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Abstract Major depression during pregnancy is a common

psychiatric disorder that arises from a complex and mul-

tifactorial etiology. Psychosocial stress, sex, hormones, and

genetic vulnerability increase the risk for triggering mood

disorders. Microglia and toll-like receptor 4 play a crucial

role in triggering wide and varied stress-induced responses

mediated through activation of the inflammasome; this

leads to the secretion of inflammatory cytokines, increased

serotonin metabolism, and reduction of neurotransmitter

availability along with hypothalamic–pituitary–adrenal

axis hyperactivity. Dysregulation of this intricate neu-

roimmune communication network during pregnancy

modifies the maternal milieu, enhancing the emergence of

depressive symptoms and negative obstetric and neu-

ropsychiatric outcomes. Although several studies have

clearly demonstrated the role of the innate immune system

in major depression, it is still unclear how the placenta, the

brain, and the monoaminergic and neuroendocrine systems

interact during perinatal depression. Thus, in the present

review we describe the cellular and molecular interactions

between these systems in major depression during preg-

nancy, proposing that the same stress-related mechanisms

involved in the activation of the NLRP3 inflammasome in

microglia and peripheral myeloid cells in depressed

patients operate in a similar fashion in the neuroimmune

placenta during perinatal depression. Thus, activation of

Toll-like receptor 2 and 4 signaling and the NLRP3

inflammasome in placental immune cells may promote a

shift of the Th1/Th2 bias towards a predominant Th1/Th17

inflammatory response, associated with increased secretion

of pro-inflammatory cytokines, among other secreted

autocrine and paracrine mediators, which play a crucial

role in triggering and/or exacerbating depressive symptoms

during pregnancy.
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Introduction

Major depression (MD) is one of the most common psychiatric

disorders in the western world and has been predicted to be the

leadingcauseofburdenofdiseaseby2030 (http://www.who.int/

healthinfo/global_burden_disease/GBD_report_2004update_

part4.pdf). MD has a complex and multifactorial etiology that

arises from interactions between genetic, developmental, and

environmental factors, reflecting the heterogeneity of the dis-

order [1]. Such heterogeneity is reflected in the estimates of the

number of MD individuals who receive antidepressant treat-

ment. Only a third of patients receive adequate treatment and

up to half of these relapse despite the increasing number of

antidepressant drugs available [1, 2]. However, psychosocial

stress and systemic disease can affect the onset of depression.

For example, the comorbidity of depression in patients with

diabetes, cancer, or cardiac disease is 17–29%, much higher

than that in the general population (10.3%) [3].
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Depression during pregnancy is an emerging field in

terms of understanding the pathophysiology of the disease

and determining adequate treatment. Women are more than

twice as susceptible to depression as men, and despite the

popular notion that pregnancy protects against depression

[4] perinatal depression is highly prevalent, with point

prevalence estimates commonly exceeding 10% in most

high-income countries [5]. The prevalence of perinatal

depression differs substantially among studies, differing

from 7.4% in the first, 12.8% in the second, and 12.0% in

the third trimester, [6–8] to 20.4% in the entire pregnancy

[6, 8]. Nonetheless, other reports have shown that *9% of

women suffer major or minor depression during each of the

trimesters, while postpartum depression has a prevalence of

13% at 3 months postpartum [9, 10].

Depression in pregnancy is linked to poor maternal self-

care, inadequate nutrition [11, 12], premature labor, and

adverse obstetric outcomes [13]. Epidemiological studies

have revealed that nearly 40% of pregnant Afro-American

women who are underdiagnosed with depression during the

antenatal period [14] exhibit increased depressive symp-

tomology during the postpartum period [14–16]. Antenatal

depression has been associated with poorer birth outcomes,

reduced neonatal neurological development [17], and a

high risk of postpartum depression [18]. Furthermore,

pregnant women experience more stressful events than

non-pregnant women [13, 19] and commonly report tired-

ness or fatigue (87.2–96.5%) [20], symptoms commonly

associated with depression and anxiety [21]. Interestingly,

pregnant women with antenatal depression have a higher

rate of preeclampsia and preterm birth associated with poor

fetal and infant outcomes (motor and mental development)

[22].

It is well known that a healthy immune system is needed

to maintain a successful pregnancy, besides the finely-

regulated immunomodulation to maintain immune balance

(Th2[Th1 response) during gestation [4]. Immunomod-

ulation during pregnancy may determine several of the

neuropsychological components of maternal well-being

(such as stress and fatigue) associated with abnormal

function of the stress-response system (the hypothalamic–

pituitary–adrenal (HPA) axis) that may trigger or exacer-

bate depressive symptoms in women with major depressive

disorder (MDD) [23]. HPA axis hyperactivity in individ-

uals with MDD is largely thought to result from corti-

cotropin-releasing hormone (CRH) hypersecretion [23].

Animals exposed to CRH show behavioral changes that

occur in human depression, such as mood, appetite, sleep,

locomotor activity, and cognition [24]. However, recent

studies have shown an intricate interaction between

inflammation, the innate immune system, Toll-like receptor

(TLR) activity, and the production and secretion of pro-

inflammatory cytokines in MDD [25]. For instance, novel

aspects of the neuroinflammatory process in response to

stressful challenges and depression have recently been

documented where glucocorticoids (GCs) and interkeukin-

1b (IL-1b) and its regulator, ‘‘the Nod-like receptor (NLR)

family, the pyrin domain-containing 3 (NLRP3) inflam-

masome’’ appear to bridge the gap between psychological

stress and depression [25, 26].

Although a role of inflammation and its associated

cytokines in MD was first suggested in the 1980s, evidence

has been accumulating since then, showing a role of the

innate immune system and inflammation in support of the

inflammatory hypothesis of depression. Past and recent

studies have shown an increase of immune markers in

psychiatric patients, suggesting that the immune system is

increasingly associated with various psychosomatic ill-

nesses [25, 26]. Patients with MDD have increased circu-

lating inflammatory cytokines and immune signaling levels

[27, 28], while treatment that reduces or remits depressive

symptomology is correlated with normalization of immune

signaling levels [29]. These data provide strong evidence

implicating the immune system in MDD.

Thus, in order to understand the role of the immune

system in perinatal depression, one needs to focus on both

the placental and maternal immune systems in normal and

pathological conditions. In this context, we describe the

roles of the innate immune system and its pro-inflamma-

tory mediators during pregnancy and perinatal depression,

emphasizing the role of endogenous stressors in activating

TRLs and their signaling pathways, including the NLRP3

inflammasome in the brain, the periphery, and the placental

immune system, which contribute to triggering inflamma-

tory activity in mood-related disorders during pregnancy.

Puberty and Mood Disorders

Puberty is a major life transition from a non-reproductive

juvenile to a reproductively competent adult; great devel-

opmental plasticity occurs during this time window and

adolescence [30–32].

The neuroplasticity of puberty may also contribute to

vulnerability to the development of mental diseases

[32, 33]. The National Comorbidity Survey Replication

study reported that affective disorders such as bipolar

disorder and MDD emerge during adolescence with a peak

age of onset at 14 years [32, 34]. One important predictor

of an individual’s susceptibility to developing neuropsy-

chiatric disorders is sex. For instance, males have a higher

risk of the early onset of neurological disorders, showing

higher rates of autism spectrum disorder, attention deficit

hyperactivity disorder, and psychopathologies of brain

organization such as schizophrenia and Tourette syndrome

[32, 35], while women are more vulnerable and prone to
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develop anxiety, depression, and eating disorders that

emerge during puberty and adolescence [32]. Females are

about twice as likely as males to have experienced an

episode of depression, and this gender gap persists for the

next 35–40 years [30, 32]. Moreover, pubertal status

(Tanner stage III) predicts sex difference better than age

[36, 37] suggesting that ovarian hormones play a role in the

etiology of affective disorders [36].

Recent studies have provided clues about how stressors

experienced in puberty alter steroid hormone-influenced

behaviors in adulthood and how these behavioral changes

are mediated through alterations in the ongoing processes

of brain development [38]. It seems that the organizational

actions of hormones are limited to critical windows of

enhanced brain plasticity occurring during both gestation

and puberty [36, 39, 40]. Prior to and after such a critical

window, hormones may no longer affect brain develop-

ment, suggesting that puberty is an organizational period

mediated by steroid hormones [36, 41].

Both pubertal status and the underlying hormonal milieu

are critical factors in an individual’s susceptibility to the

experiences occurring in adolescence [36]. Indeed, stress

during pubertal development and/or adolescence results in

alterations in physiology and behavior as indicated by

increases in anxiety and depressive disorders [33], risk-

taking novelty-seeking behaviors [42], changes in learning

and cognition [43], and drug and alcohol use and abuse

[44].

