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Abstract The multi-voxel pattern analysis technique is

applied to fMRI data for classification of high-level brain

functions using pattern information distributed over mul-

tiple voxels. In this paper, we propose a classifier ensemble

for multiclass classification in fMRI analysis, exploiting

the fact that specific neighboring voxels can contain spatial

pattern information. The proposed method converts the

multiclass classification to a pairwise classifier ensemble,

and each pairwise classifier consists of multiple sub-clas-

sifiers using an adaptive feature set for each class-pair.

Simulated and real fMRI data were used to verify the

proposed method. Intra- and inter-subject analyses were

performed to compare the proposed method with several

well-known classifiers, including single and ensemble

classifiers. The comparison results showed that the pro-

posed method can be generally applied to multiclass clas-

sification in both simulations and real fMRI analyses.

Keywords Ensemble learning � Functional MRI � Multi-

voxel pattern analysis � Pairwise classifier

Introduction

There are many analysis methods for exploring the mech-

anisms underlying the vast functions of the brain. They use

not only the location of activated voxels but also other

information like spatial dependency [1–3] or temporal

correlation [4–8] of fMRI signals. Multi-voxel pattern

analysis (MVPA) has been widely used to analyze the

spatial pattern information for fMRI classification [9–12].

There are a large number of voxels in fMRI data, and only

a small portion has decisive information for classification

[13]. Therefore, a feature-selection strategy is crucial for

the performance of a classification. Informative voxels are

selected as features by well-known feature-selection

methods such as analysis of variance (ANOVA) [13–17],

support vector machine (SVM) [13, 18–20], and recursive

feature elimination (RFE) [18].

General-purpose ensemble classifiers, including random

forest [21] and random subspace ensemble [13], have been

used in recent studies on spatial pattern analysis. The

ensemble classifiers randomly select voxels for the feature

set mainly because it is difficult to find the optimal subset

of feature space in general applications for classification.

For the detection of specific functional regions in the brain,

the searchlight approach has been applied to fMRI classi-

fication [29–32]; this merges neighboring voxels into a

feature vector and evaluates it. Since multiple brain regions

can be involved in performing a mental function, multiple

feature vectors are useful for fMRI classification, and the

informative feature vectors can be distributed in various

locations and sizes. However, no studies of fMRI-

optimized classifiers have used multiple feature vectors to

improve the classification performance.

This paper presents a binary classifier ensemble for

fMRI analysis, where each binary classifier includes mul-

tiple sub-classifiers. The location and size of informative

feature vectors for each sub-classifier are adaptively

determined by customized searchlight analysis. Because

the number of useful sub-classifiers also depends on the

classification problem, the proposed method adaptively
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determines the number of sub-classifiers for each binary

classifier. The proposed method combines the classification

outputs from all sub-classifiers.

The proposed method applies ensemble learning to the

multiple sub-classifiers to improve the fMRI classification.

In contrast to the previous methods, the proposed method is

optimized for fMRI analysis—it uses a searchlight approach

to construct the sub-classifiers, exploiting prior knowledge

that specific neighboring voxels can contain spatial pattern

information specialized for specific functions.

