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Abstract Autism spectrum disorder (ASD) encompasses a

complex set of developmental neurological disorders,

characterized by deficits in social communication and

excessive repetitive behaviors. In recent years, ASD is

increasingly being considered as a disease of the synapse.

One main type of genetic aberration leading to ASD is gene

duplication, and several mouse models have been gener-

ated mimicking these mutations. Here, we studied the

effects of MECP2 duplication and human chromosome

15q11-13 duplication on synaptic development and neural

circuit wiring in the mouse sensory cortices. We showed

that mice carrying MECP2 duplication had specific defects

in spine pruning, while the 15q11-13 duplication mouse

model had impaired spine formation. Our results demon-

strate that spine pathology varies significantly between

autism models and that distinct aspects of neural circuit

development may be targeted in different ASD mutations.

Our results further underscore the importance of gene

dosage in normal development and function of the brain.

Keywords Autism � Autism spectrum disorder � Spine �
Spine formation � Spinogenesis � Spine pruning � Gene
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Introduction

Autism spectrum disorder (ASD) encompasses a wide

range of neurological disorders with developmental ori-

gins, displaying a variety of symptoms and all including

the key characteristics of impaired social interaction and

excessive repetitive behaviors and/or restricted interests

[1]. These behavioral abnormalities are thought to be

caused by alterations in neural circuits. Based on accu-

mulating evidence demonstrating defects in synaptic

development and/or function in animal models of ASD and

in patients, autism has been considered as the disease of

synapse [2–7]. In fact, many genes underlying ASD encode

molecules that directly participate in and/or regulate

synaptic structure and function, including pre- and post-

synaptic scaffolds, subunits of neurotransmitter receptors

and synaptic adhesion molecules [4–6, 8–10]. Over 90% of

excitatory synapses in the brain are located on dendritic

spines [11], which are small and thorn-like protrusions

extending from the dendritic shaft. Spines undergo dra-

matic changes during development, in species ranging from

rodents to humans [12–19].

Spines form rapidly during early postnatal life via a

process called ‘‘spinogenesis’’, which usually lasts 3–4

postnatal weeks in mice [14, 17]. During adolescence, the
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brain undergoes a course of spine ‘‘pruning’’ or elimina-

tion, to remove excessive synaptic connections and

strengthen the physiologically useful/relevant connections

[12–16, 18–21]. Both spinogenesis and spine pruning

contribute significantly to efficient neural circuit wiring

and normal brain function. In addition to their number, the

size and shape of spines are also important [22]. It has been

shown that the volume of spine head tightly correlates to

the area of postsynaptic density, as well as presynaptic

vesicle number [23], while the spine neck tunes the post-

synaptic response and also shows plasticity upon changes

in presynaptic inputs [24, 25]. Thus, measuring the number

and morphology of spines is potentially a simple and

effective way to assess changes in the synaptic connectivity

in ASD.

Up to date, hundreds of genes and genetic alterations

have been linked to ASD, including those affecting

synaptic function, those regulating gene transcription and

post-transcriptional modification, and those involved in

other important biological processes [2, 4–6, 8–10, 26–29].

It is of particular interest that copy number variations

(CNVs), large nucleotide (one kilobase to a few megabases)

duplications or deletions, contribute significantly to ASD.

CNVs can occur by inheritance or de novomutation.De novo

CNV occurs in an offspring whose parents do not have the

genetic change and is more common in ASD than inherited

cases [9, 26–30]. Of the reported CNVs in ASD, several are

highly interesting in that both their deletion and duplication

lead to autistic phenotypes. A well-characterized example is

the X-linkedMethyl-CpG-binding protein 2 (MECP2), loss-

of-function of which results in Rett syndrome [31–33] while

its duplication leads to many autistic symptoms including

lack of eye contact and verbal communication, loss of

speech, restricted interests and stereotypic behaviors

[33–35]. Another example is the 15q11-13 region of human

chromosome 15, which includes a series of imprinting genes,

as well as non-imprinting ones. Maternal deletion of this

region results in Angelman syndrome, paternal deletion

leads to Prader-Willi syndrome, while its duplication rep-

resents one of the most frequently reported CNVs in ASD.

