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Abstract Injury to the nervous system induces localized

damage in neural structures and neuronal death through the

primary insult, as well as delayed atrophy and impaired

plasticity of the delicate dendritic fields necessary for

interneuronal communication. Excitotoxicity and other sec-

ondary biochemical events contribute to morphological

changes in neurons following injury. Evidence suggests that

various transcription factors are involved in the dendritic

response to injury and potential therapies. Transcription

factors play critical roles in the intracellular regulation of

neuronal morphological plasticity and dendritic growth and

patterning. Mounting evidence supports a crucial role for

epigenetic modifications via histone deacetylases, histone

acetyltransferases, and DNA methyltransferases that modify

gene expression in neuronal injury and repair processes.

Gene regulation through epigenetic modification is of great

interest in neurotrauma research, and an early picture is

beginning to emerge concerning how injury triggers intra-

cellular events that modulate such responses. This review

provides an overview of injury-mediated influences on

transcriptional regulation through epigenetic modification,

the intracellular processes involved in the morphological

consequences of such changes, and potential approaches to

the therapeutic manipulation of neuronal epigenetics for

regulating gene expression to facilitate growth and signaling

through dendritic arborization following injury.
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Introduction

The plasticity of dendritic growth and response to injury

are surprisingly understudied areas, while the intrinsic and

extrinsic factors that affect dendritic growth and targeting

during development are more fully understood. Upon

injury to the adult central nervous system (CNS) many

aspects of development are reintroduced, including the

release of glial and neuronal neurotrophic factors [1, 2],

morphological and physiological cellular responses to

micro-environmental changes, and the structural reorgani-

zation of neuronal networks, that provide means of

recovery of lost or limited function after injury. At the most

basic level, all cells in the CNS respond to extrinsic cues

through intracellular signaling cascades that influence cell-

specific genes involved in these cellular responses to injury

[3]. The involvement of epigenetic changes within neurons,

and how they affect neuronal morphology and repair after

injury, are now of great scientific interest.

Transcription factors are essential for the initiation of

target gene transcription for the further production of

transcription factors or the translation of other genes that

play roles in the retraction, regrowth, and reorganization of

dendritic branches [4–6]. Much of what we know about the
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roles transcription factors play in these processes stem

from limited studies on the actions of a handful of key

factors. Likewise, the injury-induced plasticity of neuronal

extensions is often studied in the context of cellular

responses to extracellular events and biochemical interac-

tions that influence neuronal behavior through intracellular

signaling cascades and changes in gene expression through

epigenetic modulation.

Following CNS injury, the primary mechanical insult and

especially the temporo-spatial spread of secondary bio-

chemical inflammatory, oxidative, and other events, cause

glial, vascular, and neuronal damage and death surrounding

the injury site, [7–9] and induce surviving cells to produce

and release a variety of cytokines, chemokines, neurotrans-

mitters, and trophic factors [10–12]. These released agents

signal local cells to trigger a variety of responses to the

changing microenvironment induced by injury. Glia and

neurons secrete powerful trophic factors like glial cell line-

derived neurotrophic factor [2], brain-derived neurotrophic

factor (BDNF) [12], and nerve growth factor (NGF) [1].

Upon production and secretion into the extracellular matrix,

these factors act primarily locally on receptors bound within

the membranes of the neuronal soma and dendrites.

Influence of Injury on Dendritic Morphology
and Structural Dynamics

After injury to the CNS, local neurons may undergo initial,

necrotic, or delayed programmed cell death in response to

the primary insult and secondary injury processes. In

addition, neurons that do not ultimately die may undergo

extensive morphological alterations including dendritic and

somatic atrophy [13–16], as well as synaptic and dendritic

remodeling [17].

By 1 week after thoracic spinal cord injury (SCI), neu-

rons in the cord show atrophic dendritic arbors in addition

to reduced soma size [18]. Several weeks following CNS

injury, surviving neurons continue to exhibit the atrophic

attributes of reduced dendritic length [19] and soma area.

Loss of afferent input to neurons as a result of injury may

be the cause of dendritic atrophy following SCI [19],

though intracellular signaling and cellular degradation

pathways like autophagy are known to be acutely activated

[20] and may result in morphological changes.