The proposed method provides a multiclass classifica-

tion framework, and can be applied to both binary and

multiclass classifications. The multiclass classification

problem can be solved by an ensemble of binary classi-

fications [22]. Since binary classification is usually much

easier to solve than multiclass classification, many studies

have used a pairwise approach that turns a multiclass

problem with N classes into N(N-1)/2 pairwise classifi-

cations, in which each pairwise classifier can be consid-

ered as an independent binary classification problem, and

the output class is obtained by combining the results of all

pairwise classifications. In particular, pairwise classifica-

tion has gained a great deal of popularity for its excep-

tional performance [23]. Wu et al. [24] suggested a

pairwise coupling method for multiclass classification, and

Li et al. [25] used a pairwise classifier for tissue classi-

fication based on gene expression. Feature selection for

pairwise classification has been studied to use the feature

subspace with a high discriminative potential for each

class-pair. Silva et al. and Ji et al. emphasized the

importance of pairwise feature selection [26, 27], and

Chen et al. [28] took advantage of the pairwise feature

selection in gene selection. In multiclass fMRI classifi-

cation, the informative regions can be distinctively dis-

tributed for each class-pair since different regions of the

brain are associated with different functions, as shown in

previous MVPA studies [9–12]. Therefore, each pairwise

classifier can have its own optimum feature set for clas-

sification. The proposed method is the first approach that

takes the pairwise-optimized feature set into account in

fMRI multiclass classification.

In this study, simulation and fMRI experiments were

performed to verify the proposed method, including intra-

and inter-subject analyses using the well-known fMRI

experiment of Haxby [9] with open-source data.

Materials and Methods

Methods

The proposed method consisted of an ensemble of sub-

classifiers with an optimized feature set, and the classification

output was made by voting from all the sub-classifiers. The

method included a training phase and a test phase. The

training phase had three stages: feature space selection,

selection of feature vectors, and construction of the sub-

classifiers. The test phase included classification and voting

of the sub-classifiers (Fig. 1). Pseudocodes of the proposed

method are described in the supplementary materials.

Training Phase

Feature Space Selection First, the brain region was seg-

mented according to the image intensity. Then the feature

space for multiclass classification was determined by the

conventional feature selection method before pairwise

classification. The feature selection process was performed

using brain regions of the training data. Five feature

selection methods were used to select the informative

feature spaces: whole brain, ANOVA, SVM-based feature

selection, recursive feature elimination (RFE), and a ven-

tral temporal cortex (VTC) mask. The detailed procedures

of each feature selection method are described in the sup-

plementary materials. All of the feature selection methods

were used for the proposed and the previous classification

methods for comparison.

Selection of Feature Vectors In fMRI pattern analysis,

the pattern information distributed over multiple voxels

was analyzed using a feature vector for the classification.

Each classification had its own optimal feature set con-

taining critical features for high classification performance.

For each class-pair, the selected regions in the feature

space were evaluated with the searchlight approach,

detecting the informative feature set for the pairwise

classification (Fig. 2A). In the searchlight analysis, the

selected voxels in the feature space were used as center

points of the searchlight windows. The spatial pattern of

the voxels in the searchlight window was treated as a

feature vector of multiple voxels. There can be a number of

regions providing feature vectors that could be useful for

the classification, and the proposed method was designed to

employ all useful feature vectors. The performance of the

classifier was defined as a ratio of the correct classification.

Leave-one-trial-out cross-validation was performed using

the training data with multiple trials, and the reliability of

each feature vector was estimated as the classification

performance. The optimal size of the searchlight window

depends on the spatial size of the pattern [32], and the

proposed method adaptively determined the window size to

extract a detailed pattern. In this study, the radius of the

searchlight window had a value between one and three

voxels. The searchlight size showing the highest classifi-

cation performance was selected at each location. Fig-

ure 2B shows the searchlight windows with various sizes.
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The number of useful feature vectors, which can be

different for each classification, is important for maxi-

mizing performance. At the same time, using an excessive

number of feature vectors should be avoided because it

may cause over-fitting and add noise to the classifier. Thus,

the proposed method adaptively estimated the optimal

number of useful feature vectors. In this paper, the number

of useful feature vectors for a class-pair of i and j classes

(CPij) was denoted as Mij. For estimation of the optimum

number of feature vectors for each class-pair, leave-two-

trial-out cross-validation was performed. For selection of

the optimal Mij, a number of binary classifications were

conducted using the training data of classes i and j with

various numbers of feature vectors. For each classification,

the most reliable feature vectors were selected based on the

searchlight analysis. The number of feature vectors with

the best performance for a class-pair Cij was assigned to

Mij. In the case that the feature vectors had the same per-

formances, the feature vectors were randomly ordered.

