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The blood-brain barrier (BBB) maintains homeostasis by blocking toxic molecules from the circulation, but 
drugs are blocked at the same time. When the dose is increased to enhance the drug concentration in the 
central nervous system, there are side-effects on peripheral organs. In recent years, genetic therapeutic agents 
and small molecules have been used in various strategies to penetrate the BBB while minimizing the damage 
to systemic organs. In this review, we describe several representative methods to circumvent or cross the BBB, 
including chemical and physical strategies. 
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Introduction

Treatment of central nervous system (CNS) diseases is 
challenged by the difficulty in drug delivery through the 
blood-brain barrier (BBB). Although drug mechanism 
research has become quite sophisticated in recent years, 
the vast majority of drugs are blocked by the BBB and thus 
fail to reach the brain, making it diffi cult to treat intracranial 
disease[1].

The BBB has the function of selective permeability 
wh ich  p reven ts  bac te r i a  and  o the r  pa thogen ic 
microorganisms from entering the brain while at the same 
time allowing oxygen and other vital compounds to traverse 
from the blood to the brain. However, it also fends off 
drugs, and so is an obstacle to treating brain diseases.

Methods for drug delivery to the brain can be divided 
into two types: invasive and non-invasive. The invasive 
methods can achieve a high local drug concentrations by 
direct injection or intracerebroventricular delivery but also 
has side-effects such as infection or trauma. Besides, the 
drug concentration decreases exponentially as a function 
of distance from the injection site. It is also hard to deliver 

drugs repeatedly and patients hesitate to accept invasive 
treatments. For these reasons, we focus on the non-
invasive drug-delivery strategies. 

Structure of BBB

The BBB is a layer of endothelial cells on the   basement 
membrane lining almost 99% of the brain capillary surface, 
continuously coupled with perivascular cells[2], such as 
pericytes, smooth muscle cells, astrocytes, and microglia 
(Fig. 1)[3]. Normally the BBB excludes ionic water-soluble 
drugs with a diameter >180 nm[4].

Transplantation studies have shown that the properties 
of the endothelial cells that constitute the BBB are not 
innate[5], but are induced in the special microenvironment 
of the CNS[6]. The BBB is formed during embryogenesis 
when endothelial cells enter the CNS. One week before 
astrocyte formation, pericytes are recruited to the neonatal 
vessels and regulate the functions of the BBB, including the 
generation of tight junctions (TJs) and vesicle traffi cking in 
brain microvascular endothelial cells (BMECs)[7-9], a major 
component of the BBB[10]. Pericytes are a prerequisite 
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for the formation of the BBB and determine part of its 
permeability by inhibiting the expression of molecules that 
increase BBB permeability and immune cell infiltration. 
However, they do not induce BBB-specifi c gene expression 
in CNS endothelial cells[11, 12]. Astrocytes induce BBB 
formation after birth because of the close spatial relation 
between astrocytes and BMECs. The timing of BBB 
formation has been controversial. Laboratory mice with 
null and hypomorphic Pdgfrb alleles that have defects 
in pericyte generation illustrated that the interactions 
between pericytes and BMECs are critical in regulating 
BBB permeability. This effect is caused by the inhibition of 
specifi c proteins that can increase the permeability of the 
BBB[13-15].

The permeability of the BBB in drug delivery remains 
a problem, although many drugs have been developed in 
an attempt to combat it. Several available strategies for the 
safe and effective delivery of drugs are described below.

A Drug-Delivery Approach to Bypassing the BBB

  Intranasal delivery of drugs is a potential strategy to bypass 
the BBB[16]. The effectiveness of intranasal delivery is 
determined by administration factors and physicochemical 
properties, such as the patient’s head position, dosing 
device, drug volume, pH value, osmotic pressure, and drug 
solubility. Intranasal delivery has been highly regarded 

because it is noninvasive, safe, and simple. Since its early 
use by W  illiam Ewart[17] for the treatment of diphtheria, 
intranasal delivery has been confi rmed as a promising route 
of administration. On the other hand, its use is relatively 
limited. However, the method has been modifi ed by various 
additions such as penetration enhancers, adhesion agents, 
and nanoparticles, which can significantly increase the 
efficiency of drug delivery. Wu et al.[18] have successfully 
delivered stem cells using the intranasal approach as a 
therapy for experimental allergic encephalomyelitis in rats, 
an animal model of multiple sclerosis. Nasal glucagon-
like peptide-1[19] has already been used in patients. This is 
a promising development for patients with diabetes, and 
has the potential that insulin may be administered in a 
similar way. Future research is needed to further reveal the 
mechanisms of nasal drug delivery and at the same time 
improve the technology and solution preparation. This will 
achieve a better targeting, improved effectiveness, and 
higher drug concentrations.

