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In the nervous system, neurons contact each other to form neuronal circuits and drive behavior, relying heavily 
on synaptic connections. The proper development and growth of synapses allows functional transmission of 
electrical information between neurons or between neurons and muscle fi bers. Defects in synapse-formation 
or development lead to many diseases. Autophagy, a major determinant of protein turnover, is an essential 
process that takes place in developing synapses. During the induction of autophagy, proteins and cytoplasmic 
components are encapsulated in autophagosomes, which fuse with lysosomes to form autolysosomes. The 
cargoes are subsequently degraded and recycled. However, aberrant autophagic activity may lead to synaptic 
dysfunction, which is a common pathological characteristic in several disorders. Here, we review the current 
understanding of autophagy in regulating synaptic development and function. In addition, autophagy-related 
synaptic dysfunction in human diseases is also summarized.
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·Review·

Introduction

As the predominant form of autophagy, macroautophagy 
(hereafter “autophagy” for short) is an essential self-defense 
mechanism for the maintenance of cellular homeostasis. 
It operates by the sequestration of cytoplasmic materials 
and proteins into a double-membrane autophagosome, 
which fuses with a lysosome or late endosome whereby 
encapsulated materials are degraded. Under pathological 
conditions, autophagy functions as a critical quality-control 
system; damaged intracellular organelles, misfolded proteins, 
or protein aggregates are removed by autophagic clearance.

Maday and Holzbaur were the first to uncover the 
biogenesis of autophagosomes in neurons[1]. Under 
physiological conditions, autophagosomes are generated 
in a compartmentalized pattern, as most are synthesized in 
the axonal terminals[1]. Although both anterograde-directed 
motor kinesin and retrograde-directed motor dynein are 
tightly associated with axonal autophagosomes[2, 3], binding 
of the scaffolding protein JIP1 to the autophagosome 

adaptor LC3 ensures the robust retrograde transport of 
newly-formed autophagosomes along microtubules in 
axons[4]. Emerging lines of evidence suggest that autophagy 
regulates the development and function of axons, dendrites, 
and synapses. Besides, insuffi cient or excessive neuronal 
autophagy contributes to pathological changes in these 
polarized structures. The regulatory role of autophagy in 
axonal and dendritic degeneration was discussed in our 
previous review[5]. 

Synapses are dynamically organized elements[6]; the 
wiring and rewiring of neuronal circuits largely depend on 
orchestrated changes in the strengths of synaptic contacts 
in response to developmental and environmental cues. 
The synapse is the point of contact between the neurons, 
and plays a crucial role in the transmission of neuronal 
information. The integrity of synaptic structure and function 
is pivotal to ensuring that neurons acquire, transfer, 
process, and store information smoothly and systematically. 
Because of the high energy demand and protein turnover 
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ratio in the region of the synapse, the timely clearance of 
synaptic contents appears to be crucial for maintaining 
synaptic function[7]. Several lines of evidence point to the 
involvement of autophagy in synaptogenesis, synaptic 
elimination, and synaptic transmission. Besides, autophagy-
related synaptic dysfunction has been implicated in 
neurodevelopmental disorders and neurodegenerative 
disorders. In this article, we review the recent experimental 
findings on how autophagy modulates the development, 
function, and pathology of the synapse.