All the three mutations share ASD features [27, 30, 36]. The

observation that deletion and duplication of the same gene or

chromosomal region can result in a similar phenotype

underscores the importance of gene dosage to neural circuit

development and function [5, 26, 27, 29, 30, 33].

In recent years, a number of mouse models of human

ASD mutations have been generated. Here we examined

two of the better-characterized gene/chromosomal dupli-

cation mouse models, the MECP2Tg1 mouse model of

MeCP2 duplication syndrome [33, 37], and the 15q11-13

duplication mouse model that mimics duplication of human

chromosome 15q11-13 region [36, 38]. We quantitated

changes in spine density and morphology in these mice in

the primary somatosensory and visual cortices at different

developmental stages, as indicators of changes in neural

circuitry.

Materials and Methods

Animals

All experimental procedures were approved by the Insti-

tutional Animal Care and Use Committee of the Institute of

Neuroscience, Chinese Academy of Sciences (Shanghai,

China), under protocol No. NA-003-2016. The hemizygote

MECP2Tg1 mice (full name: FVB-Tg (MECP2)1Hzo/J;

JAX Stock No: 008679) [37] express full-length human

MECP2 under the endogenous human promoter, with

hemizygote males expressing the protein at *2-fold

wildtype levels in the brain [37]. Only male MECP2Tg1

mice and age-matched wild-type littermates (all on FVB

background) of 1 and 3 months were used. The mouse

model of human 15q11-13 duplication (on C57/BL6

background) carries an interstitial duplication of 6 Mb on

mouse chromosome 7B-C that corresponds to human

chromosome 15q11-q13, as previously described [38].

Both male and female mice and age-matched wild-type

littermates at postnatal day 14 (P14) and 1 month were

used, as the estrous cycle does not affect the spines in

female mice at this developmental stage.

Golgi Staining

Golgi staining was performed using the FD Rapid Gol-

giStainTM Kit (FD NeuroTechnologies, Columbia, MD),

according to the manufacturer’s instructions. Briefly, mice

were deeply anesthetized with 0.7% pentobarbital sodium.

The freshly dissected brain was immersed into a mixture

containing equal volumes of solution A and B at room

temperature for approximately 10 days. The brains were

then transferred into solution C for at least 48 h. Coronal

sections (150 lm) were prepared with a freezing micro-

tome. Sections were stained using solutions D and E after

mounting onto the slides.

Image Acquisition and Analysis

Stained sections were imaged using a Zeiss LSM PASCAL

confocal microscope (Carl Zeiss, Jena, Germany), equip-

ped with a 639 oil immersion Plan-Apochromat objective

(N.A = 1.4) and at 29 optical zoom. The basal dendrites of

layer 2/3 pyramidal neurons in S1BF and V1 were imaged.

All images were coded with computer-generated random

number sequence (https://www.random.org/sequences/) at

the time of acquisition and analyzed blinded to the
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experimental condition. Original images were used to

measure dendrite branch length and count spine number

using Image-Pro Plus (Media-Cybernetics, Silver Spring,

MD). Spine density was calculated as the number of spines

per micrometer dendrite. Protrusions longer than 3 lm
were considered as filopodia and were analyzed separately

for P14 mice. The criterion for spine subtype classification

was as previously described [15]. The proportion for each

spine subtype was calculated as the percentage of total

spines on the dendritic segment. Only images with suffi-

cient quality to clearly distinguish and measure the spine

shape were used for spine subtype classification. For

example images, bright field original images were pro-

jected at minimal intensity and inverted, followed by

background subtraction and brightness/contrast adjustment,

using Fiji/ImageJ (NIH, Bethesda, MD). Paired example

images were adjusted with the same parameters.

Statistics

Statistical tests were carried out using GraphPad Prism 5

(GraphPad software, La Jolla, CA). Two-tailed Student’s t-

test was used for comparison between pairs of samples,

while one-way ANOVA followed by Tukey’s post hoc test

was used for comparison between multiple samples. For

spine subtype classification, two-way ANOVA followed by

Bonferroni post hoc test was used. Data were collected

from 3–6 mice for each condition, up to 10 images per

mouse. Results are shown as mean ± SEM, and ‘‘n’’ refers

to the number of dendrites or neurons. All conditions sta-

tistically different from control are indicated: n.s., not

significant; *P\ 0.05; **P\ 0.01; ***P\ 0.001.