New Drug-Delivery Approaches to Crossing the 

BBB

Relevant Carriers in Cerebral Microvascular 
Endothelia
Receptors on the surface membranes of cells can help 
drug delivery. Common carriers include medium-chain fatty-
acid carriers, neutral amino-acid carriers, a monocarboxylic 
carrier, cation transporters, and the adenosine purine 
carrier.
  Exosomes[20]  Scientists at the University of Oxford have 
used protein carriers called exosomes to transport drug 
molecules to the brain cells of laboratory mice. Exosomes 
are membrane vesicles released by a variety of cells such 
as dendritic cells[21,22]. They transport material back and 
forth through the BBB. Exosomes are fi rst extracted from 
mice. Then, a CNS-specific rabies viral glycoprotein is 
attached to the acetylcholine receptor, and fused to the 
exosomes. Finally, an siRNA is placed in the exosomes 
and the complex is intravenously injected into mice. 
Experiments have confirmed that the siRNA is delivered 
to the brain and binds to its receptors on brain cells. 
This results in a 60% decline of β-secretase 1 (BACE1) 
expression, a gene associated with Alzheimer's disease[23].

Fig. 1. Diagram of BBB. The BBB is a layer of endothelial cells on 
the basement membrane lining almost 99% of the brain 
capillary surface, continuously coupled with perivascular 
cells, such as pericytes, smooth muscle cells, astrocytes, 
and microglia.
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Adenosine receptor  Researchers at  Cornell University 
found      that adenine nucleotide can transport large 
molecules into the brain. When the adenine nucleoside 
receptors on cells are activated, a channel can be 
established through the BBB[24]. In the experiments, the 
team succeeded in passing large molecules (a β-amyloid 
protein antibody) through the BBB of transgenic mice and 
reported the adhesion of the antibody to β-amyloid plaques 
(mice with genetically-modifi ed plaques that have a lower 
risk of Alzheimer's disease). Furthermore,   the selective A2A 
adenosine receptor agonist Lexiscan can temporarily open 
BBB channels.
    Transferrin receptor[25]  The transferrin receptor (TfR) is a 
key cell-surface molecule that regulates the uptake of iron-
bound transferrin[26].   Plasma soluble TfR concentrations 
refl ect the receptor density on cells and the number of cells 
expressing the receptor. Therefore, it is closely related 
to cellular iron demand and the erythroid proliferation 
rate. TfR is frequently overexpressed in cancer cells[27]. 
Recently, transferrin-targeted conjugates have shown 
promise in reversing drug resistance in  cancer cells, and 
transferrin immunotoxins with a diphtheria toxin mutant 
covalently bound to transferrin have shown promise for 
the treatment of glioblastoma in clinical trials[28]. Thus, 
intracellular targeting by iron-saturated transferrin as a 
ligand for TfR-mediated endocytosis has become a focus 
of research. The natural receptor TfR has been used by 
Roche; therapeutic antibodies are attached to TfRs in a 
modifi ed pattern, which they call a “Brain Shuttle Module”. 
Monovalent binding to the TfR instead of bivalent binding, 
which causes lysosome sorting, can lead to a reduction 
of amyloid. This is a process of “receptor-mediated 
transcytosis”.

  Nanoparticles[29]

Nanoparticles make up solid colloids composed of 
polymers or lipid particles of 10–1000 nm (usually 50–300 
nm). A drug can be embedded within a particle’s substrate 
or attached to its surface[30]. Drugs are transported in 
a controlled time period to a targeted location in vivo. 
During this process, certain principles should be followed: 
nanoparticles used as drug carriers should be non-toxic, 
biodegradable, and biocompatible; have a diameter <100 
nm and no aggregation reaction in blood, as well as an 
effi cient production process[31].

Poly-nanoparticles such as PBCA-NPs[32-35] (butylcy-
anoacrylate), PEG[36-40] (polyethylene glycol), liposomes[41-43], 
P-gp (P-glycoprotein), and even superparamagnetic iron 
oxide nanoparticles[37] have been used for drug delivery.

To investigate the mechanisms behind nanoparticles, 
it must be recognized that materials on the nanoscale 
take on new biological and physical characteristics. For 
example, there may be a ubiquitous toxic effect on BMECs. 
A surfactant effect due to the solubilization of lipids in 
the endothelial cell membrane may lead to membrane 
fl uidization and therefore enhanced drug permeability of the 
BBB.

Opening TJs between BMECs can allow drugs to pass 
through the BBB alone or with nanoparticles. Another option 
is receptor-mediated endocytosis followed by transcytosis 
into the CNS or drug release in endothelial cells[31].

Adjustment of Tight Junctions[44] between Endothelial 
Cells of the BBB
There are three means of barrier disruption (Table 1): 
osmotic, pharmacological, and mechanical (focused 
ultrasound (FUS) with microbubbles).