Sex and Brain Immune Cells

Microglia are the primary immune cells in the brain; they

constantly scan the microenvironment in the healthy adult

brain, surveying for pathogens, monitoring the status of

local synapses [36, 45–47], and regulating synaptic matu-

ration or elimination via axonal guidance [36, 48]. Synaptic

pruning by microglia is necessary for normal brain devel-

opment in the neonatal period. Neurons and glia born

during puberty are functionally incorporated in neural cir-

cuits and contribute to the regulation of adult behaviors

[36, 49]. Microglia are in an active state during early

postnatal life, and this is correlated with increased levels of

circulatory cytokines. Moreover, environmental factors

such as stressors can increase the rate of colonization and

density of microglia [50], altering both the adult and the

developing brain with effects on behavior. Interestingly,

peri-pubertal female (postnatal day 30) and adult (postnatal

day 60) rats have more activated microglia than males of

the same age in the hippocampus, parietal cortex, and

amygdala, suggesting that females are more sensitive to

immune dysregulation during puberty/adolescence and

early adulthood. Interestingly, primed microglia do not

chronically produce cytokines or other pro-inflammatory

mediators [51].

Chronic activation of microglia and astrocytes (referred

to as neuroinflammation) [36, 52] leads to the exaggerated

expression of pro-inflammatory mediators such as cytoki-

nes and reactive oxygen species that can damage cellular

structures [53]. For instance, increased pro-inflammatory

cytokines have been reported to lead to impaired hip-

pocampal structure and function [1, 54, 55] (Fig. 1).

A growing body of experimental and clinical research

has revealed a pivotal role of neuroinflammation in the

etiology of MD [56], anxiety [57, 58], and post-traumatic

Fig. 1 Microglia and nerve tissue. A Schematic of the arrangement

of interacting neurons, microglia, and astrocytes in the human brain,

highlighting two morphological conformations adopted by microglia

(resting and active states) in response to incoming insults. Microglia

are the primary immune cells of the CNS and, like peripheral

macrophages, they act as the major inflammatory cell type (scav-

engers) that responds to external or internal ‘‘stressors’’ (pathogens,

injuries, and life experiences) by becoming ‘‘activated’’ (a process

that changes cell morphology and function) and enhancing its own

proliferation and migration to the infection or injury site. B Activated

microglia secrete pro-inflammatory cytokines and chemokines

(MCP-1), together with prostaglandins, nitric oxide, and reactive

oxygen species (see Fig. 2C) which regulate and increase the local

immune response. Inflammatory cytokines are triggering factors

involved in the reduced neurogenesis and neuronal atrophy of granule

cells in the dentate gyrus of the hippocampus. This leads to a decrease

in hippocampal volume and impairment of hippocampal-related

functions, as shown in MDD.
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stress disorder [57] in addition to neurodegenerative dis-

eases associated with cognitive dysfunction, such as

Alzheimer’s disease and Parkinson’s disease [36, 53].

Chronic stress activates microglia in adulthood, leading

to increased cytokine levels [59], and similarly, stressors

experienced in childhood or adolescence induce short- and

long-term alterations in immune function [60, 61] with

higher levels of expression of the inflammatory biomarker

C-reactive protein (CRP) [61]. Thus, vulnerability to

developing mood-related disorders during puberty and

adolescence may be due in part to long-term activity of the

neuroimmune system, which leads to an enduring neu-

roinflammatory response or neuroinflammation.

Thus, neuroinflammation could be a common pathway

by which pubertal stressors may alter the adult brain and

behavior, particularly when it is associated with mental

disorders, such as anxiety and depression along with

learning, memory, and cognitive deficits [36, 62–64].

Chronic activation of microglia and neuroinflammation

associated with increased levels of brain circulating

cytokines might be relevant to perinatal depression, a

condition that requires further elucidation as demonstrated

in stress-induced major depression in pubertal and ado-

lescent girls [36].

Inflammation and Depression

The role of inflammation in major depression has been

extensively documented. Patients with MDD exhibit the

cardinal features of an inflammatory response, including

increased expression of pro-inflammatory cytokines and

their receptors, and increased levels of acute-phase reac-

tants, chemokines, and soluble adhesion molecules in

peripheral blood and cerebrospinal fluid (CSF) [65, 66].

Furthermore, several reports have described the blood

gene expression profiles of the pro-inflammatory ‘M1’

macrophage phenotype with over-representation of IL-6,

IL-8, and type I IFN-induced signaling pathways [64, 67],

in addition to the increased expression of a wide variety of

innate immune genes and proteins such as IL-1b, IL-6,
TNF-a, TLR3, and TLR4, found in post-mortem brain

samples from depressed suicide victims [68–70]. Meta-

analyses showed that circulating cytokines, such as IL-1b,
IL-6, and TNF, as well as CRP, are the most reliable

biomarkers of inflammation in patients with depression,

and the expression of polymorphisms of these inflamma-

tory cytokine genes correlate with depression and its

response to antidepressant treatment [64, 71, 72].

Further studies linking inflammation with MDD have

revealed that administration of inflammatory cytokines

such as IFN-a or their inducers (endotoxin or typhoid

vaccination) to non-depressed individuals causes

depressive symptoms [73–75], while blockade of cytokines

such as TNF-a or their inflammatory signaling pathways

and components, such as cyclooxygenase 2 (COX-2)

reduces the mood-related symptomology in patients with

MDD and other illnesses such as rheumatoid arthritis,

psoriasis, and cancer [76, 77].

It is notable that clinical findings supporting the

inflammatory theory of the pathogenesis of MDD have

revealed increases of IL-6 levels in the CSF in individuals

who had attempted suicide [78], and these levels are

correlated with the severity of depression [79, 80].

However, the most relevant finding is that increased

inflammatory cytokines in response to peripheral infec-

tions inducing the ‘sickness behavior syndrome’ [54], a

syndrome whose symptoms overlap considerably with

those of depression and are ameliorated with antidepres-

sant treatment [64, 74]. Moreover, it has been reported

that the onset of depression is often mistaken for the

development of sickness behavior, and conversely,

symptoms associated with infections are often mistaken

for the onset of depression [65].

Most adaptive theories of depression have looked at the

potential benefits of how depressive symptoms and treat-

ments can enhance the relationships with other humans

[81]. However, recent models have shifted the focus away

from relationships with people to relationships with

pathogens [82, 83]. This model postulates that modern

humans have inherited a genomic bias towards inflamma-

tion, enhancing host survival and reproduction in the highly

pathogenic environment in which humans evolved [83].

Moreover, this hypothesis suggests that vulnerability to

depression most probably evolved from a behavioral

repertoire—referred to as ‘sickness behavior’—which led

humans to survive and adapt to their environment at the

expense of the costs and benefits caused by pathogens and

infections [65].

Psychosocial stress is the most significant and repro-

ducible predictor of developing depression in humans and

the primary experimental pathway for investigating

depressive-like behaviors in animals. Over the years,

questions of how stress is translated into an inflammatory

response may have been explained through the immune

activation and expression of both the peripheral and central

cellular inflammasomes [65]. Inflammasomes are cytosolic

protein complexes formed in myeloid cells in response to

pathogenic microorganisms and non-pathogenic or ‘sterile’

stressors. Conceptualizing the sterile nature of psychoso-

cial stress, researchers have sought the mechanisms of how

inflammasome activation may induce depression, when

triggered by pathogens or damaging endogenous molecules

[damage-associated molecular patterns referred to as

DAMPs] in addition of a wide variety of molecules linked

with oxidative stress.
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Recent evidence has shown that such endogenous

molecules may be induced by psychological or physical

stressors in animals through the release of catecholamines

[65, 84]. In spite of the major focus on the stress-response

system (HPA axis and sympathetic nervous system) sug-

gesting that its dysfunction is a major pathophysiological

mechanism driving psychosocial stressors to cause

depressive symptomology, recent evidence has shown that

the inflammasome appears to be the crucial immune

interface between stress and neuroendocrine and inflam-

matory responses in MDD [65].

Furthermore, assembly of the inflammasome leads to the

activation of crucial enzymes enhancing the synthesis and

secretion of inflammatory cytokines (IL-1b and IL-18).

The increased levels of inflammatory cytokines in blood,

CSF, and brain tissue converge to elicit a wide spectrum of

functional and morphological changes in the brain,

immune, and neuroendocrine systems in individuals with

MDD that parallel the stress-induced depressive-like

behaviors in animals [25, 65] (Figs. 1, 2).

The Inflammasome

Both physical and psychological stressors activate immune

cells in the periphery and the central nervous system (CNS)

to induce the release of inflammatory cytokines that lead to

neurotransmitter changes and altered behaviors [54, 85].

Recent studies have provided important clues of how

psychological stress can affect the immune system and how

stressors activate both the innate and adaptive immune

systems [25]. Stressors and inflammation are tightly linked

through regulation by two complementary subsystems, the

innate and the adaptive immune systems, each of which is

stimulated by different signals or stress stimuli. The innate

immune system is activated by invasive pathogens that

target pattern-recognition receptors or TLRs (which detect

different kinds of stressors) and cytosolic NOD-like

receptors (NLRs), which comprise a wide and varied set of

proteins that respond to cytosolic agonists. Members of the

NLR family act as scaffolds that can oligomerize into

larger protein complexes, thereby forming a molecular

platform called the inflammasome [25]. These multi-pro-

tein complexes contribute to the activation of inflammatory

caspases (caspase-1) that result in the proteolytic process-

ing and secretion of cytokines, including IL-1b and IL-18

[86]. Thus, the inflammasome includes distinct members of

the NLR family (NLRP1, NLRP3, and IPAF) as well as the

PYHIN family member AIM2, and is a critical mediator of

cellular stress in the innate and adaptive immune systems

[25].

