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Abstract Autism spectrum disorder (ASD) is a highly

heritable neurodevelopmental disorders characterized by

impaired social interactions, communication deficits, and

repetitive behavior. Although the mechanisms underlying

its etiology and manifestations are poorly understood,

several lines of evidence from rodent and human studies

suggest involvement of the evolutionarily highly-conserved

oxytocin (OXT) and arginine-vasopressin (AVP), as these

neuropeptides modulate various aspects of mammalian

social behavior. As far as we know, there is no compre-

hensive review of the roles of the OXT and AVP systems

in the development of ASD from the genetic aspect. In this

review, we summarize the current knowledge regarding

associations between ASD and single-nucleotide variants

of the human OXT-AVP pathway genes OXT, AVP, AVP

receptor 1a (AVPR1a), OXT receptor (OXTR), the

oxytocinase/vasopressinase (LNPEP), and ADP-ribosyl

cyclase (CD38).
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Introduction

Autism spectrum disorder (ASD) is a pervasive neurode-

velopmental disorders involving deficits in social interac-

tion and social communication, as well as the presence of

restricted interests and repetitive and stereotypic patterns of

behavior. The estimated prevalence of ASD based on the

2014 National Health Interview Survey was 2.24%, more

than three-fold increase since 2000 [1]. The rapid increase

of ASD cases has stimulated research in recent decades.

However, the etiology of ASD remains obscure, partly

because of its etiological heterogeneity. Rather than a

single causative factor, the combined effects and interplay

between genetic heritability and environmental risk factors

may be more important in the etiology of ASD. However, it

is generally accepted that the etiology can, at least, be

partly explained by genetic studies [2]. Specifically, studies

in twins have shown a high concordance among homozy-

gous twins (70%–90% [3]), which is much lower in dis-

cordant twins [4, 5]. The risk for a newborn child is[10-

fold higher if a previous sibling has an ASD [6]. Family-

based association testing (FBAT) and population-based

case-control tests have increased knowledge about the

genetic causes of ASD. Known variants conferring sus-

ceptibility include single-nucleotide variants, short inser-

tions and deletions, and genomic copy-number variants [3].

Based on studies using quantitative molecular genetic

techniques, the proportion of ASD explained by common
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genotyped single-nucleotide polymorphisms (SNPs) is

estimated to be 17%–60% [7]. Therefore, the contribution

of common variants to ASD is important and should not be

neglected.

Oxytocin (OXT) and arginine vasopressin (AVP) are

closely-related nonapeptides that only differ in two amino-

acids and originate from separate genes derived from the

duplication of a common ancestral gene [8]. In the verte-

brate brain, both OXT and AVP are mainly synthesized in

the paraventricular and supraoptic nuclei and processed

along the axonal projections to the posterior lobe of the

pituitary, where they are stored in secretory vesicles and

released into the peripheral circulation. Besides, they are

also released from dendrites and somata within the brain.

In addition, these neurons project directly to other brain

regions including the amygdala, striatum, hippocampus,

bed nucleus of the stria terminalis, and the suprachiasmatic

nucleus [9]. Recently, they have become increasingly

attractive as potential therapeutic targets in the context of

ASD research due to their regulatory roles in social pref-

erence, social behaviors, and recognition, as revealed by

studies in both humans [9] and rodents (reviewed by Lukas

and Neumann [10]). OXT and AVP function as ‘‘social

factors’’ in the brain via binding to their corresponding

receptors: the OXT receptor (OXTR) and AVP receptor 1A

(AVPR1A). Evidence suggests that malfunction of these

receptors is involved in the pathogenesis of ASD [11, 12].

CD38 is a nicotinamide adenine dinucleotide ectoenzyme

that plays a role in hormone secretion and cell prolifera-

tion, differentiation, and migration [13]. Interestingly, this

protein is highly expressed in the brain, plays an obligatory

role in the central release of OXT [14] and is relevant to the

development of ASD [15].

In this review, we focus on the associations between

ASD and polymorphisms of genes encoding the elements

of the OXT-AVP neuronal pathways OXT (OXT/neuro-

physin-I) and AVP (AVP/neurophysin-II), their receptors

(OXTR and AVPR1a), CD38, and oxytocinase/vasopressi-

nase (LNPEP), a peptidase responsible for the degradation

of OXT and AVP into shorter peptides [16] (summarized in

Table 1).

OXT and AVP

The human OXT-neurophysin I (NPI) and AVP-neuro-

physin II (NPII) loci are closely linked at chromosome

20p13, separated by only 12 kb of intergenic sequence,

and are oppositely transcribed [17]. This type of genomic

arrangement could result from the duplication of a com-

mon ancestral gene followed by the inversion of one of

them [18]. The OXT-NPI gene encoding the OXT pre-

propeptide consists of three exons: the first encodes sev-

eral peptides including a translocator signal, the

nonapeptide hormone, the tripeptide processing signal,

and the first 9 residues of neurophysin; the second

encodes the central part of neurophysin; and the third

exon encodes the C-terminal region of neurophysin [19].

