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ABSTRACT  

The aim of this prospective blinded study was to 
evaluate an automated algorithm for spike-and-
wave discharge (SWD) detection applied to EEGs 
from genetic absence epilepsy rats from Strasbourg 
(GAERS). Five GAERS underwent four sessions 
of 20-min EEG recording. Each EEG was manually 
analyzed for SWDs longer than one second by two 
investigators and automatically using an algorithm 
developed in MATLAB®. The sensitivity, specificity, 
positive predictive value (PPV), and negative 
predictive value (NPV) were calculated for the manual 
(reference) versus the automatic (test) methods. The 
results showed that the algorithm had specificity, 
sensitivity, PPV and NPV >94%, comparable to 
published methods that are based on analyzing EEG 
changes in the frequency domain. This provides a 
good alternative as a method designed to mimic 
human manual marking in the time domain.
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INTRODUCTION

Epilepsy is a chronic neurological condition characterized 
by recurrent seizures. Its incidence in most developed 
countries is between 50 and 100 cases per 100 000 per 

year[1, 2]. As treatment with conventional anti-epileptic 
drugs provides adequate seizure control in only 2/3 of 
patients, more translational research in this fi eld is urgently 
needed[1, 2]. The efficacy assessment of novel treatments 
in animal models typically relies on the evaluation of many 
hours of electroencephalogram (EEG) recordings. Manual 
evaluation of these recordings is time-consuming and very 
subjective, while the development of automatic seizure-
detection methods can make these analyses quicker and 
more reproducible.

Genetic absence epilepsy rats from Strasbourg 
(GAERS) is a strain in which 100% of the animals exhibit 
recurrent generalized non-convulsive seizures[3]; and it has 
become the gold standard for studying the mechanisms 
of absence epilepsy. This model is characterized by the 
development of well-defined and consistent spike-and-
wave discharges (SWDs) even though their duration and 
numbers vary between colonies[3, 4]. Spontaneous SWDs 
(7–11 Hz, 330–1 000 μV, 0.5–75 s) start and end abruptly 
in a normal background EEG[3].

The algorithm to automatically mark the onset 
and termination of SWDs was implemented using 
MATLAB® and Signal Processing ToolboxTM R2010b 
(The MathWorks, Inc., Natick, MA). Many groups have 
published methods that automatically detect seizures, but 
they are predominantly designed for studies in humans[5-9]. 
The morphology of SWDs in GAERS is noticeably more 
consistent than seizures in humans, so we hypothesized 
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that an algorithm based on the defi nition of SWD (referred 
to as the ‘SWD detection algorithm’) would mark the onset 
and termination of SWD accurately.

The aim of the present study was to determine whether 
the SWD detection algorithm can successfully replace the 
manual marking of EEG recording with high accuracy. A 
time-domain-based assessment of algorithm performance 
was used to compare the SWD detection algorithm with 
human markers[10].

MATERIALS AND METHODS

The study was designed as a prospective controlled 
masked experiment. All experiments were approved by St 
Vincent’s Hospital (Melbourne) Animal Ethics Committee 
and conducted in accordance with the Australian Code 
of Practice for the Care and Use of Animals for Scientifi c 
Purposes (2004).

Animals
Six-month-old female GAERS, obtained from the University 
of Melbourne (Parkville, Victoria, Australia), were used in 
experiments on novel techniques for the delivery of anti-
epileptic drugs. The first five animals randomly allocated 
to the control group in that study were also used in the 
present study. These animals underwent surgery for the 
implantation of EEG recording electrodes and their epileptic 
activity was evaluated for 8 weeks. They were housed 
individually under a 12-h light/dark regime with ad libitum 
access to food and water. 