The immune system is able to detect damage signals in

the absence of any pathogen through the release of DAMPs

such as heat-shock protein (HSP)-72, uric acid, and ATP

through a process termed ‘‘sterile inflammation’’ [87, 88].

DAMPs released by pathogens such as lipopolysaccharide

(LPS) stimulate the innate immune system by activating

what is known as the ‘‘NOD-, LRR- and pyrin domain-

containing protein 3 (NLRP3) inflammasome’’ (a cytosolic

multiprotein complex involved in the processing of inter-

leukins). DAMP-induced stimulation of the NLRP3

inflammasome leads to activation of the immune cell cas-

pase-1 enzyme, cleaving the pro-peptide protein precursor

of IL-1b and IL-18 into their mature releasable forms

[88, 89]. Cellular release of IL-1b enhances the production

of other inflammatory cytokines that are released during

stress (Fig. 2).

Studies in animals indicate that chronic mild stress

activates the NLRP3 inflammasome, showing a response to

DAMPs. Interestingly, blockade of NLRP3 reverses the

stress-induced increases of IL-1b in the blood and brain,

abolishing the stress-induced depressive-like behavior in

mice [90, 91]. Furthermore, glucocorticoids arising from

chronic stress or prolonged exposure to inflammatory

cytokines can lead to an increased predisposition for the

release of IL-1b and other cytokines [54, 92, 93]. However,

recent evidence has shown that upregulation of the NLRP3

inflammasome and caspase activation mediating the

cleavage of the GC receptor, can cause a resistance to the

systemic effects induced by GCs (the most prominent anti-

inflammatory hormones) [94, 95]. Interesting studies

showed that stressors inducing GC resistance (a well-

characterized abnormality in MDD patients) increase in-

flammatory activity with high levels of pro-inflammatory

cytokines in blood [93, 96].

In addition, recent findings supporting the role of the

NLRP3 inflammasome in depression have shown that the

increased expression of NLRP3 and caspase 1 activity in

peripheral blood mononuclear cells (PBMCs) of patients

with depression is associated with increased blood con-

centrations of IL-1b and IL-18, which are correlated with

the severity of depression [68, 97]. Thus, both DAMPs and

the NLRP3 inflammasome [25, 86] appear to reflect the

primary link by which stressors are translated into signals

of damage that promote inflammatory activity, and con-

tribute to depression as well as co-morbid illnesses asso-

ciated with chronic stress [89].

In support of the latter, animal studies showed that non-

pathogenic (commensal) bacteria and derived microbial-

associated molecular patterns (MAMPs) in the gut can leak

into the peripheral circulation during psychosocial stress,

activating both peripheral and brain NLRP3 inflamma-

somes [98] via activation of the sympathetic nervous sys-

tem and the release of catecholamines [99]. Moreover,

increases of both IL-1b and IL-18 levels in blood are

attenuated by antibiotic treatment or LPS neutralization,
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thus supporting a role of bacterial composition in stress-

induced inflammatory responses. These data led the authors

to propose that the inflammasome may represent a crucial

immunological key mediating the integration of stress-

induced endogenous danger signals and inflammatory

responses in major depression [65].

NLRP3 Inflammasome and Depression

Environmental stimuli propitiate inflammatory responses

via activation of the NLRP3 inflammasome and cytokine

secretion in MD. Stressors leading to the activation of

inflammatory processes and cytokine release have been

correlated with changes in brain function and depression

onset; it has been postulated that IL-1b secretion is the

initial step in the inflammatory cascade linking psychoso-

cial stress to the development of MDD [89]. In agreement

with this proposal, IL-1b has been shown to elicit depres-

sive-like behaviors in animals exposed to either acute or

chronic unpredictable stressors [85]. Furthermore, clinical

findings have shown that patients with MDD have

increased blood levels of IL-1b and IL-18, and this is

associated with an increased activity of the NLRP3

inflammasome in PBMCs [97]. These data are correlated

with findings showing that activation of the NLRP3

inflammasome leads to increased accumulation of myeloid-

derived suppressor cells (a heterogeneous population of

immature myeloid cells that suppress innate and adaptive

immunity by inhibiting T cell proliferation; for review see

[100]), which are associated with decreased numbers of

peripheral blood T-reg cells and reduced concentrations of

anti-inflammatory cytokines, including TGFb and IL-10 in

MD [101]. Thus, it appears that patients with depression

have neuroprotective impairments and altered anti-inflam-

matory T-cell responses, which argues in favor of the

hypothesis that activation of the NLRP3 inflammasome,

pro-inflammatory signals, and altered immune cell activity

concur with MDD [65].

Similar findings have shown increased expression of

both IL-1b and NLRP3-inflammasome mRNA in the brains

of mice exhibiting depressive-like behaviors after LPS

administration. These data suggest that inflammatory

components and immune mediators are involved in the

bFig. 2 Schematic of the NLRP3 inflammasome in microglia.

Microglia (resting state) may become active through the binding of

ligand agonists (LPS and HMGB1) to Toll-like receptors (TLR4 and

TLR2) and/or by psychosocial stressors. HMGB1 is an intracellular

DNA-binding protein involved in chromatin remodeling. This protein

is released by necrotic cells (apoptotic neurons) or immune cells

(macrophages, natural killer cells, and dendritic cells) acting as

cytokine mediators of inflammation. Interaction of HMGB1 with the

RAGE receptor (a 35-kDa transmembrane receptor of the

immunoglobulin superfamily) and TLR2 leads to the expression of

inflammatory genes (not shown) that activate the NLRP3 inflamma-

some. Activation of the NLRP3 inflammasome in microglia requires

extracellular ATP, whose binding to the P2X7 receptor ionophore,

causes K? efflux which leads to NLRP3 oligomerization. In the

resting state, the NLRP3 inflammasome adopts an autoinhibitory

conformation by binding of the LRR domain to the NACHT domain,

producing an inhibitory oligomerization response as well as ASC

binding. However, stimulation removes the former inhibition and

enables NLRP3 to bind with procaspase-1 through the adaptor protein

ASC. This leads to the cleavage of procaspase-1 into the activated

caspase-1, cleaving pro-IL-1b into IL-1b. IL-1b released from

microglia activates inflammatory signaling pathways (STAT1, IRF-

1, NF-kB, and p38 MAPK) in astrocytes (not shown), increasing

serotonin (5-HT) metabolism via activation of indoleamine 2,3

dioxygenase (IDO). This causes a depletion of tryptophan and

reduction of serotonin availability. Activated microglia release both

NO and ROS targeting damaged neurons or cells undergoing

apoptosis. Astrocytes contribute to the neuroinflammatory process

by expressing cytokine receptors and releasing an extensive repertoire

of interleukins (IL-1b, TNFa, IL6, IL-10, IL-15, INFb, and TGFb),
chemokines (CXCL10), prostaglandins (PGD2 and PGE2), and nitric

oxide (NO) which promote the inflammatory responses on adjacent or

same cells via autocrine and paracrine mechanisms. Inflammatory

signals may be responsible for the reduced expression of the serotonin

transporter (5-HTT) in these cells. Furthermore, immune mediators

from maternal blood may increase the neuroinflammatory process and

exacerbate depressive symptoms during pregnancy (see text for

details). Abbreviations: ASC, apoptosis-associated speck-like protein
containing a caspase recruitment domain; CARD, caspase-recruit-

ment domain; HMGB1, high mobility group protein B1; MCP-1,

monocyte chemoattractant protein-1 chemokine; LRRs, leucine-rich

repeats; NACHT, nucleotide-binding oligomerization; NLRP3, NLR

family; NO, nitric oxide; PYD, Pyrin domain; RAGE, advanced

glycation end product receptor.
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connection linking psychosocial stress to MDD [102].

Although some studies have proposed a critical role for

mitochondrial rupture during NLRP3 activation [103, 104],

recent studies showed that the inflammasome pathway in

MDD does not depend on mitochondrial dysfunction [97].

While the mechanisms underlying the effect of psychoso-

cial stress on inflammasome formation are still a matter of

dispute, clinical studies have shown how antidepressant

medications can regulate inflammasome activation. For

example, amitriptyline (a common tricyclic antidepressant)

inhibits IL-1b and IL-18 production, as well as NLRP3 and

caspase-1 gene expression in patients with MDD [97].

Similar findings have been reported for glyburide, an anti-

diabetic drug that inhibits caspase-1 activation and IL-1b
secretion, and it has been proposed to be effective as an

inhibitor of NLRP3 formation following stress-induced

depression [105]. Furthermore, selective serotonin reuptake

inhibitors (SSRIs) (excluding tricyclic antidepressants)

increase TNF-a and IFN-gamma (IFN-v) levels in the

frontal cortex, which is inhibited by anti-inflammatory

agents [106]. These findings suggest that SSRIs and tri-

cyclic antidepressants rely on different mechanisms when

interacting with anti-inflammatory drugs. Moreover,

antidepressants reduce LPS-induced peripheral IL-6 and

TNF-a production [107]. Chronic SSRI administration also

attenuates CRH, TNF-a, and IL-1b mRNA expression in

the hypothalamus [108]. Thus, it will be interesting to

explore in clinical trials the pharmacobiological effects of

anti-inflammatory agents on the efficacy of antidepressants

in patients with MDD [108] (Fig. 2).