When two or more feature vectors produced the same and

Fig. 1 Flowchart of the proposed method. The straight lines refer to the training phase while the dashed lines refer to the test phase.

Fig. 2 Selection of feature

vector using the searchlight

approach. A Illustration of the

feature vector evaluation.

Highlighted voxels indicate the

informative regions (center of

the searchlight window) for the

class-pair of faces and houses.

B Candidate shapes of

searchlight windows and

numbers of voxels included in

the windows.
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best performance, the largest value was assigned to Mij

since the ensemble of many classifiers is more robust to

noise.

As a result, the locations, spatial sizes, and number of

useful feature vectors were determined for the binary

classification.

Construction of the Sub-classifiers A sub-classifier was

constructed for each selected feature vector. Each sub-

classifier took into account the information of the two

classes of interest.

A linear SVM classifier was used as the sub-classifier

because of its simplicity and robust performance [19, 20],

and the decision boundary was determined using the

training data of two classes of interest. Each class-pair

consisted of multiple sub-classifiers having their own

optimized feature vectors.

Test Phase

After the training phase, each class-pair consisted of a

number of sub-classifiers. When a pair of classes i and j

(CPij) had a number of feature vectors of Mij, the class-pair

had Mij sub-classifiers of {SCij,1, SCij,2, …, SCij,Mij}

(Fig. 3A). The test data of an unknown class were applied

to all pairwise sub-classifiers. In the sub-classifier SCij,k of

a class-pair CPij, the probabilities of class interests, Pij,i,k

and Pij,j,k, were estimated from the signed distances of the

feature vectors from the decision boundary. The probability

was calculated by taking the probability density function

(PDF) into account. The PDFs of the signed distance of

each class of CPij from the decision boundary were esti-

mated from the training data. The distances between the

training data and the decision boundary were applied to a

kernel density estimation (KDE) [33, 34] to estimate the

PDF for each class. The KDE is a non-parametric method

to estimate the underlying PDF of a random variable from

its histogram and kernel function. The kernel function for

the KDE is a Gaussian function, and the standard deviation

of the kernel function is chosen by approximation of the

normal distribution [35]. Each class-pair had a different

number of sub-classifiers because the number of useful

feature vectors depends on the class-pair. Thus, normal-

ization using the number of sub-classifiers was required.

Therefore, the voting values of Vij,i and Vij,j were defined

by normalizing the probability as follows:

Vij;i ¼
XMij

k¼1

Pij;i;k=Mij; Vij;j ¼
XMij

k¼1

Pij;j;k=Mij ð1Þ

The voting values were obtained from every class-pair,

as shown in Fig. 3B. Finally, the proposed classifier

selected the class with the largest sum of voting values

from the related class-pairs as follows:

Estimated class ¼ arg max
k

X
fði;jÞ ji¼k or j¼k;i\jg Vij;k ð2Þ

where the preceding subscript number is always smaller

than the following one (e.g. i\ j in CPij).

Experiment

The proposed classifier was compared to widely used

classifiers, such as SVMs with one-against-all and pairwise

environments, adaptive boosting (AdaBoost), bagging,

random forest, random subspace ensemble, and logistic

regression (LR) with elastic net regularization [36, 37]. We

used the standardized Weka software [38] and default

parameters: a complexity of 1 for the SVM, a weight

threshold of 100 for the AdaBoost, a size of each bag of

100% for the bagging, and a size of a subspace of 0.5 for

the random subspace ensemble. Exceptionally, the number

of base classifiers was set to 1000 for all tested ensemble

classifiers to boost performance. The experiments showed

that the performances were saturated at an ensemble of

1000 classifiers in all cases. Linear SVM classifiers were

used as the base classifiers for the classifier ensembles. For

the LR classifier with elastic net regularization, we used the

implemented package glmnet (http://www.stanford.edu/

*hastie/glmnet_matlab/). The parameters of elastic net

regularization were selected to have the highest perfor-

mance in grid searches. The parameter a was a tradeoff

parameter between lasso and ridge penalties, which was
Fig. 3 Voting in the test phase. A Calculation of voting values of a

class-pair. B Calculation of the classification result.
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selected from a range of [0, 0.1, 0.2, …, 1]. The parameter

k was a Lagrange multiplier, which was selected from a

range of [0, 0.001, 0.002, …, 1].