Recording Electrode Implantation
Immediately before surgery, the rats were weighed and 
anaesthetized with an intraperitoneal injection of ketamine 
(75 mg/kg) and xylazine (10 mg/kg). Following the induction 
of anesthesia, each rat was placed in a stereotaxic 
apparatus and given isofl urane (0.5% to 1% in oxygen, 1 L/
min) via a nose-cone, along with subcutaneous carprofen (5 
mg/kg) for pain relief and 0.9% sodium chloride (2 mL) for 
cardiovascular support. Then the EEG recording electrodes 
were implanted as follows: after preparation of the scalp, 
a single incision was made down the midline, the skull 
cleared of tissue, and the exposed bone dried with 3% 
hydrogen peroxide. Four extradural electrodes, consisting 
of small jeweler’s screws, were implanted cranial to the 

interaural line (two on each side of the sagittal suture) and 
one caudal to the interaural line to the right of the sagittal 
suture (Fig. 1A). The electrodes were then connected to an 
adaptor secured with dental cement. The skin was sutured 
leaving only part of the dental cement exposed and each 
animal was placed on a heating pad for recovery. Post-
operative treatment included subcutaneous buprenorphine 
(0.03 mg/kg, twice/day), saline (2 mL, once/day) and 
carprofen (5 mg/kg, once/day) for up to 3 days.

Electroencephalographic Recording
Beginning on day 7 or 8 after surgery, rats were monitored 
for at least 60 min (30 min for recovery from anesthesia/
acclimation and 30 min for EEG recording), on at least 2 
days per week for the following 7 weeks. For the purpose 
of developing the semi-automatic detection algorithm, only 
the first two and the last two recordings were analyzed 
(Fig. 1C) and only the fi rst 20 min of each recording were 
studied. At each monitoring session, rats were briefly 
anesthetized with isofl urane (4% in oxygen, 2 L/min) in an 
induction cage, and shielded cables were used to connect 
the recording electrodes to the EEG acquisition system 
(TDT processors; Tucker-Davis Technologies, Alachua, 
FL) and high-impedance head-stages driven by custom-
designed software. The EEGs were sampled at 3051.76 Hz.

The rats were allowed to fully recover from anesthesia 
before recording. During the recording sessions, their 
behavior was observed and the EEGs were visualized 
using a custom-designed MATLAB® program. If the rats 
were perceived as being asleep and after confi rmation of 
no seizure activity on the EEG, noise stimuli of 94 and 98 
dB were delivered (Fig. 2). At the end of each recording 
session, the rats were briefl y anaesthetized with isofl urane 
(4% in oxygen, 2 L/min) for disconnection from the shielded 
cable.

Evaluation of EEG Recordings

Preparation of Raw Data
The EEG data were transcribed using a graphical interface 
developed in MATLAB®. They were fi rst band-pass fi ltered 
between 3 and 30 Hz using a second-order Butterworth 
fi lter, and then fi ltered in both the forward and the reverse 
directions to avoid introducing a delay in the signal, which 
effectively doubled the fi lter order to fourth order. During the 
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second step, all recorded EEG channels were displayed 
for the observer to select the one with the best signal for 
SWD detection (i.e., largest SWD amplitude relative to 
background EEG amplitude) and without signal dropout (i.e., 
poor physical connection resulting in occasional fl at lines) 
(Fig. 3A). The selected channel was used for manual and 
semi-automated marking.

Manual Analysis of EEG Data
EEG recordings were independently analyzed manually by 
two experienced researchers. While reviewing the recorded 
EEG, the researcher marked the beginning and the end 
of all identifi ed SWDs that were more than one second in 
duration (Fig. 3 B) and an Excel data sheet reporting the 
start and end times of all the SWDs was generated. After 

completing the manual marking, each researcher applied 
the semi-automated SWD detection algorithm to the 
selected channel of EEG recording.