Glucocorticoids and the NLRP3 Inflammasome

Chronic stress and GCs have been reported to modulate the

microglia immunophenotype [26, 85, 97] as demonstrated

by the effects of GCs in upregulating the expression and

activation of MHCII and Iba-1 antigens in CNS macro-

phages (perivascular macrophages) and microglia, sug-

gesting that stress and GCs can alter the immunophenotype

of myeloid cells. For instance, different studies have shown

that GCs may prime a distinct set of macrophage popula-

tions, regardless of their micro-environmental milieu

[26, 102]. Thus, GCs appear to play a pivotal role in

chronic stress-induced neuroinflammatory priming

[26, 85, 97, 103] and are sufficient to prime neuroinflam-

matory responses to subsequent pro-inflammatory insults.

[26, 104]. The NLRP3 inflammasome [multi-protein

complex associated with the adaptor protein-ASC and pro-

caspase-1] is the only inflammasome known to be primed

by GCs [26, 105].

Furthermore, formation and activation of the NLRP3

inflammasome lead to the formation and release of active,

mature IL-1b [106] as recently demonstrated in THP-1

cells, bone marrow-derived macrophages, and primary

human monocytes in vitro. GCs are able to induce NLRP3

at both the mRNA and protein levels, priming NLRP3-

inflammasome formation to a subsequent stimulus such as

ATP, and potentiating the pro-inflammatory responses of

cytokines (IL-1b) [26, 102, 107]. In the same way, high

levels of GCs increase NF-jBIa expression and p65-NF-

jB transcriptional activity [26, 104], increasing the

expression of pro- and anti-inflammatory cytokines. Simi-

larly, cortisol increases the gene expression of NLRP3, Iba-

1, MHCII, and NF-jBIa in a concentration-dependent

manner, potentiating the microglial pro-inflammatory

responses of TNFa, IL-1b, IL-6, and NLRP3 to LPS [26].

These results suggest that GCs prime the neuroinflamma-

tory processes through distinct signaling pathways, such as

NF-jB, leading to the activation of both pro- and anti-

inflammatory processes. In other words, GCs appear to set

in motion opponent processes, which summate to form

either an anti- or a pro-inflammatory response to a subse-

quent challenge, depending on the severity of the GC-

inducing stressor and timing of the immunological threat in

relation to the stress experience [26, 108].

Toll-Like Receptors

The identification of TLRs in several pathologies have led

to a better understanding of the mechanisms by which the

innate immune system recognizes non-self-molecules and

how TLRs promote the detection of invading pathogens

[154]. TLRs recognize endogenous DAMPs, including

HSPs and high-mobility group box 1 (HMGB1), in addition

to exogenous pathogen-associated molecular patterns, such

as LPS and MAMPs [109, 110]. Since DAMPs can activate

TLR signaling and produce inflammatory responses, TLRs

have been thought to discriminate dangerous from non-

dangerous stressors [111].

The first recognized mammalian TLR homologue of the

Drosophila Toll [112] was TLR4, which was identified a

year after elucidating the role of the Drosophila Toll in

fighting fungal infection [113]. Like the Drosophila Toll,

human TLRs are characterized as type I transmembrane

proteins with an extracellular leucine-rich repeat (LRR)

domain and a cytoplasmic C-terminal Toll-interleukin-1

receptor (TIR) domain. Based on the chromosomal local-

ization, genomic structure, and amino-acid sequences,

human TLRs are classified into five subfamilies: TLR2,

TLR3, TLR4, TLR5, and TLR9. The TLR2 subfamily

consists of TLR1, TLR2, TLR6, and TLR10, while the

TLR9 subfamily is composed of TLR7, TLR8, and TLR9.

TLR3, TLR4, and TLR5 each represent a family with only

one member [154]. TLR4 recognizes the LPS motif in the
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cell membrane of all gram-negative bacteria, while TLR2

recognizes lipoteichoic acid expressed in gram-positive

bacteria [114]. Furthermore, recent evidence has shown

that mutants of human TLR4 transfected into human cell

lines activate the NF-jB transcription factor and NF-jB-
controlled genes involved in the expression of IL-1, TNF,

IL-6, and IL-8, in addition to the co-stimulatory molecules

CD40, CD80, and CD86 [113].

Although a major role of TLR4 is the recognition of

LPS, TLR4 by itself does not sense LPS directly, but

requires the LPS binding protein (LBP), which is an

acute-phase protein found in the plasma that binds the

lipid A component of the LPS molecule [115]. The LBP-

LPS complexes together with functional membrane-

bound components [CD14 antigen (a glycosylphos-

phatidylinositol-anchored molecule) and the MD-2

molecule] play an important role during LPS signaling

by TLR4.

In this context, both TLR2 and TLR4 signals that have

been co-opted by endogenous danger signals (psychosocial

stress) or DAMPs are thought to alert microglia, as well as

peripheral myeloid cells, of a variety of internal conditions

such as cellular stress, damage, or death [116] by stimu-

lating the release of pro-inflammatory cytokines,

chemokines, and active reactants [nitric oxide (NO) and

prostaglandins (PGE2 and PGD2)] implicated in pro-

inflammatory responses (Fig. 2).

Most of the TLRs expressed in cells are pre-assembled

into heterodimeric complexes on the cell surface or in the

cytosol, in order to activate the cell-signaling pathway and

transcription factors regulating the expression of genes

responsible for promoting host-defense mechanisms, such

as, the mammalian antimicrobial peptide (defensins), the

antiviral response (type I interferons), pro-inflammatory

cytokine secretion, co-stimulation of membrane-bound

antigens, and dendritic cell maturation after activation of

inflammatory responses (for extensive review, see

[154, 155]).

Thus, the innate immune system senses invading

microorganisms by a phylogenetically-conserved family of

pattern-recognition receptors of which TLRs are the most

important; although this system provides a less specific

response, it is nevertheless critical for the prevention of

microbial invasion. Activation of TLRs results in the

induction of innate immunity mechanisms, including the

development of antigen-specific adaptive immune respon-

ses bridging innate and adaptive immunity in mammalian

and other vertebrate species [154].

TLRs have been implicated in the pathophysiology of

affective disorders, as shown by the correlation of genetic

variants of TLR2 and TLR4 with the early onset of bipolar

depression and childhood sexual abuse [117] as well as in

MD [118].

Thus, given the nature of the expression of TLRs in the

peripheral and central immune systems, including placental

immune cells, it could be that these stress-related compo-

nents may be relevant to both immune activation and

inflammatory responses in affective disorders during preg-

nancy, in a fashion similar to their involvement in MDD.

Toll-Like Receptor 4 and the HPA Axis

TLR4 belongs to the interleukin-1 receptor/TLR super-

family containing a TIR domain and an LRR motif in the

extracellular domain [110]. TLRs recognize endogenous

DAMPs, including HSPs and HMGB1, exogenous patho-

gen-associated molecular patterns such as LPS, and

MAMPs [109, 110] (Fig. 2).

Given the nature of TLR4 as a crucial component of the

stress-related immune system, it has been proposed that it

might interact with the HPA axis in stress-induced mood-

related disorders [110]. TLR4 signaling is capable of

stimulating the HPA axis upon LPS administration

[110, 119]. Interestingly, different studies showed that

TLR4 activation not only causes GC release from adrenal

cells [120, 121] but also induces upregulation of the CRH

gene in paraventricular (PVN) neurons in the hypothalamus

[122], enhancing the increased levels of this peptide hor-

mone in blood [123]. Although pituitary cells stimulated by

LPS also stimulate the release of ACTH, it is uncertain

whether this effect is CRH-dependent [93, 110, 124].

Recent studies have shown that cytokines secreted fol-

lowing immune stimulation upregulate HPA axis signaling

through two main pathways: (1) by reducing negative

feedback on HPA signaling, and (2) by directly stimulating

HPA activation. Through the first pathway, pro-inflam-

matory cytokines (IL-1b, IL-6, and TNF-a) reduce the

efficacy of the GC receptor (GR), promoting disinhibition

of the GR-induced negative feedback on HPA activity

[93, 125] . This mechanism has been suggested to rely on

protein-protein interactions with GRs, enabling cytokines

to modulate GR-dependent ligand binding affinity, cytosol-

dependent GR translocation, and GR binding to the GC

response element within the nucleus [93].

Furthermore, TLR4 activation may not only lead to

short-term stimulation of the HPA axis, but also appear to

influence HPA activity long after the stressor has resolved.

For instance, animal studies showed that a single LPS

challenge during early life is sufficient to hypersensitize

both the CRH and ACTH responses upon subsequent LPS

exposure or restraint stress in adulthood [126]. These

findings suggest that TLR4 activation during early life

increases anxiety behaviors in adulthood [127], besides

leading eventually to changes in the stress-response system

during life.
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Thus, TLR4 activity during sensitive periods of devel-

opment may shape the response of the HPA axis to

incoming danger signals, priming the system towards

abnormal hyperactivity, enhancing the predisposition

toward stress-related disorders [110]. This hyperactivity is

produced by increased activity of IL-1b, IL-6, and COX-2

as well as PGE2 on PVN neurons [128], pituitary ACTH,

and the adrenals (this latter drive the steroidogenesis

pathway, regulating GC synthesis) [121, 126, 129]. Thus,

the TLR4 pathway appears to have an important influence

on HPA activity, rather than a direct impact on adrenal

function; the HPA responses are driven by mechanisms

operating within the CNS through neuroimmune signaling

pathways [110].