Results

Impaired Spine Pruning and Maturation

in the Primary Somatosensory Cortex of MECP2Tg1

Mice

MECP2 is one of the earliest autism genes identified. Its loss-

of-function mutations result in Rett syndrome [32, 33, 39],

while its overexpression leads to progressive neurological

symptomswith ASD features.Micewith doubled expression

of MECP2 (MECP2Tg1) [37] show a series of progressive

symptoms including social interaction deficits, aggressive-

ness, anxiety, behavioral seizures and abnormal electroen-

cephalographic traces [37, 40], similar to those observed in

MECP2 duplication patients. These phenotypes can be res-

cued by re-normalizing Mecp2 expression in mice [41].

More recently, transgenic monkeys overexpressing human

MECP2 were shown to recapitulate the key behavioral fea-

tures of ASD, including impaired social interaction and

stereotypic behavior [42]. Importantly, these autism-like

behavioral defects were passed onto their offspring through

germline transmission [42].

Here we used theMECP2Tg1 mice [37] to investigate the

effect of MECP2 overexpression on dendritic spine density

and morphology in the primary sensory cortices at different

developmental stages using Golgi staining. In previous

work, we showed that spines in multiple sensory/motor

cortices underwent activity-dependent pruning between 1

and 3 months of post-natal development [15]. Since spine

pruning is highly development- and activity-dependent in the

basal dendrites of layer 2/3 pyramidal neurons in the barrel

field of primary somatosensory cortex (S1BF) [15], we first

assayed these neurons in MECP2Tg1 mice. The results

showed that spine density was not significantly different

betweenMECP2Tg1 mice and wildtype littermate controls at

1 month (P[ 0.05; Fig. 1A, B), indicative of normal

spinogenesis. By the age of 3 months, spines in S1BF of

wildtypemice have undergone spine pruning, as indicated by

the substantial reduction in spine density (P\ 0.001;

Fig. 1A, B). However, inMECP2Tg1 mice, spine density at 3

months was significantly higher than that of wildtype litter-

mates (P\ 0.01; Fig. 1A, B), and was only slightly lower

than that of 1-monthMECP2Tg1mice (P\ 0.05; Fig. 1A, B;

percentage reduction in spine density between 1 and 3

months: wildtype, 23.1%; MECP2Tg1, 10.4%), suggesting

that spine pruning was impaired inMECP2Tg1 mice.

The pruning of some spines during the transition

through adolescence is accompanied by and coordinated

with the strengthening and maturation of the surviving ones

[15]. To examine whether MECP2 overexpression also

affected spine maturation, we analyzed spine maturity in

MECP2Tg1 mice and wildtype littermates by sorting spines

into 4 subtypes based on morphological criteria described

previously [15]. Spines with mushroom-like shapes typi-

cally contain larger postsynaptic densities and a well-

constricted spine neck, and thus are thought to be mature

and stable, while thin spines are found to be more motile

and immature [18, 21, 22]. We found that at 3 months, the

percentage of thin spines significantly increased while that

of mushroom spines decreased in MECP2Tg1 mice, as

compared to the wildtype littermates, suggesting that along

with the spine pruning defect, more spines failed to mature

in MECP2Tg1 mice. Together, these results showed that

both spine pruning and spine maturation were impaired in

S1BF of 3-month MECP2Tg1 mice, while spinogenesis at 1

month was essentially intact.

Impaired Spine Pruning and Maturation

in the Primary Visual Cortex of MECP2Tg1 Mice

To determine whether the defects of spine pruning and

maturation observed in S1BF are specific to the
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somatosensory cortex or common to multiple sensory

modalities, we further examined spine density and mor-

phology in the primary visual cortex (V1). Similar to our

results in S1BF, spine pruning, but not spinogenesis,

showed significant defects in V1 of MECP2Tg1 mice, as

demonstrated by the significant differences in spine density

between wildtype and MECP2Tg1 mice at 3 months

(P\ 0.001) but not at 1 month (P[ 0.05) (Fig. 2A, B).