The OXT prepropeptide undergoes cleavage and other

modifications as it is transported along the axon to the

terminals. The mature products OXT and its carrier

molecule neurophysin I, are provisionally stored in the

axon terminals until neural inputs elicit their release.

AVP-NPII has almost the same gene structure and post-

translational processing as OXT-NPI [20].

A linkage study by Allen-Brady and colleagues provi-

sionally identified a susceptibility locus for ASD near the

OXT-NPI gene region that met the genome-wide signifi-

cance criteria [21]. In addition, Ebstein et al. reported

nominal associations between ASD and OXT rs6133010, as

well as the haplotypes in 170 individuals with ASD [22].

At the behavioral level, investigators found an association

between OXT rs2770378 and autism-like traits including

language impairment and restricted behaviors in females

with ASD [23]. In a study of ASD and hormonal genes, two

SNPs in the OXT-NPI gene region were examined and a

single SNP, rs2740204, was associated with stereotyped

behavior but not overall diagnosis in the 177 probands with

ASD [24]. A recent study has also shown that various SNPs

(including rs6084258, rs6133010, and rs2740204) near the

OXT and AVP genes are associated with a diagnosis of

ASD, social behaviors, restricted and repetitive behaviors,

and intelligence quotient (IQ), as well as plasma OXT level

[25].

Interestingly, in healthy individuals, polymorphisms

near or within the OXT gene are also associated with

phenotypes of brain function in social interactions such as

empathy [26], maternal behaviors (breast-feeding [27] and

maternal vocalization [28]) and social anxiety [29].

LNPEP

The OXT and AVP peptides have a half-life of*20 min in

cerebrospinal fluid [30] and 3 min in plasma [31]. When

released centrally they are degraded within brain tissue by

LNPEP, also referred to as placental leucine aminopepti-

dase, which preferentially degrades OXT and is thus

regarded as an oxytocinase [16]. The enzyme also effec-

tively degrades vasopressin and angiotensin III. LNPEP is

detectable in various brain regions including the basal

ganglia, cerebral cortex, and cerebellum [32]. In these

regions, immunoreactive staining of LNPEP is specific for

neurons, and not non-neuronal cells [32].

As far as we know, there is only one published study on

LNPEP variants. The investigators found that the SNPs

rs18059 and rs4869317 are associated with 28-day mor-

tality in patients with septic shock. Moreover, the
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rs4869317 TT genotype is associated with increased

plasma vasopressin clearance [33]. Although there has

been no direct evidence for the involvement of LNPEP in

altered human behavioral phenotypes, we speculate that

this aminopeptidase may play a regulatory role in human

social behaviors via influencing the central OXT and/or

AVP levels and perhaps is a target for drug intervention in

some disorders with social defects, such as ASD.

OXTR

In the brain, OXT regulates a variety of social behaviors

via binding to its sole receptor OXTR in various regions.

The OXTR gene is present in a single copy in the human

genome and has been mapped to the gene locus 3p25-

3p26.2. The gene spans 17 kb, contains 3 introns and 4

exons [34], and encodes a 389-amino-acid polypeptide

Table 1 Polymorphisms of genes encoding elements of the OXT and AVP pathways that are associated with ASD and autistic symptoms.

Genes Year Design Sample size Ethnicity Significant polymorphism Refs.

OXT 2009 Family 149 families Israeli rs6133010 [22]

2014 1771 children Swedish rs2770378 [23]

2016 Family 156 families Not specified rs6084258, rs6133010 and rs2740204 [25]

OXTR 2005 Family 195 families Han Chinese rs2254298, rs53576 [35]

2007 Family 57 families Caucasian rs2254298 [37]

2008 Family 133 families Israeli rs2268494, rs1042778 [38]

2010 Family 215 families Japanese No [39]

2010 Case-control 280 cases, 440

controls

Japanese rs237887, rs2264891, rs2254298, rs2268495 [39]

2010 Family 199 families Caucasian No [44]

2010 Family 100 families Caucasian rs2270465 [45]

2011 Family 1238 families Caucasian rs2268493, rs1042778, rs7632287 [43]

2013 Case-control 132 cases, 248

controls

Japanese rs35062132-G [42]

2014 Case-control 76 cases, 99 controls Swiss rs2254298, rs53576 [36]

2014 Case-control 118 cases, 412

controls

Caucasian rs2268493 [41]

2015 105 cases Japanese 28 variants [46]

2015 (a

meta-

analysis)

Family and

case-

control

2525 families, 454

cases, 595 control

Han Chinese, Israeli,

Caucasian, Japanese

rs7632287, rs237887, rs2268491, and

rs2254298

[11]

2016 Family 175 families German rs237889-A [40]

AVPR1a 2002 Family 115 families Caucasian, African-

and Asian-American

RS3 [72]

2004 Family 65 families Not specified RS1 and RS3 [12]

2006 Family 116 families Not specified Haplotype RS1-RS3-AVR [73]

2010 Family 148 families Korean RS1 and RS3 [74]

2011 Family 177 families Irish RS1 (short alleles), rs11174815 [75]

2015 Family 205 families Finnish RS1 (short alleles), Haplotype rs7307997-

rs1042615, and RS3-rs1042615

[76]