Toll-Like Receptor-4 and Depression

MD is recognized as neuroimmune disorder and TLR4 has

been implicated [130, 131]. Molecular studies have

revealed that TLR4 activation by DAMPs, LPS, or

MAMPs [109, 110] triggers transcription via two adaptor

proteins; the myeloid differentiation primary response 88

(MyD88) and the TIR domain-containing the adapter

inducing IFN-b (TRIF), which induce the transcription

factors NF-jB, AP-1, and IRF3 [132, 133]. Activation of

these factors leads to the production and release of pro-

inflammatory cytokines (IL-1b, TNF-a, and IL-6) and

chemokines (CXCL10) among several other proteins, such

as COX-2, which in turn activate pro-inflammatory sig-

naling [109] in central and peripheral immune cells. In the

CNS, TLR4 is predominantly expressed in microglia and to

a lesser extent in neurons [134]. TLR4 has recently been

implicated in several neuropathological conditions of the

CNS, for instance, neuropathic pain [135] and neurode-

generative disorders [136].

Furthermore, high TLR4 levels have been reported in

the PBMCs of patients with MDD, and antidepressant

treatment significantly reduces the high TLR expression

along with reduced depressive symptomatology [131]. This

responsiveness clearly suggests a direct role of TLR4

activity in the pathogenesis of MDD. As stated above,

microglia play a crucial role in modulating several neu-

roinflammatory activities.

Microglia expressing TLR4 and TLR-dependent cell

signaling systems [130] have been correlated with changes

in microglial reactivity states, commonly referred to as M1

and M2, the pro- and anti-inflammatory phenotypes [137]

and with the expression of depressive-like behavior in

animal models of stress [195]. TLR4 activation promotes a

shift of microglia towards the M1 phenotype (exhibiting an

amoeboid morphology) enhancing their pro-inflammatory

activity and the secretion of immune mediators that affect

local and peripheral immune cells [138] (Figs. 1, 2).

Microglia also function as antigen-presenting cells

through MHC-II expression, to trigger adaptive immune

responses [139]. It is notable that minocycline, an antibi-

otic that suppresses central immune signaling, abolishes the

development of stress-induced depressive-like behaviors in

mice [140], and reduces microglial reactivity and LPS-

induced effects on microglial morphology [141, 142] and

cell proliferation [110]. However, chronic inhibition of

microglia is not a viable treatment option, since central

immune suppression exacerbates depressive-like behavior

in animal models of inflammation. Therefore, it has been

proposed that treatment should be aimed toward a balance

between high- or low-reactivity states of these cells [110]

during MDD. Furthermore, glia appear to respond to

antidepressants such as SSRIs, which decrease gliotrans-

mission [143], thereby attenuating the secretion of

inflammatory cytokines in response to LPS. Recent evi-

dence has shown that antidepressants are protective against

microglial [144] and MPTP-induced neurotoxicity [145].

These reports argue that microglia are crucial elements in

central immune signaling, facilitating communication

between the immune system and the brain in mood-related

disorders. However, this relationship is not unidirectional,

and appears to operate in a time-dependent fashion [110].

Immune System During Pregnancy

Placental Immune Cells

During pregnancy, the innate immune system provides a

less specific response which nevertheless is critical for the

prevention of microbial invasion. However, evidence has

been accumulating over the years about how the immune

system is finely tuned at the maternal-fetal interface to

allow the recognition and development of the fetal ‘‘al-

lograft’’ [23]. During early pregnancy, different subsets of

natural immune cells [natural killer (NK) cells, dendritic

cells (DCs), and macrophages (Mus), including T-reg

cells] infiltrate the decidua around the invading tro-

phoblast cell-layer [23, 146], enhancing the recruitment

and migration of immune cells via secretion of inflam-

matory cytokines (IL-6) [23]. During the first trimester,

NK cells, DCs, and Mus infiltrate the decidua and

accumulate around the invading trophoblast. Interestingly,

the absence of these cells does not favor pregnancy, but

instead enhances its termination [23, 146]. For instance,

depletion of decidual NK cells has deleterious effects on

placental development and blastocyst implantation, sug-

gesting their critical role in trophoblast invasion in the
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uterus, in contrast to decidual DCs, whose depletion

affects blood vessel maturation and decidua formation

[24, 46, 47]. Different studies have shown that the vast

majority of decidual NKs appear to localize at the site of

implantation, meditated by the released cytokines (IL-6,

IL-8, and TNF-a), chemokines (CX3CL1, CCL7, CCL14,

and CCL4) and growth factors (h-EGF and VEGF) from

decidual cells and trophoblasts [23, 147, 148]. Further-

more, interesting studies have shown that NK cells differ

in both phenotype and function. Peripheral NK cells

exhibiting the CD56dim/CD16? antigen promote cell

lysis, while decidual NKs expressing the CD56bright/

CD16-antigen have reduced cytotoxicity, with a pheno-

type of cells producing cytokines [149, 150].

Autocrine mediators released by trophoblast cells

(TGF-b, IL-1b, TNF-a, IL-6, IL-8, IL-10, and decorin)

and paracrine factors secreted by decidual cells [leuke-

mia inhibitory factor (LIF, a member of the IL-6 protein

family); IL-11, granulocyte macrophage colony-stimulat-

ing factor (GM-CSF); and macrophage colony-stimulat-

ing factor (M-CSF)], in addition to proteins such as

prokineticin 1 and heparin-binding epidermal growth

factor (hb-EGF), upregulate the expression and synthesis

of soluble mediators, such as LIF/IL-6 [151, 152],

chemokines (CCL7/MIP3 and CCL4/ MIP1b), COX-2,

and prostanoids (prostaglandins, prostacyclin, and

thromboxane) [153], as well as serotonin (5-HT) and

histamine [154–156], which stimulate and drive placental

processes (blastocyst implantation, trophoblast prolifera-

tion, decidualization of endometrial tissue, implantation,

and blood flow regulation) in a time- and space-depen-

dent manner, facilitating the tolerance and development

of the fetal ‘‘allograft’’ [157]. In addition, LIF, IL-6, and

IL-11 upregulate the expression of adhesion molecules in

human endometrial epithelial cells, facilitating implanta-

tion and trophoblast invasion during early gestation [152]

(Fig. 3).

These findings support the hypothesis that pregnancy

needs a reduced activity of NK cells and inflammatory

Mus (these cells are primed through the activation of the

Th1 immune response and Th17-cells producing inflam-

matory cytokines), in addition to high T-reg cell activity

and the production of anti-inflammatory cytokines (IL-4

and IL-10), as previously reported [158]. This activity sets

the immune balance in a state of self-tolerance. However,

disruption of this fine balance during pregnancy may pro-

mote an overwhelming Th17 response, shifting the system

towards an increased inflammatory profile that may lead

either to autoimmune disease (by attacking the feto-pla-

cental tissue) or to neuropsychiatric disorders, when

increases in Th17 responses and T-reg activity work

simultaneously to sustain placental function and fetal via-

bility [158].

Th1/Th2 Balance

One crucial aspect of pregnancy is the Th1/Th2 bias, which

under proper conditions may facilitate the maintenance or

rejection of the conceptus. It has been associated with

recurrent spontaneous miscarriages or preterm birth [159].

Over the years, it has become clear that the Th1 and Th2

subsets originate from undifferentiated Th0 cells under the

influence of several factors, such as IFN-c and IL-4

[159, 160]. Soluble mediators, such as progesterone [159],

LIF [161], estradiol [162], and PGD2 [163] promote the

Th2 profile and are likely to be partially responsible for the

Th2 bias associated with pregnancy [164]. Thus, the orig-

inal hypothesis of the Th2 predominance and downregu-

lation of the Th1 response in pregnancy, formulated

decades ago, has been supported by several animal (mouse)

and human studies showing both Th2 and Th1 bias during

pregnancy [159, 164, 165].

Pro- and anti-inflammatory cytokines in peripheral

blood [164, 166] have been extensively studied during

pregnancy [164, 165]. In line with this, placental immune

mediators such as T cell-derived IL-4, IL-10, and M-CSF

are associated with a successful pregnancy [164], sug-

gesting that such mediators promote Th2 predominance

and full-term pregnancy. Furthermore, trophoblast, decid-

ual, and amniotic cells also appear to contribute to the Th2

cytokine environment by enhancing the local release of IL-

13 [167], IL-10 [168], IL-4, and IL-6 [169, 170], while pro-

inflammatory cytokines such as IL-2, IFN-c, and TNF-a
produce miscarriages in mice and treatment with Th1-

cytokine inhibitors or anti-inflammatory Th2 cytokines

abolishes this effect [164, 171]. This immunomodulation

promotes the expression of the Th2 immune response

during pregnancy, which is regulated by the expression of

GATA-3 and STAT-6 transcription factors that leads to the

production of Th2 cytokines by trophoblasts and T cells.