Notably, although spine density in S1BF of MECP2Tg1

mice was slightly lowered at 3 months as compared with

that at 1 month (P\ 0.05; Fig. 1A, B), in V1 no reductions

were observed (P[ 0.05; Fig. 2A, B; wildtype: 1 month,

0.76 ± 0.02, 3 months, 0.64 ± 0.02; MECP2Tg1: 1 month,

0.72 ± 0.04, 3 months, 0.74 ± 0.02). Consistently, an

increased portion of thin spines and a decreased portion of

mushroom spines were found in V1 ofMECP2Tg1 mice at 3

months (Fig. 2C). The overall pattern and extent of chan-

ges in S1BF and V1 were very similar, suggesting that

MECP2 duplication likely results in global defects in spine

pruning and maturation in the sensory cortices.

Spinogenesis is Impaired in 15q11-13 Paternal

Duplication Mice

Is the spine pruning defect we observed inMECP2Tg1 mice

a common phenotype to multiple ASD models or specific

to the MECP2 duplication? To address this question and

further explore spine pathology in ASD, we used another

autism mouse model, in which the mouse chromosomal

region corresponding to human chromosome 15q11-13 was

engineered to be duplicated [38]. Since the duplicated

region in these mice contains a series of imprinting genes

Fig. 1 Spine pruning is impaired in MECP2Tg1 mice in S1BF.

A Representative inverted Golgi staining images showing spines in

basal dendrites of layer 2/3 pyramidal neurons in S1BF, genotype and

age as indicated. Scale bar 5 lm. B Spine density in wildtype (WT)

andMECP2Tg1 mice at 1 month (WT, n = 38; MECP2Tg1, n = 25) and

3 months (WT, n = 44; MECP2Tg1, n = 59). C Spine type

classification for WT and MECP2Tg1 mice at 3 months. Data are

presented as mean ± SEM. n.s. not significant, *P\ 0.05,

**P\ 0.01, ***P\ 0.001.

Fig. 2 Spine pruning is impaired in MECP2Tg1 mice in V1.

A Representative inverted Golgi staining images showing spines in

basal dendrites of layer 2/3 pyramidal neurons in V1, genotype and

age as indicated. Scale bar 5 lm. B Spine density in WT and

MECP2Tg1 mice at 1 month (WT, n = 32; MECP2Tg1, n = 26) and 3

months (WT, n = 44; MECP2Tg1, n = 54). C Spine type classification

for WT and MECP2Tg1 mice at 3 months. ***P\ 0.001.
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expressed exclusively from the paternal or maternal copy

(Fig. 3A) [36, 38], we separately examined spine density in

mice carrying paternally (patDp/?) or maternally (matDp/

?) inherited duplication. We found that at 1 month, spine

density in patDp/? mice was significantly lower than that

of wildtype littermates (P\ 0.05; Fig. 3B, C) in S1BF,

indicating impairment of spinogenesis in these patDp/?

mice. Interestingly, matDp/? mice showed no significant

differences in spine density as compared to wildtype lit-

termates (P[ 0.05; Fig. 3D, see also Discussion). To

further characterize the defect in spinogenesis in patDp/?

mice, we assayed spine density at the earlier age of P14 and

found no significant differences (P[ 0.05; Fig. 4A, B). At

this age, spine density was also not affected in matDp/?

mice (P[ 0.05; Fig. 4A, C).