Simulation

In fMRI classification, the pattern information is analyzed

for classification. A simulation was performed to assess the

properties of the proposed method on the simulated images,

where locations of the pattern information and its contrast-

to-noise ratio (CNR) were known. The simulation con-

tained different conditions including ten levels of CNR and

two settings of pattern information overlapping to show the

performance of the proposed method in comparison to the

previous classification methods.

For each simulation, there were eight classes and each

class had ten simulated images. Nine images of each class

were used as training data and the other one was used as

testing data (Fig. 4A). The simulated images were gener-

ated as follows:

1. Noise images of 140 9 10 were randomly generated

with a zero mean and a standard deviation of rN . The
noise images were different for every simulated image.

2. The pattern information in the brain could have

arbitrary values for each class-pair and region, so the

value of each voxel was randomly generated to

generalize the pattern information by selecting voxel

values from a normal distribution with a zero mean

[39]. The standard deviation of the pattern information

was adjusted so that its CNR could be a value of [0.1,

0.2, …, 1.0], which was defined as follows:

CNR ¼ rS
rN

ð3Þ

where rS is the standard deviation of the pattern

information.

3. The locations of the pattern information in the

simulated images were different according to class-

pairs as shown in Fig. 4B. A simulated pairwise signal

Sij of 140 9 10 for a class-pair CPij included pattern

information (as specified in B) on the pre-allocated

region in Fig. 4B, and all zeros in the other regions. In

the first no-overlap setting, the pattern information that

was useful to classify each class-pair was localized

separately, so that each class-pair had pattern infor-

mation of a 5 9 10 region exclusively. On the other

hand, in the second overlap setting, each class-pair had

10 9 10 pattern information and every region had

overlapped pattern information which could distin-

guish two class-pairs.

4. The simulated image for class i was generated by

adding the simulated pairwise signal to the noise image

(Fig. 4C) as follows:

Fig. 4 Simulation settings. A Composition of the whole simulated dataset. B Location of the pattern information in the simulated image

according to class-pairs with two settings of the simulation. C Example of the construction of a simulated image for class i.
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Simulated imagei ¼
1

2

X8

j¼iþ1

Sij �
1

2

Xi�1

j¼1

Sji þ noise ð4Þ

The simulated pairwise signal Sij was divided and

distributed to two related classes i and j with opposite

signs. While Sij was the optimal signal for the classi-

fication of classes i and j, other regions could con-

tribute slightly to distinguishing classes i and j.

5. The signal intensity of each voxel in the simulated

image was normalized to have zero mean and unit

variance for multiple trials and various classes.

For each CNR and overlapping setting, ten repetitions of

simulations were performed to evaluate the performance of

the proposed method in comparison with the other classi-

fiers. The individual performance could be caused to

fluctuate by the randomness. However, the simulation was

performed multiple times on images with a number of

voxels that were adjusted to have intended CNRs. From the

multiple simulations, the performance tendencies of the

classifiers could be validated with respect to CNR. For

analysis of the simulated data, all voxels were used as the

feature space.

fMRI Dataset

Actual fMRI datasets were used for training and testing of

the proposed method for verification. We used an open-

source fMRI dataset of Haxby’s experiment [9]. All the

data in the set were acquired from seven subjects. The first

subject’s data are available as an example of the MVPA

MATLAB Toolbox (http://code.google.com/p/princeton-

mvpa-toolbox/) and the data of the other six subjects can be

downloaded from the PyMVPA.org Data Server (http://

data.pymvpa.org/datasets/haxby2001/). The fMRI data

were acquired while visual stimuli were presented to the

subjects. The experiment consisted of multiple runs: 10

runs for subject 1, 11 for subject 6, and 12 for each of the

rest. Note that the ninth run of the fifth subject from the

PyMVPA.org data server (subject 6 in this paper) was not

included in the analysis because the data have been

reported to be corrupted. Each run consisted of eight blocks

of visual stimuli in eight classes: faces, houses, cats, bot-

tles, scissors, shoes, chairs, and scrambled pictures, where

the scrambled pictures were composed of random textures.