Autophagy in Synaptic Development

Synapses are highly dynamic components of neurons, 
and persistent turnover of synapses occurs during 
development and in the adult brain. During development, 
the synaptogenesis and synaptic elimination are under 
delicate balance to maintain the normal functions of 
neuronal circuits[8-10]. Synaptic gain and elimination, 
proceeding by synaptic turnover, are key rearrangement 
events in learning, memory, and cognition[11]. Since the 
autophagic pathway plays a fundamental role in regulating 
protein turnover, we summarize the recent progress in 
understanding the regulatory effects of autophagy on 
synaptogenesis and synaptic elimination.
Autophagy in Synaptogenesis
Each individual Drosophila neuromuscular junction (NMJ) 
contains hundreds of synapses and therefore is a well-
established model system for studying synaptogenesis. 
Synaptogenesis is a multistep process, and a variety of 
molecules and signaling pathways have been identified 
to mediate early synaptogenesis[12]. Autophagy and the 
ubiquitin-proteasome system are major pathways for 
protein degradation in cells. Accumulating evidence has 
indicated the importance of protein degradation via the 
ubiquitin-proteasome system, which is mainly responsible 
for the turnover of short-lived cytosolic proteins, in 
regulating synaptic growth[13-16]. Highwire (Hiw), an E3 
ubiquitin ligase that mediates key steps in the protein 
ubiquitination process, negatively governs synaptic growth 
at the Drosophila NMJ[17, 18]. It has been suggested that Hiw 
mediates presynaptic bone morphogenetic protein signaling 
through ubiquitination mechanisms and thereby controls 
the growth of neuromuscular synapses[19]. Recent studies 
have emphasized the involvement of autophagy, which is 

responsible for the degradation of long-lived proteins and 
damaged organelles, in synaptic development. Increased 
levels of the synaptic protein synaptotagmin 1 have been 
found along with upregulated autophagy proteins (Atg9a 
and LC3-II) during the differentiation of mouse neural 
stem cells[20]. Under transmission electron microscopy, 
autophagosomes are distributed in the synaptic terminals of 
cultured hippocampal neurons[21], indicating that autophagy 
is required during synaptogenesis.

In 2009, Shen and Ganetzky reported that autophagy 
plays a positive role in promoting the growth of the larval 
D. melanogaster NMJ[22]. Impaired autophagy significantly 
reduces the size of NMJ synapses and the number of 
boutons in larvae, whereas overexpression of the autophagy-
associated gene atg1 induces NMJ overgrowth by elevating 
autophagic activity[22]. In accordance with these results, 
Batlevi et al. also reported a decreased number of synaptic 
boutons in dynein light chain 1 (ddlc1) mutant Drosophila 
that exhibited attenuated autophagic activity and reduced 
protein clearance[23].

Although the molecular mechanism underlying 
autophagy-regulated synaptic growth is not entirely clear, it 
has been suggested that autophagy regulates NMJ growth 
by inducing the degradation of Hiw[22]. D. melanogaster 
Rae1, an Hiw cofactor, binds to Hiw and prevents its 
autophagy-regulated downregulation[24]. In addition, the 
mitogen-activated protein kinase signaling pathway also 
participates in autophagy-mediated synaptogenesis. The 
downstream signaling cascades of this pathway, including 
extracellular signal-regulated kinase (ERK), c-Jun-N-terminal 
kinase (JNK), and p38 mitogen activated kinase, are well-
characterized mediators of synaptic development[25]. Wairkar 
et al. revealed that Unc-51, the Caenorhabditis elegans Atg1 
ortholog, promotes synaptic formation and development by 
downregulating ERK signaling[26]. JNK and its transcriptional 
effector AP-1 can be activated in response to oxidative stress. 
The activation of JNK/AP-1 regulates synaptic development 
under oxidative stress by activating autophagy[25, 27, 28].
Autophagy in Synaptic Elimination
It is worthy of note that the phenomenon of increased 
synapse number can result from enhanced synaptic 
formation or decreased synaptic elimination. Synaptic 
elimination, also known as synaptic pruning, is the 
process of removing redundant or inappropriate synaptic 
connections. Synaptic elimination helps to fi ne-tune precise 
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neuronal connectivity and is as important as synaptogenesis 
during brain development[29].