Semi-Automated SWD Detection Algorithm
The semi-automated SWD detection algorithm was 
developed within the same graphical interface as that 
noted above. This algorithm required human intervention 
to select the best EEG channel and to set an amplitude 
threshold for SWD detection. In the latter step, non-
parametric thresholds were generated by evaluating the 
empirical cumulative distribution function of the voltage 
magnitude (from 90% to 100% at 0.5% intervals) and were 
plotted against the fi ltered EEG data, so that the observer 
could select, by visual inspection, a percentile threshold 

Fig. 1. (A) Schematic diagram illustrating the positioning of epidural recording screw electrodes (1-4) and the reference electrode (R). 
(B) Comparisons were made between the manual EEG recording evaluations of the two researchers, and between the manual 
evaluations and the semi-automated SWD detection algorithm. (C) Experimental design: 20-min EEG recording began at day 7 or 8 
after surgery and 2 days per week for the following 7 weeks; for the purpose of developing the semi-automatic detection algorithm 
only the fi rst two and the last two recordings were analyzed.
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that would best differentiate the SWD activity from the 
background EEG (Fig. 3).

Once the threshold was selected, the commands of the 
program were to: (1) construct a binary array corresponding 
to whether the filtered EEG amplitude was above the 
user-set threshold (i.e., 0 for below and 1 for above); (2) 
evaluate the derivative of the binary array to identify spike 
rises and spike falls; (3) iterate through the derivative array, 
data-point by data-point, and alternatively search for SWD 
onsets and terminations; and (4)  when the end of the data 
set was reached, to evaluate the number of SWDs (number 
of SWD onsets) and their durations (time between onset 
and termination) (Fig. 4).

The first sample of the 1-s observation window was 
classifi ed as a SWD onset if it met the following criteria (Fig. 
5): (1) the fi rst data point of the window corresponded to a 
spike rise; (2) the number of spike rises within the window 
was between 5 and 13; and (3) the interspike intervals 
were between 40 and 300 ms. The fi rst data point of the 1-s 
observation window was classifi ed as a SWD termination 

Fig. 2. During a recording session, the EEGs were visualized using a custom-designed MATLAB® program. The visualization of the EEGs 
allowed confi rmation of the status of the rat: active (A), sleeping (B), or seizing (C). If the rats were perceived as being asleep and 
seizure activity on the EEG was confi rmed, a noise stimulus of 94 to 98 dB was applied by knocking on the Plexiglas cage. The 
three examples were recorded at the same scale. Calibration 1 s, 1 mV.

if it met the following criteria (Fig. 5): (1) the first sample 
of the window corresponded to a spike fall; and (2) apart 
from the first sample, all other samples in the window 
were below the threshold amplitude. So, a SWD event had 
to be at least 1 s in duration and two SWD events were 
considered separate if they were >1 s apart.

Data Analysis and Performance Metrics
Comparisons were made between the manual evaluations 
of EEG recordings by the researchers and evaluation by 
the semi-automated SWD detection algorithm. A previously-
published, rigorous method of assessing performance 
was used (Fig. 6), where only the time intersection of an 
automatically detected event with one that was manually 
marked as a positive SWD was considered a true positive 
time window[10]. Likewise, only when the automatic time 
intersection of the absence of an event coincided with a 
manually marked negative SWD was considered a true 
negative time window. When a time window was evaluated 
to be SWD-positive by the detection algorithm, but not 
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by the reviewer, it was considered to be a false-positive. 
When the detection algorithm evaluated a time window 
as SWD-negative, but the reviewer evaluated it as SWD-
positive, it was considered to be a false-negative. Then, 
the performance metrics of sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) 
were calculated using equations 1 to 4. The performance 
metrics were assessed to a precision of 0.1 s.

 (1)

 (2)

   (3)

  (4)

Fig. 3. EEG analysis using a semi-automated SWD detection requiring human intervention to select the best EEG channel/electrode and 
set an amplitude threshold for SWD detection. (A) Example of EEG recording: in this example, channel four was selected by the 
investigator as having the best signal-to-noise ratio, so subsequent analysis was done using this channel. (B) Example of manual 
marking: the EEG was analyzed using a 10-s window and the start and end of the SWD were noted. (C) Example of threshold 
selection: the traces show the EEG of the selected channel (channel 4 in this example) with superimposed automatically-
calculated thresholds. To be selected, the threshold red line had to be just above the baseline EEG signal. In this example a 
threshold of 0.71 mV was selected (middle panel).