A considerable portion of spines come from filopodia

that extend from the dendritic shaft and probe around for

potential presynaptic partners. Once a filopodium ‘‘cap-

tures’’ a suitable axonal terminus, it could convert itself

into a spine; otherwise, it likely retracts [17]. This trans-

formation from filopodium to spine has been observed in

cultured hippocampal neurons, as well as in brain slices,

using live imaging [43, 44], and the synapse-like contacts

made between axons and filopodia have been observed by

electron microscopy [45]. Thus, dendritic filopodia

contribute significantly to the formation of spines during

early development of the brain, and the number of filopodia

in early developmental stage may indicate the potential of a

neuron to grow spines during spinogenesis. Since P14 is

within the window of rapid filopodial dynamics, we also

measured the density of filopodia (protrusions longer than 3

lm) in patDp/? mice, and found it to be significantly

reduced (P\ 0.001; Fig. 4D). This reduction likely con-

tributes to the reduction in spine density at 1 month in these

mice. Once again, no changes were observed in matDp/?

mice (P[ 0.05, Fig. 4E). Together, these results demon-

strate a progressive impairment of spinogenesis that

selectively occurs in mice with the paternally inherited

15q11-13 duplication.

Spines are Less Mature in 15q11-13 Paternal

Duplication Mice

To examine spine maturation in 15q11-13 duplication

mice, we analyzed spine morphology in patDp/? and

matDp/? mice at P14 and 1 month. At P14, spines were

mostly immature, as suggested by the large portion of thin

spines (Fig. 5A, B). We found that in patDp/? mice, but

not in matDp/? mice, the percentage of mushroom spines

was reduced and that of thin spines increased

Fig. 3 patDp/? mice, but not matDp/? mice, show delayed spine

maturation at 1 month. A Schematic representation of the 15q11-13

duplication region in human chromosome 15 (left) and the corre-

sponding region in mouse chromosome 7 (right). Genes expressed

paternally, maternally, and nonimprinting genes are respectively

marked in blue, red and green. Arrowheads indicate the border of

duplication segments. Schematic took reference from previous

literatures [38, 47]. B Representative inverted Golgi staining images

showing spines in basal dendrites of layer 2/3 pyramidal neurons in

S1BF of 1-month 15q11-13 duplication mice, genotypes as indicated.

Scale bar 5 lm. C Spine density in WT (n = 34) and patDp/? (n =

25) mice at 1 month. D Spine density in WT (n = 38) and matDp/?

(n = 37) mice at 1 month. *P\ 0.05.
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correspondingly, as compared to wildtype littermates at

P14 (Fig. 5A, B), despite similar spine density between the

patDp/? mice and wildtype controls. At 1 month, the

distribution pattern of spine subtypes was more mature

than that at P14 in all genotypes (Fig. 5C, D vs. 5A, B).

However, patDp/? mice still possessed more thin spines

and less mushroom spines than their wildtype littermates

(Fig. 5C). Consistent with the spine density results, spine

maturation was not affected in matDp/? mice at 1 month

(Fig. 5D). Together, these results demonstrate that in

addition to the impairment in generating spines, spines

formed in patDp/? mice were also less mature. The

absence of these changes in matDp/? mice further

underscores the selective impact of this chromosomal

duplication depending on its genetic origin.

Discussion

Gene dosage is critical to the normal development and

functioning of the brain. This is particularly highlighted in

ASD where both loss-of-function and overexpression of

gene/chromosomal regions can lead to autistic phenotypes.

Here we show that early spinogenesis and later spine

pruning are respectively affected in two mouse models of

autism with gene duplication, the paternally-inherited

15q11-13 duplication mice and the MECP2 duplication

mice. The distinct spine abnormalities in these two autism

models likely reflect the diverse pathologies of the two

types of ASDs, with the 15q11-13 duplication primarily

impairing the initial establishment of neural connections

and the MECP2 duplication mainly targeting the later

refinement of neural circuitry. Our results complement the

findings of previous studies and provide further insight into

our understanding of diverse pathologies in ASD at the

level of synapses and neural circuits. These results raise the

importance of time windows for the optimal therapeutic

Fig. 5 patDp/? mice, but not matDp/? mice, show impaired

spinogenesis and delayed spine maturation. A Spine type classifica-

tion in P14 WT and patDp/? mice. B Spine type classification in P14

WT and matDp/? mice. C Spine type classification in 1-month WT

and patDp/? mice. D Spine type classification in 1-month WT and

matDp/? mice. ***P\ 0.001.