The spine is a specialized postsynaptic protrusion on 
dendrites. The time course of spine development in primary 
cultured hippocampal neurons is similar to that of dendritic 
spines in mouse brain[30, 31]. In cultured neurons, the number 
of spines increases during 6–10 days in vitro (DIV), peaks 
at 14–21 DIV, and decreases after 21–28 DIV[32]. Tang 
et al. found that silencing the key autophagy gene atg7 
increases the spine density at 19–20 DIV[32]. Interestingly, 
unlike control cells in which the rates of synapse formation 
and elimination are approximately equivalent, hippocampal 
neurons deficient in atg7 exhibit normal spine formation 
but greatly inhibited elimination, indicating that autophagy 
enables synaptic elimination in cultured hippocampal 
neurons during the “mature” developmental stage[32, 33]. On 

the other hand, defi cits in autophagy leading to insuffi cient 
synaptic elimination are closely associated with several 
neurodevelopmental diseases that are discussed in detail 
below. As autophagy is required for development of the 
Drosophila NMJ, the normal spine formation in atg7-defi cient 
cultured neurons might be due to species differences or the 
different conditions between in vivo and in vitro studies.

Autophagy in Synaptic Function

In neurons, the majority of autophagosomes are locally 
synthesized in the distal terminals of axons[3] (Fig. 1A). After 
generation, autophagosomes are transported towards the 
soma and the engulfed cytoplasmic materials are delivered 
to lysosomes for degradation[4, 5]. Although the molecular 
mechanism involved in the biosynthesis of neuronal 

Fig. 1. Regulatory role of autophagy in synaptic terminals. (A) Cytoplasmic contents, including misfolded proteins and organelles, are 
engulfed into double-membrane autophagosomes. Most of the autophagosomes are locally synthesized in axons and are then 
transported along microtubules towards the cell body. (B) In the presynaptic terminals of dopaminergic neurons, autophagy 
mediates synaptic vesicle degradation and suppresses DA release. mTOR negatively regulates autophagic activation. (C) In 
postsynaptic terminals, autophagy contributes to the degradation of postsynaptic receptors, such as GABAARs and AMPARs. 
Whether or not autophagy governs AChR degradation is unclear. AChR, acetylcholine receptor; AMPAR, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid-type glutamate receptor; DA, dopamine; GABAAR, gamma-aminobutyric acid-A receptor; mTOR, 
mammalian target of rapamycin.
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autophagosomes is not entirely understood, accumulating 
evidence indicates that the Rab family and related small 
GTPases are required for the formation and maturation 
of autophagosomes[34]. A recent study further showed that 
the GTPase Rab26 directs synaptic vesicles towards pre-
autophagosomal structures[35], implying that autophagy 
participates in synaptic transmission. Synaptic transmission 
relies on neurotransmitters and their receptors. In this 
process, neurotransmitters are initially released from 
the presynaptic terminals, and subsequently bind to 

and activate their receptors located on the postsynaptic 
terminals, triggering a series of biochemical reactions.

A growing body of evidence has revealed that 
autophagy is capable of regulating synaptic function in 
presynaptic and postsynaptic terminals (Fig. 1B, C). Both 
basal and induced autophagy participate in the modulation 
of synaptic transmission and plastic remodeling. Autophagy-
regulated synaptic function in GABAergic, dopaminergic, 
glutamatergic, and cholinergic neurotransmitter systems 
has been described in detail (Table 1).

Table 1. Autophagy-regulated synaptic function in GABAergic, dopaminergic, glutamatergic, and cholinergic neurotransmitter 
systems

Neurotransmitter system Species Tissues/Cells Description Reference

GABAergic  C. elegans Non-innervated  GABAA receptors target to  [49]
  muscle cells autophagosomes for degradation

Dopaminergic Mus musculus DA neurons from DAT  Autophagy activation depresses   [40]
  Cre mice evoked DA secretion in dopaminergic 

   neurons

 M. musculus METH-treated ventral  Perturbed DA release may in turn  [45]
  midbrain DA neurons trigger autophagy

Glutamatergic Rattus norvegicus Primary cultured hippocampal  NMDAR-dependent autophagy   [52]
  neurons exposed to KCl contributes to AMPAR degradation

Cholinergic M. musculus Tibialis anterior muscle Autophagy regulates the basal  [53]
   and atrophy-induced turnover of CHRN

 C. elegans Non-innervated muscle cells AChRs do not traffi c to autophagosomes [49]

AChRs, acetylcholine receptors; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor; DA, dopamine; CHRN, 

muscle-type cholinergic receptor, nicotinic/nicotinic AChR; DAT, dopamine transporter; KCl, potassium chloride; METH, methamphetamine; NMDAR, 

glutamatergic N-methyl-D-aspartate receptor.