Such response enhances the inhibition of the Th1 tran-

scription factor STAT-4, and thereby, the reduction of IFN-

c and TNF-a [170].

In addition, Th2 cytokines (IL-4 and IL-10) potently

inhibit Th1 cell and macrophage-related inflammatory

activity, preventing rejection of the fetal allograft [172],

besides upregulating the synthesis of COX-2 and PGE2 in

amniotic cells [173], amechanism thought to inhibit the onset

of labor. These data parallel those showing that placental

PGD2 released from the invading trophoblast cell layer

enhances the expression and activation of the Th2-chemoat-

tractant receptor-homologous molecule (CRTH2), facilitat-

ing the PGD2-chemoattractant activity of Th2 cells [174].

Interestingly, women suffering from recurrent or unex-

plained failure of pregnancy have reduced placental

CRTH2? cells [175] and reduced IL-4 and IL-10 pro-

duction by decidual CD4? cells [176], compared to
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Fig. 3 Schematic of the neuroendocrine and immune placenta. The

interaction between the maternal innate immune system, neurosecre-

tory cells, and trophoblastic tissue at the trophoblast-decidua interface

is shown. A wide variety of active components are secreted by

immune and non-immune cells at the fetoplacental unit and play

crucial roles during blastocyst implantation, trophoblast invasion,

placentation, and decidualization. From early to late pregnancy,

trophoblasts (TCs) from the blastocyst differentiate into invasive

trophoblasts (cytotrophoblasts) that penetrate the endometrium along

with syncytiotrophoblasts. Trophoblasts release growth factors (hb-

EGF, IGF1, VEGF, and TGF-b) and proteins that regulate cell growth

and invasion into the endometrial epithelium [1, 2]. TCs secrete

autocrine mediators (TNF-a, IL-1b, IL-8, IL-10, and IL-11) as well as
leukemia inhibitory factor (LIF) [3] and soluble factors (MCP-1 and

GRO-a) that allow trophoblast development and function during

blastocyst implantation and placentation. Decidual cells involved in

remodeling the endometrium secrete LIF and stimulating factors

(GM-CSF and M-CSF) that mediate trophoblast proliferation, migra-

tion, and invasiveness into the decidua in a time- and space-dependent

manner [4]. Furthermore, these cells secrete the pleiotropic protein

prokineticin 1 whose binding to its cognate receptor (PROKR1) is

responsible for the inflammatory responses mediated through the

release of interleukins from adjacent cells [4, 5]. Activation of TLR4

and TLR2 by specific ligands (LPS and MD2) on Mus and/or DCs

may lead to the activation of transcription factors (AP1 and IRF3) and

gene enhancers (NF-jB) that orchestrate the synthesis and release of

interleukins (IL-6 and IL-8) and chemokines (CCXL10) as well as

COX-2 and prostaglandins (PGE2) [5, 6]. These immune mediators

may influence the functional activity of immune and non-immune

cells in the decidual stroma in a reciprocal fashion [7, 8]. However,

cytokines from the maternal circulation [9] may increase the

inflammatory signals at the maternal-fetal interface, enhancing the

establishment of a preferential Th1 immune response during perinatal

depression. Moreover, sex hormones (estrogen and progestins) play a

crucial role in remodeling the endometrium, in addition of their

regulatory hormone-related activity induced on immune and decidual

cells during pregnancy, including TCs, as well [10]. Glucocorticoids
and cytokines (IL-1b) among other factors (stress and anoxia)

upregulate the expression and secretion of pCRH from decidual cells

[11], while progestin and NO have opposite effects (data not shown).

pCRH reaching the maternal circulation may increase the HPA axis

activity [12], leading to the exacerbation of depressive symptoms

during this period. Moreover, pCRH binding to its cognate receptor

(CRHR1) mediates the expression of the apoptotic Fas ligand by both

cytotrophoblasts and decidual cells, suggesting that pCRH regulates

the invasiveness of trophoblasts into the decidua [12]. Similar to the

inflammasome expressed by microglia in the brain, activation of

TLR4 in APC cells (Mus and DCs) may lead to activation of a

proposed ‘‘placental inflammasome’’ [5, 6] precipitating the release of

local inflammatory cytokines (IL-1b and TNF-a) [5–8], and leading

to wide and varied effects on neurotransmitter and glucocorticoid

metabolism (data not shown). Overall, this suggests that same cellular

mechanisms that operate in the brain and the immune system during

MDD, operate in the ‘‘neuroimmune placenta’’ during perinatal

depression (see text for details). Abbreviations: AP1, activator

protein 1; APC, antigen-presenting cell; IRF3, interferon regulatory

factor 3; LIF, leukemia inhibitory factor; NF-jB, nuclear factor of

kappa light polypeptide gene enhancer; NO, nitric oxide; pCRH,

placental corticotropin-releasing hormone.
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women undergoing elective termination. These data sug-

gest that the immune processes promoting a Th2 bias over

a Th1 immune response are crucial for fetal development.

In addition, both progestins and estradiol influence the shift

of the Th1/Th2 bias towards a type 2 immune response

[177], while cortisol at the maternal-fetal interface modu-

lates and maintains the type 2 cell response throughout

pregnancy [178, 179].

Interestingly, the Th2 bias during pregnancy decreases

cell-mediated immunity [180], thus increasing the suscep-

tibility to infections by intracellular pathogens such as

influenza, leprosy, and Listeria monocytogenes

[164, 165, 181, 182]. However, Th1 cytokines maintain the

ability to mount defensive responses to infections, as

shown by in vivo and in vitro studies that demonstrate an

increased percentage of cells secreting IFN-c in neonates

exposed to intrauterine infections [183], and increased

IFN-c and reduced IL-4 secretion in cultured cord-blood

mononuclear cells exposed to LPS [184].

Estimates have shown that only 30% of preterm births

[164, 185], in contrast to the high rate of 80–85% of early

preterm births (\28 weeks), are associated with infections

[164, 185]. Immune and non-immune cells contribute to a

cytokine-rich environment in the presence of infection and

inflammation. Pro-inflammatory cytokines (TNF-a and IL-

1b) activating the NF-jB signaling system evoke the release

of PGE2, PGD2, and MMPs [164, 186] from local immune,

trophoblast, and decidual cells, respectively, which if acti-

vated during early pregnancy, may trigger a cascade of pro-

labor events leading to preterm labor and birth [164, 186].

Thus, women with MDD during late pregnancy may

show a shift in Th1/Th2 bias, exhibiting a preferential Th1

immune response with higher inflammatory cytokines (IL-

1b, LIF/IL-6, IL-8, and TNF-a) [165, 187–189] and higher

levels of circulating steroids than healthy pregnant women

[187, 190]. These findings suggest that the innate immune

system together with both the hypothalamic-pituitary/go-

nadal (HPG) and HPA axes are highly active and engaged

in MDD during pregnancy [187].

Toll-Like Receptors at the Maternal-Fetal Interface

TLRs are expressed by both immune (Mu) and non-im-

mune cells (trophoblasts and decidual cells); their co-re-

ceptors and accessory proteins (CD14) are also expressed

in the placenta [191, 192]. TLRs vary with the stage of

pregnancy [191]. During early pregnancy, at least seven

TLRs (TLRs 2–6 and TLR 9) are expressed by fetal

membrane cells in vitro (cyto- and syncytiotrophoblast-rich

cells) [191–193], while choriocarcinoma cell lines (i.e.,

JAR and BeWo) express ten distinct TLRs, in addition to

their co-receptors and accessory proteins (CD14, CD36,

MyD88, MD-2, TIRP, TRAP, and TRIF) [194].

Similarly, molecular studies have revealed that tro-

phoblastic cell lines (Swan 71, 3A, and HTR8) from fetal

membranes express TLRs (TLR1-4 but not TLR6) during

early gestation [195–197], while third trimester tro-

phoblasts express high levels of placental TLR4 [197] and

TLR6 [195, 196]. These studies led the authors to posit that

trophoblasts during early pregnancy are less responsive to

pathogens than the same placental cells at term [198].

Although the mechanisms that regulate the temporal

expression of TLRs are still unclear, their spatial regulation

has been investigated in different trophoblast layers. For

instance, early expression of TLR2 and TLR4 occurs in

villous cytotrophoblasts and extravillous trophoblasts (in-

ner trophoblast cell layer) but not within the syncytiotro-

phoblast layer (the outer trophoblast cell layer) in the first

trimester [195–197]. The latter, TLR-negative cell-layer

represents the ‘second battlefront’’ or barrier that reacts to

pathogens that have breached the villous trophoblast and

decidua (endometrium) [192, 193].

Other macrophage-like cells expressing TLRs are the

Hofbauer cells in the placental villi, which express high

TLR4 levels in the term placenta [195, 196]. In contrast,

TLR2 expression has been found in endothelial cells and

peripheral macrophages, in addition to syncytiotro-

phoblasts and fibroblasts, but is weakly expressed in the

term placenta [197].

Thus, these findings suggest that local immune cells,

trophoblasts, and peripheral macrophages invading the

early and term placenta appear to respond to invading

pathogens, providing a crucial protective immune barrier to

the conceptus during development [192, 198]. In contrast,

the expression of TLRs in the decidua has not been

extensively investigated. Nonetheless, two studies have

shown the expression of ten TLR-mRNAs in the first tri-

mester and term decidua, and the expression of TLR2,

TLR4, and TLR6 proteins in first trimester decidua

[193, 195, 199] (Fig. 3).