Transcription Factor Involvement in Dendritic
Plasticity

Research over the past decade has uncovered many

mechanisms by which dendrites grow and dendritic fields

are maintained. Different neuronal types exhibit different

morphologic orientations of dendritic patterning likely

based on their location, local microenvironment, and

function within the CNS. This knowledge is important for

understanding the dendritic response to injury, as well as

appreciating particular responses to pharmacological or

other agents aimed at modulating neuronal morphology

and plasticity to improve repair and recovery in trauma and

disease. Investigations into the genetic influence and types

of transcription factors that regulate the intrinsic capacity

of neurons to grow and respond to extrinsic stimuli have

been pivotal to broadening knowledge of these topics.

Much work in answering basic questions regarding

transcription factor control over neuronal morphological

plasticity has involved studies using Drosophila as a

model, especially concerning dendritic regulation. As the

Drosophila nervous system is simple compared to verte-

brates, primary transcriptional mediators of neuronal fate

and dendritic patterning have been successfully identified.

The development of subclasses of multipolar dendritic

neurons is controlled by a combination of key transcrip-

tional regulators. These dendritic arborization (da) neurons

appear to be coordinated in development to some extent by

the level of cut gene expression [21]. Cut is a home-

odomain protein and transcription factor involved in reg-

ulating the complexity of dendritic arbors [21]. Neurons

with small and non-complex dendritic arbors express no

Cut (Class I) or low levels of Cut (Class II). Higher

expression levels of Cut result in increasingly greater

complexity of dendritic fields (Classes III and IV) [22, 23].

The mammalian version of Cut, known as CCAAT-dis-

placement protein (CDP), is interchangeable with Cut in

Drosophila neurons with similar results [22]. CDP, also

known as Cux1, is located in mature cortical pyramidal

neurons among other neurons of the mammalian CNS [24],

where it is suggested to modulate the post-mitotic mor-

phological characteristics of neurons including dendritic

patterning. Cut may stimulate the development of actin-

rich filopodia-like extensions that may contribute to den-

dritic branching dynamics. Part of this influence could stem

from its inhibition of p27Kip1 expression and modulation

of RhoA signaling [25].

Another transcription factor studied in Drosophila that

is conserved in mammals is the protein Abrupt. Abrupt is a

BTB-zinc finger protein of the Knot/Collier family of

proteins that contributes to the transcriptional regulation of

dendritic arborization in class I da neurons [26–28].

Specifically, Abrupt dose-dependently diminishes dendritic

branching [27], thereby likely coordinating with Cut to

establish the class I-specific lack of a dendritic arbor in

post-mitotic neurons. However, any role of potential

mammalian homologs of Abrupt remains unclear. Another

transcription factor that influences dendritic complexity in

Drosophila, Spineless, has a mammalian homolog, aryl-

hydrocarbon (dioxin) receptor (AHR); however, AHR does
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not appear to affect dendritic development in mammalian

neurons the way it does in Drosophila [29].

Though somewhat less understood, other transcription

factors play known roles in the dendritic patterning of

mammalian neurons. Evidence suggests that the basic

helix-loop-helix transcription factors neurogenin-2 and

NeuroD affect dendritic morphological organization in

cortical pyramidal neurons and granule neurons, respec-

tively [30–32]. Others, such as activating transcription

factor-3 (ATF-3) and signal transduction and transcription-

3 (STAT3) are better characterized and induce a variety of

responses in neurons during development and in response

to injury and treatment.

ATF-3 is a transcription repression protein, targeted by

neuronal cyclic AMP-response element binding (CREB)

protein signaling, that promotes neuroprotection and pre-

vents the dendritic damage caused by neurotoxicity and the

oxygen-glucose starvation induced by ischemic injury

[33, 34]. It is known that ATF-3 regulates gene expression

through dimerizing or interacting with other transcription

factors in the leucine zipper family like Fos/Jun [35, 36],

which allows binding to Ap1 and CRE/ATF promoters

[37, 38]. Upon injury, ATF-3 is upregulated in many

neurons in the CNS [39, 40] and peripheral nervous system

[41, 42]. Upon overexpression, ATF-3 stimulates enhanced

neurite outgrowth in vitro, suggesting that the transcription

factor increases growth plasticity in neurons, although the

exact transcriptional mechanism remains unclear. Some

genes regulated by ATF-3 in neuronal cells include heat

shock protein 27 (Hsp27) [43] and c-Jun [38], the latter of

which is involved in ATF-3-mediated neurite growth [44].

It could be that ATF-3 acts in concert with other tran-

scription factors and modulates the expression of various

genes to stimulate such neuronal responses. The mecha-

nisms by which ATF-3 regulates neuronal responses to

injury and regrowth require further study.