Autophagy in Presynaptic Terminals
Mammalian target of rapamycin (mTOR) is a serine/threonine 
kinase that acts as a key cell growth mediator via integrating 
the inputs from multiple upstream signals[36, 37]. mTOR 
blocks the activation of autophagy at an initial step during 
autophagosome formation[38]. Notably, mTOR regulates 
local RNA translation at the synapse and thus appears to be 
important for the synthesis of synaptic proteins[39]. Emerging 
lines of evidence highlight the crucial role of the mTOR 
signal in regulating synaptic transmission[40, 41] and synaptic 
plasticity[42]. Inhibition of the mTOR signaling pathway 

by rapamycin, which upregulates autophagic activity in 
mammalian cells, reduces the numbers of synaptic vesicle 
and depresses the evoked dopamine (DA) secretion from 
dopaminergic neurons[40] (Fig. 1B). Mice deficient in DA 
neuron-specifi c autophagy (atg7 DAT Cre) exhibit enhanced 
DA release in response to stimulation and an increased rate 
of synaptic recovery[40]. Based on these fi ndings, it has been 
speculated that autophagy acts as a brake on presynaptic 
activity by regulating the kinetics of DA release[43]. The 
perturbed neurotransmitter release may in turn trigger 
autophagy induction. For instance, dopaminergic terminals 
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are particularly vulnerable to methamphetamine (METH), a 
widely-abused psychostimulant[44]. In ventral midbrain DA 
neurons, METH promotes DA synthesis and subsequently 
elevates the cytosolic DA level[45]. The excessive DA 
metabolites may lead to the generation of damaged lipids 
and proteins, thereby inducing autophagic degradation[45]. 
Autophagy in Postsynaptic Terminals
In postsynaptic terminals, autophagy contributes to the 
degradation of special types of receptors. γ-aminobutyric 
acid (GABA) is the principal inhibitory neurotransmitter 
in the central nervous system (CNS). GABAA receptors 
(GABAARs), the major postsynaptic components of 
GABAergic synapses, mediate fast synaptic inhibition in the 
brain[46]. These receptors, composed of different subunits, 
are distributed at both synaptic and extra-synaptic sites, 
where they play crucial roles in governing phasic and tonic 
inhibition, respectively[47, 48]. C. elegans is an ideal animal 
model for investigating neurotransmitter receptors because 
it can be genetically manipulated. In 2006, Rowland et al. 
for the fi rst time reported that the cell-surface GABAARs, but 
not acetylcholine receptors, targeted to autophagosomes 
for degradation[49] (Fig. 1C). In contrast to the simple and 
uniform distribution of GABAARs in C. elegans[50], the 
structure of GABAARs is rather complex in mammalian 
cells[51], and there is still no evidence that autophagy is 
required for the turnover of GABAARs in mammalian cells.

In addition to GABARs, glutamatergic N-methyl-
D-aspartate receptor (NMDAR)-dependent autophagy 
contributes to the degradation of α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid-type glutamate 
receptors (AMPARs) in cultured rat hippocampal neurons 
upon stimulation (Fig. 1C), suggesting that autophagy 
participates in NMDAR-dependent synaptic remodeling[52]. 