Along the same line, related studies have demonstrated

the expression of both TLR2 and TLR4 in the amnion,

suggesting their role in monitoring either pathogens in the

amniotic fluid and/or interfering with the recognition of

TLR2 ligands by TLR2 [196, 200]. These studies suggest

that TLRs play a crucial role in monitoring intra-amniotic

inflammatory responses to pathogens, as shown by the

moderate levels of soluble TLR2 [200].

Inflammatory Signals and Perinatal Depression

Evidence for a role of inflammation and its associated

cytokines in depression has accumulated since its initial

description [26]. Clear evidence implicates innate immune

genes and proteins, such as IL-1b, IL-6, TNF-a, TLR2-
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TLR4, and its regulator the NLR family and the NLRP3

inflammasome in MDD [89], providing a bidirectional

pathway between endogenous danger signals or psy-

chosocial stress and depression, including other co-morbid

illnesses associated with chronic stress [89].

Perinatal depression is associated with increases in brain

and peripheral inflammatory cytokines (IL-1b, IL-6, and
TNF-a) and acute biomarkers similar to MDD [201–204].

These appear to be correlated with depression onset [89]

and with changes in brain function (i.e., reduced hip-

pocampal activity associated with cognitive deficits,

reduced memory, and poor behavioral performance)

[1, 54, 205] as well as neuroendocrine responses and

reduced neurotransmitter function [1, 54, 206–208], sug-

gesting that the brain translates immune signals into a

‘‘mood-related disorder linked to an inflammatory process’’

in MDD during pregnancy [1, 54, 206–208].

Thus, based on multiple lines of evidence showing an

active role of the immune system in MDD [130, 131], it

may be feasible to assume that TLR signaling in response

to endogenous danger signals (psychological stress), acti-

vation of the NLPR3 inflammasome, and increased secre-

tion of IL-1b and IL-18 from microglia (M1-active state

phenotype) [138] or PBMCs [97] [97], in addition to the

release of placental cytokines (IL-1b, TNF-a, LIF/IL-6,

and IFN-c) from immune (Mus, NKs, and DCs) and non-

immune cells (decidual cells and trophoblasts) [157] during

the third trimester, may contribute to triggering the changes

in the prefrontal cortex, anterior cingulate, and hip-

pocampus as well as neuroendocrine (hypothalamus, pitu-

itary, and adrenal) and placental processes, which elicit the

hallmark symptoms of depression during pregnancy [157].

In line with this, the major features of hypothalamic,

adrenal, and placental dysfunction in MDD during preg-

nancy appear to be linked to stress-induced neuroimmune

responses via endogenous danger signals that promote the

activation of TLR4 signaling (NF-jB, AP-1, and IRF3)

[132, 133] and increase the secretion of pro-inflammatory

cytokines [185, 188], based on the following findings:

In the hypothalamus: (1) TLR4 activation and upregu-

lation of the CRH gene in hypothalamic PVN neurons

[122] with increased peptide levels in blood [123]; (2)

potent stimulatory effects of IL-1b inducing increased

expression of CRH mRNA and CRH protein in the

hypothalamus and amygdala (regions implicated in fear

and anxiety responses in MMD) [209, 210]; (3) increased

IL-1b-induced expression of c-fos, CRH, and AVP (argi-

nine vasopressin) in PVN/CRH cells [211, 212] associated

with increased excitability of rat hypothalamic parvocel-

lular neurons [213], secretion of CRH and AVP, and

overstimulation of the HPA axis [211]; (4) increased

activity of IL-1b, IL-6, COX-2, and PGE2 on PVN-CRH

neurons [128], pituitary ACTH, and adrenals [126, 129];

(5) synergistic effect of endogenous danger signals (LPS)

and IL-1b on hypothalamic CRH secretion [214], in con-

trast to the potentiating effect of IL-6, eliciting CRH-de-

pendent activation of pituitary ACTH [215]; (6)

endogenous danger signals upregulate the NLRP3 inflam-

masome leading to caspase-dependent GR cleavage (an

effect enhancing potential resistance to the effects of GCs)

[94]; and (7) pro-inflammatory cytokines (IL-1 a-b, TNF-
a, and IFN-a) inhibit GR function [216–218].

In adrenals: (1) TLR4-dependent upregulation of COX-

2 activity, steroidogenesis, and GC release from adrenal

cells [120, 121], leading to the activation and potentiation

of pro-inflammatory signals in brain and peripheral tissues

[109, 185]; and (2) direct GC-priming effect of the NLRP3

inflammasome response to a subsequent stimulus (ATP),

enhancing the amplification of pro-inflammatory signals to

NF-jB, AP-1, and STAT3 transcription factors [219], and

potentiation of pro-inflammatory responses to IL-1b
[26, 102, 107], TNFa, IL-6, and LIF in both brain and

neurosecretory tissues [220].

In placenta: (1) expression of high levels of placental

TLR4 [197] and TLR6 [195, 196] in third trimester tro-

phoblasts; (2) expression of TLR4 in macrophage-like cells

(Hofbauer cells) in the term placenta [195, 196]; (3)

increased secretion of placental (IL-1b, TNF-a, and LIF,

IL-6) and peripheral cytokines (IL-2, IFN-c, and TNF-a)
facilitating the release of endometrial prostaglandins

(PGE2 and PGD2), chemokines (CCL7 and CCL4), and

protein factors (MMPs), which promote dysregulation of

the Th1/Th2 balance towards a predominant Th1 over Th2

immune response [165, 187–189]; and (4) effects of GCs,

pro-inflammatory cytokines, anoxic conditions, and stress

conditions of pregnancy such as preeclampsia on the

increased CRH secretion and CRH blood levels in women

delivering preterm, compared to the low hormone levels in

women delivering at term [157].

These findings support a role of TLR4 in activating the

NLRP3 inflammasome and the release of pro-inflammatory

cytokines, enhancing the altered neuroendocrine responses

in women exhibiting MDD during pregnancy [157], which

include increased secretion and high levels of circulating

placental and hypothalamic CRH and AVP, leading to

disproportionate hyperactivity of the HPA axis and high

baseline levels of cortisol (hypercortisolemia); an exag-

gerated response to the dexamethasone/CRH test and GR

insensitivity; and GC- and cytokine-induced reduction of

placental (syncytiotrophoblast) 11b-hydroxysteroid dehy-

drogenase type 2 (11b-HSD2) activity (enhancing mater-

nal-fetal transfer of active GCs and fetal corticoid toxicity)

[157].

These altered neuroendocrine responses during preg-

nancy play a pivotal role in triggering the hallmark

symptoms of perinatal depression associated with
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predominant Th1 inflammatory responses over Th2 anti-

inflammatory activity, which may enhance preterm labor

and birth with negative obstetric and perinatal outcomes for

both mother and offspring, as previously described [157]

(Fig. 3).

In offspring: Prenatal exposure to stress, excess GCs,

and reduced fetoplacental 11b-HSD2 expression and

activity may be crucial factors by which fetal growth and

development lead to adult pathophysiology. In line with

this, it has been reported that increases of fetal GCs may

lead to fetal growth retardation associated with the devel-

opment of neuropsychiatric disorders [218].

Prenatal stress-induced increases in fetal GCs, together

with the increase in the Th1/Th17 pro-inflammatory

activity, may be responsible for the changes in early-life

programming of the brain, immune, neuroendocrine, and

placental systems in the offspring, triggering neuropsy-

chiatric disorders [218] and/or autoimmune disorders such

as lupus erythematosus [158].

Thus, it may be feasible to assume that increases in

placental GCs and the inhibition of 11b-HSD2 activity

during late pregnancy [218] may lead to GC priming of the

NLRP3 inflammasome, enhancing the amplification and

potentiation of pro-inflammatory signals [219] and cyto-

kine responses [26, 102, 107] in offspring exposed to

prenatal stressors. The offspring of pregnant women with

MDD have high basal levels of inflammatory cytokines and

cortisol in the blood, associated with reduced GR activity

[157, 217], which makes them a highly vulnerable risk

group for developing adult affective behaviors.