STAT3, among other members of the STAT transcrip-

tion factor family, isalso induced by injury to the nervous

system [45, 46]. In vitro and in vivo evidence suggests that

activation of STAT3 by phosphorylation at Tyr 705 is

protective in injured neurons [45, 46]. Phosphorylation of

STAT3 and other STAT proteins occurs primarily through

the activation of Janus kinases (JAKs) by cell receptor

binding by neurotransmitters, hormones, neurotrophic

factors, or other extracellular signaling proteins. A primary

cellular function for JAK-STAT signaling is to influence

gene expression [47]. Upon activation, JAKs are phos-

phorylated and this leads to the phosphorylation and

dimerization of STAT proteins. STAT dimers localize to

the nucleus, bind DNA, and serve in the regulation of gene

transcription. Among the many physiological functions of

JAK-STAT signaling are cell survival [48, 49], axon

growth [50], differentiation, and proliferation [51, 52].

After CNS injury, JAK-STAT signaling and STAT3

expression appear to play roles in neuronal plasticity and

regrowth. Specifically, upon neurite damage, STAT3

expression and activity increase in regenerating neurons

[53]. STAT3 activation is also involved in neuronal dif-

ferentiation and neurite outgrowth in the presence of

trophic factors, including NGF and BDNF [54]. STAT3

activation by Trk receptor-activation by neurotrophins may

be a point of interaction between multiple intracellular

signaling pathways, including phosphatidylinositol-3-

kinase (PI3K) and extracellular-related kinase (Erk) in

addition to JAK signaling [54].

Epigenetic Modifications Following Central
Nervous System Injury

In normal CNS development and function, appropriate

gene expression through epigenetic regulation is of great

consequence. Even minor fluctuations in neuronal activity

can, and may be necessary, to impart extended modifica-

tion of gene expression [55]. As such, when insulted by

trauma or through other means, dramatic changes in

intraneuronal processes occur that can result in chronic

dysregulation of function and altered neuron metabolism,

and can instigate necrotic and programmed cell death. The

term ‘‘epigenetics’’ is traditionally applied to the system of

regulation of heritable changes of gene expression separate

from those ofDNA itself. However, epigenetics now covers

a broad set of processes and events that regulate chromatin

structure and function. Non-replicating neurons are unique

in that epigenetic modifications are not inherited. There-

fore, the specific term ‘‘neuroepigenetics’’ has been sug-

gested to cover such epigenetic events that occur within the

CNS [56].

After injury to the brain or spinal cord, projections of

neurons involved in neuron-neuron interaction and com-

munication as well as the surrounding glia are lost or

damaged. In cells that survive the initial trauma, a complex

orchestration of events involving histone-modifying

enzymes and transcription factors unfold to mediate drastic

changes in gene expression that allow for the specific cell

type to respond to temporal changes in tissue pathology

post-injury. Chromatin remodeling is highly important in

the regulation of neuronal degeneration, plasticity, and

regrowth by controlling critical transcriptional processes in

neurons and glia [57–59]. In general, at least 8 major

epigenetic modifications affect chromatin remodeling in

cells (Fig. 1).

Some of the best-studied enzyme-mediated epigenetic

responses include histone lysine acetylation and deacety-

lation [60]. The acetylation of lysine residues on histone

N-termini is accomplished via the activity of histone acetyl
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transferases (HATs). Histone acetylation by HATs neu-

tralizes the positive charges on histone tails that promotes

chromatin unfolding and enhances access of the tran-

scription factors involved in gene regulation. Alternatively,

histone deacetylases (HDACs) eliminate these acetyl

groups, compress chromatin, and repress transcription. As

described in a recent review by Lv et al. [61], overall spinal

cord levels of acetylation are downregulated in rat models

of SCI, and giving valproic acid (VPA), a class I HDAC

inhibitor, increases acetylation and enhances the recovery

of function [61–63]. Whether or not these effects of VPA

are the result of the direct influence on chromatin modifi-

cation is unclear, as VPA modulates various intracellular

signaling pathways and has its own neuroprotective effects

[64]. Nevertheless, the evidence suggests that epigenetic

modulation through increased histone acetylation has a

positive influence on the functional ability and other effects

of various cellular events in animal models of SCI.