The regulatory effect of autophagy on cholinergic 
neurons has not yet been fully clarifi ed (Fig. 1C). Rowland 
et al. showed that acetylcholine receptors do not traffi c to 
autophagosomes in the non-innervated muscle cells of C. 
elegans[49]. In contrast, a recent report demonstrated that 
in mouse tibialis anterior muscles, autophagy contributes 
to the basal and atrophy-induced turnover of muscle-
type cholinergic receptors, nicotinic/nicotinic acetylcholine 
receptors in a tripartite motif containing 63 (TRIM63)-
dependent manner[53]. Such a discrepancy might be due to 
the different species used in experiments. Nevertheless, 
autophagy seems to act as a universal regulator for 

modulating receptor turnover in postsynaptic terminals, 
though the substrate-specificity of autophagosomes still 
needs to be well defi ned.
Autophagy and Synaptic Regulators
Despite the uncertainty of an association between synaptic 
regulators and autophagy, defects in certain synaptic 
proteins result in the failure of either autophagic induction 
or autophagic clearance. For example, loss of neuron-
specific synaptic v-SNARE (soluble NSF attachment 
protein receptor) n-syb (neuronal Synaptobrevin) leads 
to increased autophagic activity in adult D. melanogaster 
photoreceptor neurons[54]. Such enhancement of autophagy 
is proposed to be a consequence of primary vesicle 
traffi cking defects[54]. Snapin, initially identifi ed as a neuronal 
SNARE-binding protein, is a crucial modulator of vesicle 
release and presynaptic homeostatic plasticity[55, 56]. Deleting 
snapin promotes the accumulation of autolysosomes 
in cortical neurons by impairing efficient autophagic 
turnover[57]. Therefore, synaptic regulators in turn may affect 
the autophagy-lysosomal degradative system.

Involvement of Autophagy in Synaptic Pathology

Functional autophagy participates in a variety of events 
in synapses, including dendritic spine elimination (Fig. 
2A), local protein clearance and turnover (Fig. 2B), and 
synaptic growth. Morphological and functional impairment 
of synapse is a common theme in the pathogenesis of 
many neurological diseases. However, the potential impact 
of autophagy on synaptic pathology has not yet been 
explored in all neurological diseases. Here, we discuss 
the recent evidence supporting a role of autophagy in 
mediating synaptic pathology in human diseases, including 
neurodevelopmental disorders (e.g. autism spectrum 
disorders [ASDs]) and neurodegenerative disorders (e.g. 
Alzheimer's disease [AD][58, 59] and Parkinson's disease 
[PD][60, 61]). Moreover, the involvement of autophagy has 
also been noted in synaptic dysfunction upon aging and 
the burden of oxidative stress (OS), a condition involved in 
several neurological diseases.
Neurodevelopmental Disorders
Appropriate elimination of synapses is a crucial step for 
neuronal network refinement during brain development, 
while insufficient or abnormal synaptic elimination is 
linked to many neurodevelopmental disorders. ASD 
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is characterized by deficits in social interaction and 
communication, restricted interests, and repetit ive 
behaviors, and the aberrant development and function of 
synapses is known to be involved in its pathogenesis[62]. 
Compared to age-matched control cases, increased 
dendritic spine densities occur in the frontal, temporal, and 
parietal lobe regions of ASD brains[63], and the greater spine 

densities are correlated with reduced cognitive function 
in individuals with ASD[63]. In addition, the increased 
dendritic spine density is predominantly caused by reduced 
developmental spine elimination. Most importantly, such 
spine pruning deficits result from hyperactivation of the 
mTOR signaling pathway and impaired autophagy[32]. 
Although the molecular mechanism by which autophagy 