The order of the class blocks were randomized across runs.

Whole-volume images of brain activity containing

64 9 64 9 40 voxels were acquired during each period of

repetition (TR) of 2500 ms. Each class block contained 9

TRs. Thus, each run had 72 volume images (8 class

blocks 9 9 volumes/block).

The entire dataset was preprocessed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8) for motion

correction, removal of low-frequency drift, and registration

to align the different subject images into the same space

with isotropic voxels of 3.5 9 3.5 9 3.5 mm3. The spatial

registration was performed with 12 linear affine transfor-

mation and non-linear transformation of SPM8. The signal

intensity of each voxel was normalized to have zero mean

and unit variance for multiple trials and various classes.

The hemodynamic delay was considered to be 5 s [40]. In

the analysis, it was not appropriate to take each volume

image for training or testing because the multiple volume

images within the same block were highly correlated.

Therefore, the training and the test processes were per-

formed on an average of nine volume images in each class

block. The number of voxels in the feature space was

around 10000–30000 for the whole brain analysis, 300–700

for the VTC mask, and 1000 for the other feature space

selection methods.

The analyses were performed in intra- and inter-subject

experiments. In the intra-subject experiment, the data of each

subject were analyzed independently. For each subject, the

classifiers were trained with all runs except one, and the

excepted run was used as the test signal. Every run was used

as test data (as with the jackknife method). The inter-subject

analysis was performed to verify that subject-invariant pat-

tern information could be extracted using the proposed

method. In the inter-subject analysis, the classifiers were

trained with signals from all subjects except one, and the

signals from the excepted subject were used for testing.

Every subject was used as a test subject, in succession.

Results

Simulation

An example of the informative regions detected by the

proposed method for pairwise classification from the

training phase of both settings is shown in Fig. 5A and B.

This typical example is from one of ten repetitions of

simulation. For each class-pair, centers of the searchlight

windows that had significant classification performances

([90%) are highlighted. The highlighted regions were

highly correlated with the locations of the pairwise pattern

information in both settings of the simulations. The CNR of

the simulated pattern information was 0.6 for Fig. 5A and

B. Figure 5C and D show the correctness of the proposed

method in selection of the feature vector. True positive

ratio and false positive ratio represent the proportions of

the selected feature vectors in the red boxes and the other

sections, respectively. Mean and standard deviation were

measured across all repetitions of simulation for each CNR.

The correlation between the highlighted regions and pat-

tern information was well preserved for various CNRs. The
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result showed that the proposed method can detect infor-

mative regions. Figure 5E and F show the performance of

the proposed method in comparison with the other classi-

fiers in both settings of the simulations. The classification

performances of eight classes in ten trials were averaged.

The results showed that the proposed method had the

highest performance in all conditions, suggesting that the

proposed method is robust over a wide range of CNR and

information overlapping. For all tested classifiers, the

performances improved as CNR became large. When CNR

decreased, the performance differences between the pro-

posed method and the other methods increased since the

proposed method adaptively searches for an informative

feature set.

