation (30) generates a curve (Fig. 7) that 
refl ects the dynamic effect of specifi c binding concentration 
on the measured tissue data. The fitted regression line 
can be characterized by −k2 (slope), K1 (y-intercept), and 
VND (x-intercept) for the early part of the data for t → 0 in 
which CND(t) dominates the measured tissue concentration 
CT(t). The line can be specifi ed by −k*

2a, k
*
2aVT and VT (=VND 

+ VS), respectively, for late-part data (t > t*) that can be 
approximately described with the 1TCM and its apparent 
rate constants k*

2aVT (for infl ux) and k*
2a (for effl ux) after t* 

(Ito et al. 2010[65, 67]); k*
2a becomes k2a (Fig. 1 and Equation 

(6)) when rapid equilibrium is established at t* ≈ 0 owing 
to relatively large k3 and k4. Care should be taken in VND 
estimation because the use of more data points increases 
not only the reliability of estimation but also the bias due to 
the violation of CT(t) ≈ CND(t) for t → 0[96].

Based upon the plot characteristics that vary according 

to the model confi guration, the Ito plot model (Equation (30)) 
can be useful for graphically distinguishing whether a target 
region is devoid of specifi c binding or not[65]. Furthermore, 
the Ito plot can be used to compute BPND using the resulting 
VND and VT estimates. The major distinction between 
this and other reference region methods is that a priori 
knowledge of the reference region is not required. These 
features may be obtained with the Logan plot because 
the Ito plot and the Logan plot are based on the same 
linear relationship except for the different arrangement 
of parameters and variables (thereby, different noise 
characteristics). Note that the Yokoi and Ito plots are both 
GA techniques for VT estimation, even though we introduce 
them here as bi-graphical analysis methods for BPND 
generation.

On the other hand, the main drawback of the Yokoi 
and Ito plots is that the precision of estimates is usually 
low because of noise effects[65, 69, 96], particularly at the 
voxel-level, for several reasons: (1) the dependent variable 
includes CT(t), the major source of noise in kinetic modeling, 
as its numerator; (2) the estimation of VND involves early 
time frames, usually with a very low SNR[8]; and (3) the 
parameters of interest, VT and VND, are computed by 
dividing the y-intercept by the slope. Therefore, as shown 
in Figure 8, the de-noising of dynamic images is essential 
to improve the SNR of parametric images[8, 96].

Summary

PET research has greatly contributed to advance our 
understanding of the brain in health and disease[4, 97-102]; 
quantitative neuroreceptor mapping with kinetic modeling 
has played a key role in such contributions by offering 
accurate visualization and voxel-wise analysis of the 
distribution and activity of various neuroreceptors that are 
the most infl uential structures in the brain. 

In this article, we have presented an overview of 
GA-based parametric image generation from dynamic 
neuroreceptor PET data. Although parametric imaging 
may cover broad concepts, including the voxel-wise 
measurement of standard uptake values from a single 
static image, or other standard kinetic parameters 
such as peak concentration from dynamic data[5, 8, 31], 
throughout the paper, it refers to a voxel-wise application 
of specifi c mathematical modeling approaches to analyze 

Fig. 7. An example of Ito plot analysis. The y- and x-intercepts of 
the regression line represent K1 and VND, respectively, for 
early data frames, whereas Ki = k*

2aVT  and VT for the late 
part of the data (after the equilibrium time) (reprinted from 
Ito et al. Neuroimage 2010[65] with permission). Open (or 
fi lled) circles display examples of applications for one- (or 
two-) tissue compartment model data.
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reconstructed dynamic PET images. In GA methods, a 
simple linear model with only two parameters is used to 
fit only the later portion of the measured data. Thanks 
to the linearization and simplification of the underlying 
model, GA methods achieve very desirable parametric 
imaging that is independent of any compartmental model 
confi guration, robust to noise, and computationally effi cient. 
However, both the linearization and simplification depend 
on several assumptions that are commonly hard to satisfy 
simultaneously. Therefore, the recent advances in GA 
approaches have been mainly based on a reduction of 
specifi c assumptions or replacement with new ones. 

Recently, parametric imaging techniques have shown 
two major trends: a conventional pipeline of analyzing the 
reconstructed dynamic data and a direct reconstruction 
of parametric images from coincidence count data[17, 20]. 
Although the direct reconstruction technique is considered 
as the ultimate path for parametric image generation 
because of its potential advantages in high-resolution 
PET[17], this fi eld was inactive until recently despite its early 
emergence and has several challenges to address, such as 
high algorithmic complexity[20]. Therefore, we believe that 

the indirect parametric imaging methods, especially the GA 
techniques we have considered, are still invaluable and 
furthermore will play a leading role in achieving the ultimate 
goal. We refer readers interested in direct parametric 
imaging to a comprehensive review by Wang and Qi[20], 
since it is beyond the scope of this paper.
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