Fig. 2. Autophagy-related synaptic pathology in neurological diseases. Functional autophagy participates in dendritic spine elimination 
(A) and local protein clearance in the synapse (B). Impaired autophagy leads to spine elimination defi cits in neurodevelopmental 
disorders, such as ASD (C). In addition, insuffi cient protein clearance caused by abnormal autophagy leads to the deposition 
of aberrant or misfolded protein aggregates and autophagosomes in synapses, which is a pathological feature of several 
neurodegenerative diseases such as AD and PD (D). AD, Alzheimer’s disease; ASD, autism spectrum disorder; PD, Parkinson’s 
disease.
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contributes to synaptic regulation has not yet been fully 
clarified, a recent report identified a key gene involved in 
this process. Ambra1 is a prominent upstream regulator 
of Beclin 1 (a principal mediator of autophagosome 
formation). Deficiency in Ambra1 results in autism-like 
phenotypes in female mice[64], implying that deregulation of 
the autophagic pathway causes the pathology of autism. 
Based on this evidence, it is possible that dysfunctional 
autophagy tends to contribute to synaptic pathology and 
leads to ASD phenotypes (Fig. 2C), while activation of 
autophagy may normalize the dendritic spine elimination 
and correct the synaptic pathology in ASD.
Neurodegenerative Diseases
In neurodegenerative diseases, synaptic loss and 
dysfunction commonly occurs before that in the soma. 
Besides, the formation and accumulation of aberrant 
or misfolded protein aggregates, owing to insufficient 
protein clearance by autophagy or other intracellular 
degradative pathways, is another pathological feature of 
neurodegenerative disorders[65]. There is no doubt that 
dysfunctional protein turnover in synapses is associated with 
the pathological protein accumulation. Indeed, excessive 
protein aggregates as well as autophagic vacuoles have 
been noted to accumulate locally in synapses.

Synaptic dysfunction is highly correlated with the 
cognition and memory decline in age-related neurobiological 
changes such as AD[66, 67]. In young AD mice (4–6-month-
old PS1/APP mice), increased accumulation of autophagic 
vacuoles is correlated with aberrant presynaptic terminals[68]. 
In accord with this fi nding, senescence-accelerated prone 8 
(SAMP8) mice, another AD model, exhibit elevated numbers 
of LC-3 positive cells in the hippocampus as well as 
prominent synaptic loss[69]. Generally, increased formation of 
autophagic vacuoles results either from induced autophagic 
activity or from autophagic fl ux defects. In primary cultured 
neurons with AD-like injury and in AD animal models, 
autophagy has been demonstrated to act as a protective 
mechanism, as the stimulation of autophagy or the recovery 
of lysosomal proteolysis is able to prevent AD-like neuritic 
degeneration, possibly by promoting the maturation of 
autophagosomes[5, 70]. In view of this point, we speculate 
that the accumulation of autophagic vacuoles, most likely 
caused by defective degradation of synaptic proteins (Fig. 
2D), matches the synaptic dysfunction in AD and contributes 

to the cognitive and memory deficits in patients. This 
hypothesis is supported by a recent fi nding that oleuropein 
aglycone protects against pyroglutamylated-3 amyloid 
β peptide toxicity and synaptic dysfunction by activating 
neuronal autophagic machinery as determined by elevated 
Beclin 1 and LC3 immunoreactivity along with enhanced 
degradation of autophagy substrates[71]. 

PD is characterized by the accumulation of the 
aggregation-prone protein α-synuclein, which, under 
physiological conditions, functions in modulation of the 
presynaptic neurotransmitter vesicle pools[72, 73]. Wild-type 
α-synuclein is normally degraded by chaperone-mediated 
autophagy, another essential type of autophagy in which 
a pool of cytosolic proteins are targeted to lysosomes 
by chaperones for degradation[74, 75]. Macroautophagy 
is thought to be a compensatory mechanism for the 
failure of chaperone-mediated autophagy, and defective 
autophagy enhances the deposition of aberrant α-synuclein 
aggregation in Lewy bodies under the pathological 
conditions of PD[76]. The synapse is assumed to be the 
major target of α-synuclein, as aberrant α-synuclein 
deposition is found predominantly in presynaptic terminals 
and leads to synaptic pathology[77] (Fig. 2D). Impaired 
autophagic clearance results in the deposition of α-synuclein 
in presynaptic terminals of Atg7-deleted mice[78]. 