A Wilcoxon signed-rank test was performed to verify

the significance of the performance difference [41, 42]. The

test was performed for all CNR with a null hypothesis of

PERproposed B PERconventional, where PER denoted the

performance. The statistical analysis showed that the pro-

posed method outperformed the compared classifiers

(Tables 1 and 2).

fMRI Dataset

Examples of searchlight analysis across the whole brain are

shown in Fig. 6A and B, in which regions that have reliable

information for pairwise classification in the intra- and

inter-subject analyses are highlighted. Four class-pairs

Fig. 5 Results of the simulation. For each class-pair, informative

regions analyzed by the proposed method are highlighted while the

locations of the pairwise pattern information are displayed by red

boxes in both settings of the simulation; (A) no overlap and

(B) overlaps exist in pairwise informative regions. The correctness

of the proposed method in selection of the feature vector for (C) no
overlap and (D) overlapped settings. The classification performances

for (E) no overlap and (F) overlapped settings with respect to CNR.

Table 1 P values from Wilcoxon signed-rank test in the non-overlap setting

Classifier CNR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM 1vsAll 0.0090** 0.0083** 0.0865 0.0059** 0.0064** 0.0641* 0.2004 0.1367 0.1587 –

SVM 1vs1 0.0139** 0.0213** 0.0125** 0.0054** 0.0076** 0.0315* 0.0579* 0.1807 0.0899 –

AdaBoost 0.0090** 0.0083** 0.0125** 0.0216** 0.0038** 0.0641* 0.1468 0.2113 0.1587 –

Bagging 0.0059** 0.0104** 0.0178** 0.0150** 0.0054** 0.0467* 0.3766 0.1807 0.1587 –

Random Forest 0.0429* 0.0076** 0.0038** 0.0064** 0.0059** 0.0038** 0.0038** 0.0059** 0.0059** 0.0139**

Random SubSpace 0.0090** 0.0142** 0.0090** 0.0178** 0.0142** 0.0641* 0.1990 0.2965 – –

LR ? ElasticNet 0.0090** 0.0542* 0.1468 0.0776 0.2234 0.1727 0.2771 0.3274 – –

The P values were acquired with the null hypothesis of PERproposed B PERconventional. En dashes in the table indicate that the statistical test was

not available since both results showed 100% performance. Multiple comparison correction was performed by controlling the false discovery rate

(FDR)\ q.

* q\ 0.1, ** q\ 0.05.
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Table 2 P values from Wilcoxon signed-rank test in the overlap setting

Classifier CNR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVM 1vsAll 0.0122** 0.1302 0.0693* 0.1244 0.0339* 0.1587 – – – –

SVM 1vs1 0.0464* 0.0213** 0.0150** 0.1184 0.0888 – – – – –

AdaBoost 0.0260** 0.1068 0.0253** 0.0865 0.0339* 0.1587 – – – –

Bagging 0.0260** 0.0917 0.0250** 0.0711* 0.0294* 0.1587 – – – –

Random Forest 0.0296* 0.0372* 0.0025* 0.0025** 0.0025** 0.0059** 0.0216** 0.0899 0.0899 –

Random

SubSpace

0.0332* 0.0807 0.0618* 0.0641* 0.1807 0.1587 – – – –

LR ? ElasticNet 0.0549* 0.0881 0.2643 0.4583 0.1807 – – – – –

The P values were acquired with the null hypothesis of PERproposed B PERconventional. En dashes in the table indicate that the statistical test was

not available since both results showed 100% performance. Multiple comparison correction was performed by controlling the false discovery rate

(FDR)\ q.

* q\ 0.1, ** q\ 0.05.

Fig. 6 Examples of analyzed feature vectors. A and B show the

informative regions that were analyzed by the searchlight analysis

according to different class-pairs; A intra-subject and B inter-subject

analyses. The center locations of the feature vectors whose perfor-

mance was higher than a threshold are highlighted. The thresholds for

the intra- and inter-subject analyses were 80% and 70%, respectively.