Fig. 4 patDp/?mice, but notmatDp/?mice, show impaired filapodia

formation at P14. A Representative inverted Golgi staining images

showing spines in basal dendrites of layer 2/3 pyramidal neurons in

S1BF of P14 15q11-13 duplication mice, genotypes as indicated. Scale

bar 5 lm.B Spine density inWT (n = 29) and patDp/? (n = 32) mice at

P14.C Spine density inWT (n = 25) andmatDp/? (n = 20)mice at P14.

D Filopodia density in WT (n = 29) and patDp/? (n = 32) mice at P14.

E Filopodia density in WT (n = 25) andmatDp/? (n = 20) mice at P14.

***P\ 0.001.
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intervention in the treatment of distinct ASD subtypes.

Spinogenesis and spine pruning at the population level in

the sensory cortices could further serve as a model for

assessing spine pathology in both animal models and

postmortem ASD patient tissues, using simple morpho-

logical methods such as Golgi staining.

Selective Abnormalities of Spines and Behaviors

in 15q11-13 Paternal Duplication Mice

The duplication of chromosomal 15q11-13 region is one of

the most frequently identified CNVs in ASD patients. It

encompasses a series of imprinting genes including the

maternally expressed Ube3a and Atp10a, the paternally

expressed Snrpn, Mkrn3, Magel2, Necdin and snoRNAs, as

well as non-imprinting genes such as a subset of GABA

receptor subunits [36, 38] (Fig. 3A). Previous studies have

shown that the patDp/? mice recapitulate some symptoms

of human ASD patients, including impaired social inter-

action in the three-chamber test, behavioral inflexibility,

decreased exploratory activity, impaired cerebellar plas-

ticity and motor learning deficits [27, 36, 38, 46, 47].

Further investigation found that serotonin signaling

decreased while dopamine signaling increased in these

mice, indicating defects of the neuromodulation systems

involved in emotion, motivation and social behaviors

[36, 38, 48]. Consistent with the results of these functional

analyses, we found that the patDp/? mice displayed sig-

nificant and progressive defects in filopodia formation and

spinogenesis (Figs. 3–5), which could lead to inadequate

wiring of neural circuitry underlying the above-mentioned

functions and behaviors. Consistently, a recent study using

two-photon live imaging demonstrated increased spine

turnover in patDp/? mice [49], suggesting that spines in

these mice are more motile and unstable, which may

account for the reduced spine density and immature spine

morphology observed in these mice (Figs. 3, 5). It is

somewhat surprising that all the behavioral, physiological

and morphological abnormalities reported thus far

[27, 36, 38, 39, 46–49], including ours (Figs. 3–5), were

restricted to patDp/? mice, while the matDp/? mice

seemed pretty normal, given that it is the maternal dupli-

cation of this chromosomal region that was thought to

cause autism in humans [50]. Although a recent detailed

human study showed that paternal duplications are also

pathogenic and increase risks for ASD, developmental

delay and multiple congenital anomalies [51], the ‘‘gap’’

between the mouse model and human patients is still a

puzzling. We surmise that it may be due to the differences

in imprinting status and epigenetic control of specific

genes, in specific brain regions and between species [36].

In fact, some paternally expressed genes were found to be

reduced in post-mortem brain tissues of individuals with

maternal 15q11-q13 duplication [52], suggesting that gene

expression within 15q11-q13 is not based entirely on copy

number, and can be influenced by epigenetic mechanisms.

Further research is required to elucidate the precise

underlying mechanisms.

Distinct Spine Abnormalities in Multiple ASD

Mouse Models

ASD shows great diversity in both genetic etiology and

clinical manifestation [5, 6, 8, 10, 26, 27]. How to bridge

the gap between the genetic causes and the ASD symptoms

poses a major challenge to autism research. Previous

studies have demonstrated highly distinct spine phenotypes

in multiple autism mouse models with gene deletion/mu-

tation. For example, spine pruning defect was found in

Fragile X Mental Retardation 1 (Fmr1) knockout mice

[53, 54], while decreased spine density was observed in

Mecp2 knockout mice throughout development [55–57].