Brain and Placental Neurotransmission

Perinatal depression has the same features of inflammatory

signals inducing the dysfunction of monoaminergic trans-

mission systems as shown in MDD, based on the following

findings. In the brain and placenta: (1) direct effect of

cytokines (IFN-c, IFN-a, TNF-a, and IL-6) on activation of
the indoleamine 2,3 dioxygenase (IDO) and kynurenine

(KYN) pathways in astrocytes, microglia, and/or adjacent

peripheral macrophages, leading to the depletion of brain

5-HT and increases of KYN, quinolinic acid (QUIN) and

kynurenic acid levels in CSF [221]; (2) cytokines (IFN-c,
IFN-a, TNF-a, and IL-6) increase CSF-IL-6 and QUIN and

decrease CSF-kynurenic acid levels, and these are corre-

lated with the worsening of depressive and suicidal

symptoms [222]; (3) IL-1b-induced downregulation of

5HT1A receptors [223] in regions essential to the regulation

of emotion, psychomotor function, and reward [224–226];

(4) association with the downregulation of astrocyte glu-

tamate (GLU) transporters, leading to GLU neurotoxicity

and subsequent neuronal death in cortex and hippocampus

[227–229]; (5) cytokine inducers (LPS and BCG) increase

the turnover of 5-HT in regions [206, 224, 225] that nor-

malize with antidepressant treatment (SSRIs and parox-

etine) [56, 64, 226, 230]; (6) IL-1b increases the expression

of 5HT (SERT) and norepinephrine membrane transporters

[56] in cortex and hippocampus [231], enhancing the

extracellular clearance of these neurotransmitters [232];

with similar findings in placental SERT, showing IL-1b-
dependent upregulation of SERT mRNA and protein

expression in endometrial cells [233]; (7) increased

expression of microglial QUIN in the cingulate cortex, in

contrast to decreased microglial QUIN (immunoreactivity)

in the hippocampus of acutely depressed patients

[234, 235]; (8) increased circulating KYN : Tryptophan

ratio in response to LPS-induced overstimulation of IDO

activity [206]; and (9) conversely, reduced pro-inflamma-

tory signaling, along with depressive-like behaviors and

circulating KYN concentrations upon pharmacological

inhibition of IDO activity [206].

These data support the idea that inflammatory signals

and inflammatory cytokines mediate major changes in the

5-HT and GLU transmission systems in the CNS and pla-

centa during perinatal depression, enhancing the depletion

of both brain and placental 5-HT, and thereby, for the

appearance and/or exacerbation of depressive symptomol-

ogy during pregnancy in addition to the neurotoxic effects

of the high GLU levels in forebrain structures (cortex and

hippocampus; Fig. 1).

Although the role of placental IDO activity in mood-

related disorders is still elusive, recent evidence has

revealed that the human placenta expresses IDO from early

stages of pregnancy (depleted L-tryptophan and increased

KYN concentrations), by which IDO and KYN appear to

mediate the suppression of maternal T cells and PBMC

proliferation that are implicated in immune tolerance and

self-recognition of the fetal allograft [236, 237]. Interest-

ingly, the increased activity of pro-inflammatory cytokines

(IFN-c) in response to infections appears to decrease the

expression of placental IDO and thereby, stimulates T

helper lymphocyte proliferation, leading to obstetric

pathologies (pre-eclampsia) associated with an increased

Th1 inflammatory response [236]. As pregnancy is asso-

ciated with a less severe inflammatory activity [238], it

may be argued that changes in placental IDO activity could

contribute to the pathogenesis of perinatal depression,

among other mental disorders.

Concluding Remarks

The role of the immune system in stress-inducing mood-

related disorders and behaviors has been extensively doc-

umented. MDD during pregnancy is a common psychiatric

disorder that arises from a complex and multifactorial
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etiology. The immune system plays a crucial role in MDD,

mostly as a major triggering factor. Researchers have

established much of the basis and understanding of the

nature of this illness in highly vulnerable women. During

pregnancy, both placental and immune responses are

modified to allow the tolerance and development of the

semi-allogeneic fetus to full term.

Pregnant women with MDD have increased levels of

circulating pro-inflammatory cytokines (IL-1b, IL-6, TNF-
a, and IFN-a) and their soluble receptors as well as CRP,

suggesting that modification of the Th1/Th2 bias towards a

predominant Th1/Th17 pro-inflammatory activity may be

responsible for the wide spectrum of functional and mor-

phological changes in brain structures [73]—monoamin-

ergic systems, immune function, neurosecretory activity,

and placental function—leading to the hallmark symptoms

and behavioral repertoire of MDD during pregnancy and

associated with preterm labor.

Both TLR4 and the inflammasome are crucial links

between stress, neuroendocrine and inflammatory respon-

ses in MDD, by which endogenous stressors promote a pro-

inflammatory activity, mediated through the increased

secretion of IL-1b and IL-18, among other cytokines (IL-6,

TNF-a, IFN-c, and IFN-a), prostanoids, and active reac-

tants (NO, ROS, PGE2, and PGD2) in response to DAMPs,

MAMPs, and/or psychosocial stress (the latter suggested to

be mediated by MAMPs leaking from the gut microbiome

into the peripheral circulation, inducing the TLR4-depen-

dent activation of the NLRP3 inflammasome) [26, 130]

(Fig. 2).

Thus, DAMPs, MAMPs, and the NLRP3 inflammasome

illustrate the link by which stressors are translated into

Fig. 4 Immune, placental, and neuroendocrine network in perinatal

depression. The interactions between different systems during peri-

natal depression suggest the complexity of this mood disorder.

Individual predisposition and stress factors combine to cause adaptive

immune, brain, neuroendocrine, and placental changes involved in

MDD during pregnancy. Adaptive immune changes include activa-

tion of the TLR4 signaling system by specific ligands (DAMPs and

MAMPs) or by stressors. However, both genetic and early-life

experiences may predispose an individual to respond to stressors, in

addition to sex and the hormonal environment during puberty.

Chronic stress in susceptible individuals may lead to neuroadaptive

changes in monoaminergic systems, increased HPA axis activity and

high levels of circulatory GCs, due to impaired GR function.

Increased GCs interact with TLR4 and GR-activating mechanisms,

enhancing functional changes in systems such as the neuroendocrine

placenta. These changes may be responsible for the exacerbation of

depressive symptoms during pregnancy. Thus, the neuroadaptive

changes in maternal systems during perinatal depression lead to

dysfunction in the multi-pathway communicating network between

the brain, immune system and placenta, enhancing deleterious effects

on both mother and offspring during and after gestation (see text for

details). DAMPs, damage-associated molecular pattern molecules;

MAMPs, microbe-associated molecular pattern.
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damage signals, leading to an inflammatory process and the

risk of developing depression and chronic stress-related co-

morbid illnesses [89]. Stimulation of the innate immune

system leading to an enhanced inflammatory activity sug-

gests that both the inflammatory theory [64] and the most

recently posited ‘‘pathogen host defense hypothesis of

depression’’ [65] may well explain the pathogenesis of

depression during pregnancy, assuming that the same

mechanisms by which the innate and adaptive immune

systems interact with neurocircuits, neurotransmitters, and

neurosecretory systems in MDD, operate in a similar

fashion in the same structures and with the neuroimmune

placenta (Fig. 3) during perinatal depression, as previously

discussed.

In this context, it might be feasible to propose that

chronic stressors (DAMPs, MAMPs, and psychological

stimuli) activating the NLRP3-inflammasome may play a

crucial role in translating damage signals into an inflam-

matory process in the placenta, establishing a novel link in

the inflammatory circuit between the brain, immune sys-

tem, and immune placenta in MDD during pregnancy

(Fig. 4).

Furthermore, endogenous damage signals priming TLR

signaling and the NLRP3 inflammasome in placental

macrophages may be a crucial mechanism by which the

placenta-immune system becomes alerted by wide and

varied endogenous conditions [116], enhancing the secre-

tion of pro-inflammatory cytokines and the expression of

overstimulated Th1/Th17 pro-inflammatory activity,

implicated in triggering affective disorders during preg-

nancy. Interestingly, direct priming of TLRs by GCs may

lead to the early onset of MD during pregnancy, similar to

the roles of TLRs and GCs in the onset of MDD [118],

bipolar depression, and childhood sexual abuse [117].

The question of why some women develop depressive

symptoms during pregnancy while others do not requires

deeper exploration. Puberty and steroid hormones appear to

be critical in organizing brain plasticity during a critical

window of vulnerability, influencing long-term neuroin-

flammatory activity [50] in vulnerable individuals who

appear to be more likely to display immune dysregulation

leading to mental disorders in adulthood [36].

Current epidemiological studies report that 27% of

pregnant women show depressive symptoms and anxiety

before pregnancy, whereas 33% show affective symptoms

during pregnancy and 40% during the postpartum period

[239]. These data suggest that factors priming immune

cells in the maternal brain, periphery, and placenta, and

TLR signaling for pro-inflammatory activity, may set the

mechanisms underlying mood disorders from early post-

natal life, while puberty, sex hormones, and cortisol may

awaken the quiescent but primed immune system into

active inflammatory processes (NLRP3 inflammasome)

and pro-inflammatory responses leading to MDD in vul-

nerable individuals.

Moreover, the role of epigenetics in shaping and

orchestrating the structural anatomy and distribution of

neurotransmitters in the brain in response to stressors has

been widely documented [240, 241], and epigenetic mod-

ification of functional receptors and molecules enrolled in

TLR signaling and activation of the NLRP3 inflammasome

may help to elucidate the link between inflammation and

the risk of developing psychiatric disorders in susceptible

women during pregnancy [240, 241].

Perinatal depression is a complex and serious psychi-

atric disorder with negative obstetric and perinatal out-

comes for both mother and baby. Hypotheses and theories

explaining the etiopathogenesis of MDD may also apply to

perinatal depression and therefore it should be viewed as an

immune-related disorder impinging the brain, neuroen-

docrine system, and placental structures, caused by mal-

adaptive host-parasite defensive mechanisms, producing

lifelong mood-related disorders and behaviors in highly

vulnerable individuals.
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