In the intra-subject example, the analyzed regions of the first subject

are displayed. The z-coordinate is indicated in the MNI coordinate

system. C Adaptive searchlight window sizes for class-pair of houses

and cats in the inter-subject analysis as an example. The test subject

was the first subject. D Examples of the classification performances of

a pairwise ensemble classifier with respect to the number of the

feature vector. The selected class-pairs are the same as in (A) and (B).
The results under 500 feature vectors are displayed for readability.
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were selected as examples among all 28 class-pairs from

eight classes. In both experiments, some class-pairs shared

common regions such as the VTC region, which is known

to be responsible for the classification of visually-presented

objects. However, different patterns for each class-pair

reflected that each class-pair had specific informative fea-

ture set. In the intra-subject analysis (Fig. 6A), there was

subject-specific information that produced a relatively high

performance. On the other hand, the outcome of the inter-

subject analysis (Fig. 6B) showed that useful subject-

invariant pattern information can be detected by the pro-

posed method. The adaptive searchlight window sizes

showing the highest performance were different for loca-

tions (Fig. 6C), since the spatial size of the useful pattern

information depends on locations. Therefore, the adaptive

searchlight window size can improve the classification

performance. The analyzed results were overlaid onto a

high-resolution Colin brain template [43].

The number of useful feature vectors for each class-pair

was estimated adaptively. Examples of the inter-subject

classification accuracy according to the number of feature

vectors are shown in Fig. 6D. The accuracies were aver-

aged for all the test subjects. As the number of feature

vectors increased, the accuracy improved at first but then

gradually decreased because less informative features were

added. The result showed that each class-pair had its own

optimal number of feature vectors.

The intra-subject classification accuracies from various

classifiers using the five feature selection methods for each

subject are shown in Fig. 7A. The performances of each

subject are averaged (see Fig. S1 for detailed performances

of individual subjects), and the proposed method had the

best performance in all cases. Classification performance is

known to be degraded by over-fitting when there are many

irrelevant features [11]. Because fMRI analysis usually

deals with a huge number of voxels, adequate selection of

informative voxels can improve the classification perfor-

mance [44]. Unlike the previous classifiers which have low

performance when all voxels in the brain are considered in

the classification because of the inclusion of less infor-

mative voxels, the proposed method had relatively high

performance because it searched for an informative feature

set of each class-pair.

The result of inter-subject analysis exhibited a tendency

similar to that of the intra-subject analysis (Fig. 7B). The

proposed method showed robust performance using all five

Fig. 7 The classification performance of all tested classifiers for each subject; A intra-subject and B inter-subject analyses. The dotted lines refer

to the chance level of 12.5% for eight classes. C Confusion matrix of the proposed method in the inter-subject analysis.
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feature selection methods and worked successfully for

inter-subject classification. The confusion matrix of the

proposed method for inter-subject analysis revealed that

some classes were more difficult to discriminate than oth-

ers, such as the faces-cats pair in the experiments (Fig. 7C).

A statistical test was performed to show the significance

of the performance differences on the fMRI experiment.

For each feature space selection method, all results from all

classifiers were collected to perform statistical analysis

using the Wilcoxon signed-rank test with the null hypoth-

esis of PERproposed B PERconventional. Table 3 shows the P-

values of the analysis. The results showed that the perfor-

mance differences between the proposed and compared

classifiers were statistically significant.

Discussion

In this study, we proposed a binary classifier ensemble for

the analysis of fMRI data, where every binary classifier

was optimized by customized searchlight analysis and all

binary classifiers were combined to acquire a robust per-

formance. The proposed method optimized sizes, locations,

and number of feature vectors for every binary classifica-

tion, and multiclass classification was achieved by the

ensemble of binary classifications. A similar idea was

suggested by Kuncheva et al. [13], that the spatial rela-

tionship between voxels could be considered in the random

subspace ensemble classifier. The proposed method con-

structed sub-classifiers in an information-based process

rather than a random-based method, adaptively taking

optimum values of the locations, spatial sizes, and number

of useful feature vectors. The proposed method can be

applied to both of binary and multiclass classification

problems. When it is applied to the binary classification,

the classification procedure is treated as if there is one

class-pair. In this paper, the multiclass classification

problem was adopted to verify the proposed method.