The role of Class II HDACs, including HDAC4, 5, 6,

and 7, is less understood. However, research suggests that

specific Class II HDACs have a positive impact on specific

neuronal functions and synaptic plasticity. Knock-out of

HDAC4 in mice reduces hippocampal neuron functions

and synaptic plasticity, negatively impacting learning and

memory [65]. Interestingly, HDAC5 knock-out doesnot

have similar effects, suggesting HDAC-specific influences

on neuronal behavior and morphology. Such findings have

important consequences for the development and applica-

tion of therapeutics targeting HDAC activity and epige-

netic regulation. It would appear that broadly targeting

HDAC inhibition after CNS injury should be cautioned

against, as increased activity in some HDACs, such as

those in Class I, may be detrimental while some Class II

HDACs may prove beneficial when active in certain neu-

ronal populations. As Class II HDACs are known to be

activated via Ca2? signaling in neurons, and such signaling

is a well-understood process in neuronal responses to brain

and spinal cord injury, a better understanding of HDACs

and other epigenetic modulators is needed for optimal

therapeutic development for modifying such events under

these pathological conditions.

Another prominent epigenetic alteration involves direct

DNA modification by chemical methylation [66]. DNA

methyltransferases (Dnmts) are responsible for DNA

methylation through methyl group transfer from S-adenyl

methionine to a cytosine residue to form 5-methylcytosine.

During DNA replication, Dnmt1 regulates transfer of the

DNA methylation pattern from the parent DNA strand to

the new daughter strand. Other Dnmts, Dnmt3a and

Dnmt3b are known as de novo Dnmts as they set in place

new patterns of methylation of unmodified DNA [67]. In

mature post-mitotic cells, such as CNS neurons, Dnmt

expression is downregulated but still expressed, which

suggests a role in CNS neuronal functions [68, 69]. In fact,

some of the highest DNA methylation levels occur in brain

tissue [67].

Crosstalk between DNA methylation mechanisms and

histone modifications also occur in regulating transcription.

As noted earlier, epigenetic modification of histones that

cause loosening of histone-associated DNA, such as

Fig. 1 Cartoon of general

cellular epigenetic

modifications and

transcriptional outcomes.

Examples of histone lysine

acetylation and methylation

sites associated with

transcriptional regulation are

labeled in red.
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acetylation of the N-terminus of histone tails, enhance

transcriptional access by transcription proteins and

machinery, and Dnmts can interact with histone-modifying

enzymes to repress the expression of genes. For example,

Dnmt1 and Dnmt3a have been observed to interact with

and bind the histone methyltransferase SUV39H1 that

methylates histone 3 and lysine 9 (H3K9) and reduces gene

expression [70]. It has also been shown that Dnmt1 and

Dnmt3b bind HDACs to repress transcription in associated

DNA regions through enhanced DNA compaction and by

repressing access by transcriptional proteins [71]. Overall,

the relationship between Dnmts and histone-modifying

enzymes generally results in the transcriptional repression

of specific DNA regions.

Experimental traumatic brain injury (TBI) modifies the

distribution and expression of Dnmt1, as well as DNA

methylation at both the cellular and organ levels [72, 73]. A

recent study suggests that DNA hypomethylation and

hypermethylation changes occur in both neurons and glia.

These changes appear to be dependent on specific DNA

regions, and thus the gene regions with which the methy-

lation patterns are associated. In specific neuronal popu-

lations, epigenetic changes in Dnmt expression and DNA

methylation as well as HDAC expression have been doc-

umented, which suggest subpopulation-specific neuronal

responses to blast-type brain injury [72, 74]. Blast-injury,

among other forms of experimental TBI, causes mild forms

of brain damage and diffuse axonal injury. A recent study

has shown that controlled cortical impact injury causes

local as well as widespread cortical neuronal dendrite

degeneration and loss [75]. The mechanisms underlying

such events are not well understood, but may, at least in

part, result from intracellular transcriptional modulation

due to epigenetic changes induced by injury.