In addition to α-synuclein, a wealth of evidence 
highlights the importance of the mutations of another two 
PD gene products, leucine-rich repeat kinase-2 (LRRK2) 
and parkin, in synaptic pathology of PD[79, 80]. These PD 
gene products are involved in the maintenance of synaptic 
morphology and mediate synaptic protein trafficking. A 
detailed discussion of synaptic autophagy, LRRK2, and 
parkin in PD models can be found in another review[81]. 
Although the role of autophagy in the synaptic pathology 
of PD remains largely unexplored, it is known that parkin 
recruits damaged mitochondria for degradation through 
autophagic proteolysis. It is possible that impaired parkin 
may cause aberrant mitochondrial turnover regulated by 
selective autophagy (termed mitophagy), which contributes 
to abnormal synaptic homeostasis in PD[82].

Aging
The aging-associated reduction of synaptic number and 
function has been noted in the pathological changes in 
several neurodegenerative disorders; these changes 
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precede the memory impairment and cognitive decline in 
patients[83]. In addition, autophagic activity declines during 
aging, while autophagy augmented by genetic manipulation 
or by pharmacological interference (e.g. administration of 
rapamycin or spermidine) extends the lifespan of model 
organisms[84]. Studies of NMJ aging in Drosophila have 
revealed an abundant accumulation of early endosomes, 
multivesicular bodies, and autophagosomes in the synaptic 
boutons of old flies[85]. The enhanced autophagy might 
be closely associated with the misregulated recycling of 
synaptic vesicles in the motor terminals of old fl ies. Defi cient 
autophagy in muscle leads to deterioration of neuromuscular 
synaptic function and precocious aging in mice[86]. Based 
on this evidence, it appears that age-related synaptic 
impairments are exacerbated by defi cits in autophagy.
Oxidative Stress Burden
The cause of neuronal death in neurodegenerative 
diseases is known to be multifactorial, the OS burden 
caused by excessive generation of ROS being one of the 
most convincing theories of pathogenesis[87]. ROS not only 
leads to apoptotic cell death, but also regulates synaptic 
growth and function[28, 88]. Autophagy is the main cellular 
response to OS burden. In a Drosophila model of lysosomal 
storage disease, spinster (spin), OS induces synaptic 
overgrowth[28]. Autophagy-related genes, such as atg1 
and atg18, are required for OS burden-triggered synaptic 
overgrowth in this model, and disturbance of autophagy 
is able to reverse synaptic overgrowth[28]. Therefore, it is 
hypothesized that upon OS burden, the overproduction 
of ROS may activate autophagy which plays a key role in 
mediating synaptic growth, function, and senescence[25]. 
Nevertheless, there is a lack of confirmatory data on the 
involvement of autophagy in regulating OS-induced synaptic 
pathology in mammalian cells. Owing to the importance of 
OS burden in a wide range of neurodegenerative disorders, 
a better understanding of the precise role of OS-activated 
autophagy in synaptic regulation may provide fundamental 
insights into pathogenesis and may offer novel targets for 
therapeutic interference.

In addition to the human disorders mentioned above, 
the impact of autophagy on synaptic pathology has also 
been addressed in other laboratory models of neurological 
diseases including ischemia[89],  electroconvulsive 

seizures[90], and neurotoxicity[91].

Conclusions

Although in the past few years a wealth of evidence has 
been reported on this topic, the most crucial questions 
about how autophagy regulates synaptic development, 
function, and pathology have not yet been fully answered. 
Increased autophagy induction is found in synaptic 
terminals during pathogenesis. However, whether the 
excessive autophagy machinery is beneficial, harmful, 
or simply reflects an epiphenomenon, is yet to be finally 
determined. Hopefully, a clearer understanding of 
autophagy function in the physiological and pathological 
responses of synapses may open up new avenues for the 
development of therapeutic approaches targeting synaptic 

pathology in human disorders.
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