We analyzed the computational cost for the proposed

method. It took 247.73 min for the training and 9.02 min

for the intra-subject analysis of an fMRI dataset with the

SVM-based feature space, which had 10 runs, 23127

voxels in the brain, 1000 voxels in the feature space, and 28

class-pairs from 8 classes. The computational cost depen-

ded on the experimental environment, such as the size of

the dataset and the number of classes. The computation

times were measured using an Intel� CoreTM i7-3930 k

CPU and the analysis was performed using MATLAB. Due

to its pairwise-adaptive characteristics, the training process

of the proposed method has a high computational cost.

Once the training is performed, the test can be performed in

a relatively short time.

The searchlight analysis with the adaptive window size

was used to detect both the detailed information in small

regions and the general tendency over broad regions.

Therefore, it was suitable for intra-subject analysis and

showed robust performance even in the inter-subject

environment. To further improve the inter-subject analysis,

it could be considered that the proposed method could use

sub-classifiers devoted to the inter-subject fMRI analysis

such as graph-based pattern analysis [45].

The proposed method used surrounding voxels of the

selected feature voxels, so it could be performed using

more voxels than the compared classifiers. To verify the

effect of an increased number of voxels, the compared

classifiers underwent the analyses with a wide range of

feature space sizes [1000, 2000, …, 10000]. The intra-

subject experiment with the first subject was tested and the

feature space was analyzed by the SVM-based selection

method. The experiment results showed that the excessive

voxels degraded the performance because they had less

information for classification.

To assure a fair comparison between the proposed and the

previous classification methods, we performed grid searches

for the number of key parameters of the compared classifiers,

such as the complex parameter of the SVM classifier in a

Table 3 P values from

Wilcoxon signed-rank test of

the fMRI experiment for each

feature space selection method.

Classifier Feature selection

Whole brain ANOVA SVM RFE VTC

SVM 1vsAll 0.0059** 0.0059** 0.0059** 0.0059** 0.0059**

SVM 1vs1 0.0059** 0.0059** 0.0059** 0.0059** 0.0464*

AdaBoost 0.0059** 0.0059** 0.0059** 0.0086** 0.0617*

Bagging 0.0059** 0.0059** 0.0059** 0.0059** 0.0059**

Random forest 0.0059** 0.0059** 0.0059** 0.0059** 0.0059**

Random SubSpace 0.0059** 0.0059** 0.0059** 0.0059** 0.0344*

LR ? ElasticNet 0.0125** 0.0059** 0.0086** 0.0086** 0.0213**

The P values were acquired with the null hypothesis of PERproposed B PERconventional. Multiple comparison

correction was performed by controlling the false discovery rate (FDR)\ q.

* q\ 0.1, ** q\ 0.05.
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range of [0.0001, 0.001, …, 10000], the weight threshold

parameter of the AdaBoost classifier in a range of [0, 10, 20,

…, 200], the size of each bag parameter of the bagging

classifier in a range of [10%, 20%,…, 100%], and the size of

each subspace of the random subspace ensemble classifier in

a range of [0.1, 0.2,…, 1]. All analyseswere performed using

Weka on the simulation with the non-overlapping setting.

The results showed that the classification performance was

less sensitive to the parameters in the tested environment and

the default parameters used in the experiments showed the

highest performances.

In conclusion, the proposed classifier ensemble method

was developed to improve the classification performance of

the fMRI data, where multiple sub-classifiers were opti-

mized by customized searchlight analysis. The proposed

method provides a pairwise classifier ensemble framework

for multiclass classification, which took adaptive feature

vectors for each binary classification. We showed robust

performance of the proposed method applied to real fMRI

analyses for simulation and actual fMRI data including

intra- and inter-subject cases, in comparison with the pre-

vious classifiers including single and ensemble classifiers.

The proposed method is expected to be applicable to

multiclass fMRI pattern analysis.
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