Many drugs are slow to exert an effect, as has been 
shown in in vitro studies[51]. This is due to the low drug 
concentration caused by the BBB. The most direct way to 
increase drug permeability of the BBB is to open the TJs 
between endothelial cells.    FUS can temporarily open the 
BBB and its efficiency is optimized when combined with 
microbubbles. FUS-induced BBB disruption occurs with 
sonication most of the time[52]. Drug delivery by this method 
has been verifi ed by extensive research[53-57].

The mechanisms by which ultrasound opens the 
BBB rely on various physical characteristics and are 
closely associated with biological processes. Electron 
microscopy has confi rmed that ultrasound causes enlarged 
biomembrane lacunae with no evident tissue damage 
both in vivo and in vitro. It has also been confirmed that 
after ultrasound irradiation, the capillary permeability 
increases, including endocytosis, opening of TJs, and free 
transportation through the endothelial lacunae[58].

FUS is often used in oncotherapy, but it has not 
reached the same level of maturity in the field of BBB-
opening. FUS is noninvasive and precise, causes only local 
damage, is time-efficient, and is secure and repeatable 
in operation. A high dose of ultrasound has mild direct 
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cytotoxic effects. Injuries mostly occur in blood vessels 
and epithelial cells resulting in a targeted zone of oxygen 
deficiency[59]. Research is focused on adjusting the 
parameters of FUS to make it effective in drug delivery[60].
Tunneling Nanotubes
The tunneling nanotube (TNT)[61-65] is a new general 
communication method between mammal cells. TNTs are 
somewhat similar to the protoplasmic connections in plants, 
but they differ in structure and function. TNTs have already 
been used to transport particles outside or inside the 
BBB[66]. In particular, mitochondria are the most common 
particles transported from one cell to another through TNT 
(Fig. 2)[67-71].

Interest ingly, researchers at UCLA's Jonsson 
Comprehensive Cancer Center found that RNA can 
be transported into mitochondria, but little is known 
about the mechanism. They found that polynucleotide 
phosphorylase   (PNPASE) protein[72, 73] plays an important 
role in transporting RNA into mitochondria. When the 
expression of   PNPASE is reduced, the amount of RNA 
entering mitochondria declines; PNPASE affects the RNA-
encoding process of the mitochondrial genome and the 
synthesis of proteins necessary to sustain electron transfer. 
When PNPASE expression is reduced, mitochondrial 

Table 1. Details of methods of barrier disruption

Osmotic Pharmacological Mechanical

Device / / Focused ultrasound

 Appearance 1970s[45] 1980s[46] 1940s

for noninvasive ablation in brain[47]        

Reagent                                                    Hypertonic solution of 25% mannitol Bradykinin[48]

RMP-7[49]

Nano-microbubbles

Principal Shrink endothelial cells and disrupt tight 

junctions between them 

Bind to receptors, temporarily 

increase Ca2+ infl ow, activate

nitrogen oxidase, cytoskeletal 

contraction 

Physical effects of ultrasound

Advantages Effective in experimental and clinical 

applications    

Used with antineoplastic drugs to 

amplify drug effi ciency 

Noninvasive; volume of drug, extent and 

degree of barrier disruption can be pre-

established by parameter setting[50]; drug-

loaded microbubbles for better targeting.

Disadvantages Risk of high-speed delivery  into arterial 

circulation of brain

Mainly for brain-tumor barrier Requires more trials on parameter setting.

Fig. 2. Diagram of formation of tunneling nanotube between two 
mammal cells. Red dots: mitochondria.
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RNA accumulates, unprocessed protein translation is 
suppressed, and energy generation is hampered, leading 
to the arrest or inhibition of cell growth. According to the 
research, PNPASE mediates the transport of cytoplasmic 
RNA for energy production by mitochondria. However, no 
experiment using current detection methods has been 
able to confi rm this theory. If we could combine TNTs with 
PNPASE-dependent RNA, import them into mitochondria, 
and transport mitochondria into BMECs[74] transcending 
the TJs between them, a direct route to brain would be 
available.

Conclusion

The BBB impedes the entry of many drugs into the CNS. 
Although these drugs are somewhat effective, they have 
not been used in clinical treatments due to the low solubility, 
chemical instability, low bioavailability, and harmful side-
effects. These limitations restrict their clinical applications, 
leaving many CNS diseases poorly treated. Over the past 
20 years, many experiments have been conducted to 
solve these problems. One main goal is to discover a way 
to deliver drugs across the BBB safely, effectively, and 
noninvasively. 

Defects still exist in every drug-delivery strategy. For 
example, in nasal delivery, drug molecules can only stay in 
the nasal cavity for 15–20 min due to ciliary clearance, and 
are often not fully absorbed before clearance. In addition, 
nasal delivery may increase the circulating concentration 
through absorption by the respiratory or olfactory mucosa, 
causing decreased efficiency in brain targeting. Although 
the experiments described above are still in the initial 
stages and the data need to be verified, they inspire 
various possibilities for breakthroughs in the field of BBB 
permeability.
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