Comparisons were also made between the two 
researchers using the same approach (with one being 
considered the detection algorithm and the other as the 
reviewer). In total, three comparisons were made for each 
EEG recording (Fig. 1B).  

Data were analyzed with Microsoft Excel 2010 and 
graphic representations generated with GraphPad Prism 
6. The computer used to run the detection algorithm was 
a desktop PC (twelve Intel® Xenon® CPUs X560 at 3.47 
GHz running Windows 7, 64-bit).

RESULTS

The first recording from one of the rats was missing, so 
only 19 EEG recordings were evaluated, representing a 
total of 6 h and 20 min of recording. The median number 
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Fig. 4. Flowchart of the semi-automated algorithm. 
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Fig. 5. The process of automatic marking. Horizontal red line, the threshold level. The left green arrow indicates the fi rst 1-s observation 
window classifi ed as a SWD onset (yellow crosses represent spike rises going above the threshold level), and the right green 
arrow indicates the fi rst 1-s observation window classifi ed as a SWD termination (yellow cross represents a spike fall).  See text 
for detailed criteria of classifi cation. 

of SWDs over 20 min ranged from 40 to 46 and the mean 
duration of SWDs from 8.9 to 11.4 s for each evaluator and 
method, with extreme values resulting from the two manual 
markings (Table 1). The calculated sensitivity, specificity, 
PPV, and NPV were >91% for all (Table 2).

DISCUSSION

The algorithm was demonstrated to have good sensitivity, 
specificity, PPV, and NPV for detecting SWDs with 
durations ≥1 s. The study was not randomized, as the EEG 
data were always analyzed manually by the investigators 
fi rst and then by automatic detection. This was done so that 
the investigators’ manual analysis would not be biased by 
the automatic detection results.

The characteristics of the SWDs of GAERS used to 
build the algorithm were slightly modifi ed from Maurescaux 
et al. (1992)[3]. Indeed only SWDs of ≥1 s duration were 
detected and the reported SWD frequency range of 7 to 
11 Hz was extended to include SWDs ranging from 5 to 
13 Hz. The larger frequency range provided tolerance as, 
for example, spikes can sometimes be below threshold 
resulting in a lower spike count. 

Twenty-minute recording was used for the analysis 
as this was the duration reported in the original paper 
describing the EEG of GAERS (Marescaux et al., 1992)[3]. 
Comparisons were made between the manual EEG 
recording evaluations by the two researchers to establish 
a baseline range of sensitivity, specificity, PPV and NPV. 
Comparison between the manual and that investigator’s 
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Fig. 6. Performance metrics: SWD negative, EEG not showing spike-and-wave discharges (SWDs) as evaluated by the researcher (human) 
or the algorithm (auto); SWD positive, EEG showing SWDs as evaluated by the researcher (human) and the algorithm (auto); true 
negative, neither human nor auto detected SWDs; false negative, human-detected SWDs whereas auto did not; true positive, both 
human and auto detected SWDs; false positive, human did not detect SWDs whereas auto did.

Table 2. Sensitivity, specifi city, positive predictive value (PPV), and negative predicted value (NPV) 

 Investigator A versus Automatic A Investigator B versus Automatic B Investigator A versus investigator B
 
Sensitivity 0.96 ± 0.02 0.95 ± 0.03 0.91 ± 0.05

Specifi city 0.96 ± 0.03 0.97 ± 0.02 0.98 ± 0.02

PPV  0.94 ± 0.04 0.94 ± 0.05 0.97 ± 0.03

NPV  0.97 ± 0.01 0.97 ± 0.02 0.95 ± 0.03

Automatic A and B represent the semi-automated algorithm run by investigators A and B.  Mean ± SD.