Additionally, studies using neuronal cultures or transgenic

mice have shown that spine density and/or shape were

altered after genetic manipulation of proteins implicated in

syndromic or non-syndromic autism, including neurexins/

neuroligins, Shank2/3, Epac2, Tsc1/2, Ube3A and PTEN

[6]. Here we further expand our knowledge of ASD spine

pathology to two gene duplication mouse models. We note

that our results demonstrating spine pruning defects in the

basal dendrites of layer 2/3 neurons in the sensory cortices

of MECP2Tg1 mice (Figs. 1, 2) are consistent with and

complementary to work by Jiang et al. in the apical den-

drites of layer 5 neurons, where they showed a delayed

pruning of spines on this dendritic segment in MECP2Tg1

mice [58]. Thus, overproduction of Mecp2 likely results in

a global effect across multiple layers of the cerebral cortex,

to slow down or inhibit the spine pruning process during

neural circuit refinement. We note that at 3 months, the

pruning process was completely blocked in V1 (Fig. 2A,

B) and only partially impaired in S1BF (Fig. 1A, B). Since

mice reared under standard laboratory conditions likely use

their tactile sensation more than their visual system, this

result is consistent with the activity-dependence of spine

pruning [14, 15].

Our existing knowledge of spine pathology in ASD

suggests potentially two major classes of abnormalities:

one is the insufficient genesis of spines seen in models

including Mecp2 knockout and 15q11-13 paternal dupli-

cation, which may result in a less connected and conse-

quently inadequate neural circuitry; the other is defects in

spine pruning as seen in MeCP2 duplication and Fmr1

knockout models, which may lead to an over-connected

and thus less efficient neural circuitry in adulthood. We

note that both the defects in spinogenesis and spine prun-

ing, as we identified here, are developmentally regulated.
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The spine formation defect in 15q11-13 paternal duplica-

tion mice was not significant until 1 month, while the

spinogenesis process seemed unaffected before the

MECP2Tg1 mice entered the spine pruning period. The

progressive feature of these spine abnormalities is consis-

tent with the gradually emerging and worsening of symp-

toms often seen in ASD patients. This diversity of spine

abnormality in autism mouse models further raises the

intriguing question of how distinct alterations of neural

circuits during different developmental stages lead to

common behavioral manifestations in ASD, including lack

of social communications and repetitive behaviors.

Insights from Another Gene Duplication Model

A good analogy of modeling gene-duplication-induced

autism in mice is the mouse models of Down syndrome

(DS), a disease caused by an extra copy of human chro-

mosome 21 (Hsa21) and characterized by intellectual dis-

ability, deficits in learning and memory and early-onset

Alzheimer’s disease [59–61]. Genes within the duplex

region of Hsa21 are synthetic to 3 regions located on

mouse chromosome 10 (Mmu10), Mmu16 and Mmu17

[59, 61]. Similar to DS patients, DS mouse models

including Ts65Dn [62, 63] and Ts1Cje [64, 65], two most

studied mouse models of DS, exhibit deficits in learning

and hippocampal-dependent memory, impaired long-term

potentiation (LTP) and altered excitatory/inhibitory bal-

ance [59, 61]. Interestingly, genes in Hsa21 have been

shown to affect spine morphogenesis separately, and DS

mouse models Ts65Dn, Ts1Cje and Ts1Rhr (trisomic

region: Ts65Dn[Ts1Cje[Ts1Rhr) all show lowered

spine density and enlarged spine head with gradually

reduced severity (severity: Ts65Dn[Ts1Cje[Ts1Rhr)

[59, 66], indicating an additive/synergic effect of these

genes on spines. Given that decreased spine density is the

shared pathological change in DS and in some ASD mouse

models, including Mecp2 knockout [55–57] and 15q11-13

duplication (Fig. 3), and that intellectual disability also

occurs in a significant portion of ASD patients [5, 30, 66],

it is interesting to consider the potential crosstalk between

ASD genes and DS genes. In fact, it has been recently

proposed that the product of one of the DS genes, DS

critical region 1 (DSCR1), interacts with the Fragile X

mental retardation protein (FMRP) to regulate the local

protein synthesis in spines [66]. However, how ASD is

linked to DS or other neuropsychiatric disorders mecha-

nistically remains unclear and requires further

investigation.
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