Additional extrinsic factors in the CNS may also influ-

ence neurite plasticity, both during development and fol-

lowing injury. Recent research has demonstrated an

increase in Nogo-A, a myelin-associated molecule, fol-

lowing mild TBI [76]. Nogo-A is best known for its inhi-

bitory effects on axonal and dendritic arbor growth and

plasticity [77, 78]. The upregulation of Nogo-A has been

implicated in the inhibition of axonal arborization in a

stroke model of brain injury [79]. Its action in these models

may serve to stabilize hippocampal dendrites and axons

following insult [80]. Nogo-A exerts its effects through

binding and stimulating intracellular signaling events

through Nogo receptors (NgRs) [81]. Evidence suggests

that NgRs also play a role in dendritic plasticity, recent

research showing that loss of NgR2 modifies the dendritic

spine morphology of pyramidal CA1 neurons [82], which

can be damaged following TBI. NgRs act to modify

cytoskeletal organization via activation of the RhoA family

of GTPases [83]. These GTPases, especially Rac1, are

known to play roles in dendritic plasticity mediated

through epigenetic modifications [84, 85]. Rac1 controls

dendritic spine plasticity under normal conditions through

cofilin interaction and the modulation of actin polymer-

ization within the spines, and reduction in Rac1 by epi-

genetic changes, likely through H3K9 and H3K27

methylation [86], increases plasticity by dysregulating this

process [85]. Given that Nogo can influence such down-

stream processes, future research into the influence of

Nogo expression and activity on epigenetic modifications

in injured neurons will be an area of particular interest.

Cell Signaling, Epigenetics, and Transcription
Factors Involved in Dendrite Morphology
and Function

Of the various transcription factors that play roles in neu-

ronal structural stability, degeneration, and repair, only a

few have been studied in the context of epigenetic modi-

fication-mediated effects on dendritic morphology. In

particular, the events surrounding intracellular signaling

cascades and transcription factor modulation have received

the greatest emphasis. Due to the long history of assess-

ment of their influence on neuronal morphology and

behavior in normal and pathologic conditions, neu-

rotrophins have often been used in and linked to research

on the progression and outcome of transcriptional and

epigenetic events that affect dendritic plasticity in neuronal

populations.

A prime example, BDNF, has long been associated with

neuritogenesis and dendritic plasticity [87, 88]. In addition,

BDNF exhibits extensive transcriptional control throughout

neurons and locally within the dendrites and spines, which

can have important effects on dendritic and synaptic plas-

ticity [89]. BDNF enhances the growth of proximal den-

drites through transcriptional modulation by CREB [90].

MAPK signaling appears to be important in the activity of

BDNF in this context. BDNF also regulates the transcrip-

tion of immediate-early genes in central neurons and

CCAAT/enhancer binding protein (C/EBP)-NeuroD tran-

scription factors, which influence dendritic differentiation

[91] (Fig. 2). Knock-down of TrkB/C or C/EBP retards

dendritic maturation, indicating that BDNF signaling via

this transcriptional mechanism is critical for the proper

development of dendritic arbors [91].

Conversely, endogenous transcriptional regulation can

also influence BDNF expression and local physiological and

morphological effects on neurons. Endogenous BDNF is

known to play a role in the regulation of pro-growth and

plasticity programs within normal, injured, and developing

neurons [92, 93]. Recent research has shown that the epi-

genetic chromodomain protein and transcription corepressor
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chromodomain Y-like (CDYL) protein negatively regulates

the transcription and expression of BDNF, which directly

influences the extent of dendrite morphological change [94].

Evidence suggests that CDYL interacts with the catalytic

subunit EZH2 of the partner factor, polycombrepressive

complex 2, to recruit H3K27 methyltransferase to the BDNF

promoter to mediate this inhibition (Fig. 2). Like other

epigenetic methylation processes, this series of events leads

to reduced BDNF transcription and expression. Other recent

studies have demonstrated that acetylation at lysine 9 of

histone 3 by the HAT p300/CBP-associated factor (P/CAF)

near the promoter of the bdnf gene increases its expression,

and this action is associated with a regenerative response in

injured neurons [95]. Supporting such a role, pharmaco-

logical inhibition of HDACs is followed by a concomitant

elevation in P/CAF activity, leading to increased neurite

outgrowth [96]. Aside from the influences of direct insult on

neurons, specific activity-associated dendritic plasticity,

such as that suggested to occur during post-traumatic stress

disorder, can also be induced in neurons by epigenetic

modifications that alter BDNF expression [97]. Taken

together, neuronal transcriptional regulation both by and of

BDNF are likely important for overall dendritic growth,

maturation, and plasticity.

Aside from the influence of neurotrophins on tran-

scriptional effects involved in dendritic plasticity under

stress, other studies have focused on the link between

intracellular signaling pathways, transcriptional regulation,

and epigenetic modification. Still, the evidence available in

the literature linking epigenetics to neurite growth and

plasticity is limited. Some evidence suggests that epige-

netic factor interactions can regulate the post-translational

modification of proteins such as histones, which can impact

neurite properties and processes.