Table 1. Median number and mean duration of spike-and-wave discharges (SWDs)

 Investigator A Automatic A Investigator B Automatic B

Median number of SWDs 40 (30–56) 41 (29–58) 46 (37–63) 42 (29–54)

Mean duration of SWD (s) 11.4 (±2.9) 10.7 (±2.9) 8.9 (±2.8) 10.2 (±2.8)

Automatic A and B represent the semi-automated algorithm run by investigators A and B.  Median (min–max), mean (± SD).
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evaluation using the semi-automated SWD detection 
algorithm resulted in a higher sensitivity when compared to 
baseline (95% to 96% versus 91%) while retaining a high 
specificity (96%–97%). These results are comparable to 
the performance of other high-quality detection algorithms 
for SWDs in rodents[11-13]. In these three publications, the 
analyses were based on transforming the EEG from the 
time domain to the frequency domain to quantify changes. 
The methodology reported by Ovchinnikov et al. 2010, 
only detected the onset of SWDs (evaluating the number 
of leading edges without taking the length of the detector 
event into consideration) and was based on wavelet 
analysis[11]. The methodology reported by Van Hese et al. 
2009 was based on spectral and variant analysis and that of 
Sitnikova et al. 2009 on spectral and wavelet analysis[12, 13]. 
In contrast, the methodology described in the present study 
analyzes the EEG in the time domain, mimicking manual 
marking, while decreasing the subjectivity and allowing 
the results of the EEG analysis to be more reproducible. In 
consequence, it provides a good alternative for researchers. 
Nelson et al. 2011 developed an SWD detection system in 
GAERS based on time-series analysis, gauging changes in 
amplitude and/or frequency[14]. This system only allowed the 
detection of the start of the SWD in order to trigger therapy. 
Subsequent EEG analyses were performed manually.

The median number of SWDs over 20 min and the 
mean duration of one SWD were similar in the different 
evaluations, with the results of the manual recordings 
showing the extreme values. This could indicate that the 
semi-automated algorithm provides more accurate results 
than manual marking. The frequency of SWDs (~2/min) 
was slightly higher than that described in the original paper 
(1.5/min)[3]. This is easily explained by the fact that the 
seizure activity in GAERS is colony- and age-dependent[3].

Although spontaneous SWDs start and end abruptly 
on a normal background EEG and are quite easy to isolate, 
the EEG patterns seen during sleep make it more diffi cult 
to differentiate the beginning and end of an SWD. During 
the present experiments, rats were stimulated when seen 
to be sleeping, to improve seizure detection. 

Although not all of the manual analyses were timed, 
it took the researchers on average 15 min to analyze one 
EEG recording. In comparison, it took the computer 95–
100 s to analyze one EEG recording using the algorithm. 

If we consider that some studies can include >400 EEG 
recordings (3 groups of 6 rats undergoing 3 recordings a 
week for 8 weeks), the use of the algorithm can avoid 88 h 
of laborious work. The computer used in this study was 
certainly more powerful than average, but subsequent 
analysis using a laptop computer resulted in similar 
durations. 

The system requires manual intervention to select 
the best EEG channel/electrode and set an amplitude 
threshold for SWDs. These steps may cause inter-
individual variability in seizure detection; however, the use 
of the present algorithm is still an improvement in inter-
individual variation compared to manual marking. Also, the 
manual intervention is relatively short and allows control of 
the quality of the EEG recording.

Another limitation of the study is the absence of 
an automatic artefact-rejection step. Nonetheless, the 
performance of the algorithm was as expected from such a 
system and the manual channel-selection allowed rejection 
of recordings that included too many artefacts.

The semi-automatic SWD detector algorithm described 
here allowed analysis of the EEG of GAERs with sensitivity, 
specificity, PPV, and NPV >94% compared to manual 
analysis. The use of this algorithm would reduce the time 
necessary to analyze such data and the subjectivity of the 
results. as well as providing a good performance alternative 
for researchers without an engineering background.
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