DNA methylation in the brain is elevated following

ischemia, while downregulating Dnmt1 and reducing DNA

methylation appear to confer neuroprotective benefits

under these conditions [98, 99]. Application of the neu-

rotrophin NGF stimulates neurite outgrowth from rat

pheochromocytoma (PC12) cells via Dnmt3b recruitment

of HDAC to the T-cadherin promoter [100]. As T-cadherin

negatively controls neurite growth, this reduces T-cadherin

expression and promotes neurite growth [101]. As such, it

appears that Dnmts can influence histone post-translational

Fig. 2 Examples of extrinsic and intracellular transcriptional regu-

lation of neurotrophic influence on dendritic morphology. (1) BDNF

can signal through MAPK and other mechanisms to promote

transcription of immediate-early (IE) genes, and transcription factors

such as NeuroD to mediate dendrite morphological plasticity. (2)

Transcriptional regulation through epigenetic modulation of BDNF

that could influence dendritic plasticity.
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modification and subsequently, neurite outgrowth; how-

ever, more details and broader implications of such pos-

sibilities require further investigation in the context of

in vivo neural injury models.

After SCI, the levels of Dnmt3a, Dnmt3b, and DNA

methylation are decreased in the spinal cord, but are ele-

vated by administration of folic acid, a promoter of neurite

growth and a source of methyl groups for Dnmts [102].

This indicates that folic acid-mediated regeneration may

occur through DNA methylation. The mechanism under-

lying this requires further research. Other evidence also

suggests a possible role for elevated DNA methylation

mediated by folic acid following SCI; this lends support to

a proposed mechanism of epigenetic hypermethylation-

mediated neuronal regeneration [103]. This is interesting,

as DNA hypermethylation is mainly linked to the repres-

sion of gene expression.

Whole tissues were used in the in vivo studies above,

which means that the observed methylation outcomes could

have resulted from glial cells rather than neurons. As glia and

immune cells are prime players in CNS injury responses,

DNAmethylation in such cells could influence damage from

inflammation and the immune response and the reduced

ability of neurons to regenerate [104]. Also, such results

could be explained by a spatiotemporal difference between

brain and spinal cord neuronal responses to differing injuries.

Such variables need to be investigated further to better

clarify the role of glial cells, and injury- and tissue-specific

neuronal responses in modulating epigenetic events that

affect axon and neurite outgrowth. As discussed, transcrip-

tion factors require access to gene promoters to function in

gene expression regulation, and many are known to be

directly or indirectly involved in dendrite and neurite plas-

ticity. Epigenetic changes that result from injury or thera-

peutic modalities certainly impact the ability of transcription

factors to access and influence gene expression, and affect

feedback and feed-forward mechanisms for further tran-

scription factor and neurotrophin production that can pro-

mote dendrite and synaptic plasticity. The coming years will

yield exciting results that will expand our understanding of

how these varying complex processes in the nervous system

interact to influence the dynamics of dendrite plasticity in

neural injury and disease, and as importantly, how these

dynamics can be accounted for in optimizing therapeutic

development and application.

Conclusions and Future Directions

As shown in this review, understanding the gene expres-

sion and transcription factor responses of neurons to injury

and neurotrophic therapy could help optimize such treat-

ments by providing a foundation for predicting upstream

translational and post-translational events that could lead to

effective dendritic plasticity and establish functional

interneuronal signaling after CNS injury. In many ways,

our understanding of the dendritic responses to injury and

treatment is relatively immature compared to that available

on neuroprotection and axonal regeneration. This is espe-

cially true concerning the epigenetic modulation and reg-

ulation of gene transcription and the specific influences of

these events in neurons, as well as in glial cells that may

affect neuronal morphology following CNS injury. In the

coming years, a clearer picture of key epigenetic and

transcriptional events and regulators will unfold, and this

will help to connect our understanding of trophic signaling

in neurons and the intracellular signaling cascades that help

modulate cytoskeletal and morphological plasticity in

affected neurons after CNS injury. During this period, the

development of new ideas and potential methods of treat-

ment, including small-molecule mimetics of neurotrophins,

may improve the efficacy of inducing neuronal dendritic

arborization and protection against dendritic atrophy. The

study of dendritic plasticity in the CNS following injury

and treatment has come a long way in the last few decades,

but still has some way to go until we can effectively use the

knowledge for therapeutic means.
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