AVPR1b 2016 Family 207 families Caucasian, African-

and Asian-American

rs35369693 and rs28632197 [78]

CD38 2010 Family 104 families Caucasian rs6449197, rs3796863 [66]

2010 Family 170 families Israeli rs3796863, rs3796878, rs3796867,

rs4516711, rs10805347, rs1803404,

rs1130169

[15]

2010 Family 188 families Japanese – [66]

2014 1771 children Swedish rs6449182 [23]

OXT, oxytocin; OXTR, oxytocin receptor; AVPR1a, AVP receptor 1a; AVPR1b, AVP receptor 1b; CD38, cyclic ADP ribose hydrolase; RS1 and

RS3, promoter microsatellites of AVPR1a.
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belonging to class I of the G protein-coupled receptor

family [18].

OXT as a genetic risk factor for ASD is also supported

by linkage analysis and disease association with common

variants in OXTR. In a study involving Han Chinese indi-

viduals, Wu et al. [35] used the FBAT and found a sig-

nificant genetic association between ASD and two OXTR

SNPs, rs2254298 and rs53576. A number of haplotypes

constructed with two, three, or four markers, particularly

those involving rs53576, were significantly linked to ASD

[35]. Nyffeler et al. [36] also found similar associations in

a Caucasian population with high-functioning autism.

Jacob et al. [37] replicated the study of Wu et al. in a

Caucasian sample with a strictly-defined autistic disorder.

Interestingly, the SNP rs2254298 but not rs53576 was

found to be associated with ASD. Moreover, over-trans-

mission of the G-allele to probands with ASD was repor-

ted, which was inconsistent with a previous study in a Han

Chinese population. Lerer et al. [38] conducted a com-

prehensive study examining all the tagged SNPs across the

OXTR gene region. As expected, significant associations

were found for single SNPs and haplotype with ASD.

Notably, these polymorphisms of OXTR showed significant

associations with IQ and the Vineland Adaptive Behavior

Scales for ASD. In a Japanese population, Liu et al. [39]

analyzed 11 OXTR SNPs but did not detect any significant

signal in the FBAT test. However, case-control analysis

revealed significant associations between four SNPs and

ASD. The most significantly associated SNP was

rs2254298 with ‘‘A’’ as the risk allele [39]. This result was

similar to those in a Han Chinese population, but in con-

trast to the observations in Caucasians. The ethnic differ-

ence in the linkage disequilibrium structure between Asian

and Caucasian populations may contribute to the difference

in the role of OXTR polymorphisms in ASD in the two

populations. A recent meta-analysis of 16 OXTR SNPs

including 3941 individuals with ASD from 11 independent

samples [11] revealed associations between ASD and the

OXTR SNPs rs7632287, rs237887, rs2268491, and

rs2254298. OXTR was also associated with ASD in a gene-

based test. These results are the most comprehensive

examination of the association of common OXTR variants

with ASD to date. Furthermore, Kranz et al. [40] tested two

additional OXTR SNPs (rs237889 and rs237897) for asso-

ciation with ASD in German cohorts and found nominal

over-transmission for the minor A allele of variant

rs237889G[A. Di Napoli et al. [41] focused on Asperger

Syndrome, a subgroup of ASD, and discovered a signifi-

cant association with rs2268493 in OXTR. Ma et al. [42]

reported that the G allele of variant rs35062132C[G was

correlated with an increased likelihood of ASD. Further

cell experiments showed that rs35062132C[G accelerates

OXT-induced receptor internalization and recycling, indi-

cating a functional variant.

However, OXT SNPs were not always associated with

ASD in the association studies, especially when adjustment

was made for multiple comparisons. Campbell et al. [43]

examined 25 genetic markers spanning the OXTR locus in a

relatively large American sample, and an association of the

three markers rs7632287, rs2268493, and rs1042778 was

found. However, all the significant associations disap-

peared after correction for multiple testing. Similarly, in a

combined sample from Ireland, the UK, and Portugal, the

findings of Wu et al. [35] and Jacob et al. [37] were not

replicated, with no marker survived for association with

ASD [44]. In addition, Wermter et al. [45] genotyped 22

SNPs in the OXTR genomic region in 100 families with

high-functioning and atypical ASD, and found no associ-

ation after correction for multiple comparisons.

Research focusing on epigenetic modifications and rare

variations of the OXTR may provide additional evidence

for a role of this gene in ASD. In 105 ASD individuals

from Japan, investigators identified 28 novel variants

including potential functional variants in the intron region

and one rare mis-sense variant (R150S) [46]. Gregory et al.

[47] examined copy number variations and epigenetic

changes in the OXTR gene, and interestingly revealed that a

genomic deletion containing the OXTR gene was present in

an autistic proband. DNA methylation analysis indicated

that the promoter region of OXTR is hypermethylated in

independent datasets of individuals with autism as com-

pared to control samples, in both peripheral blood

mononuclear cells and temporal cortex. In healthy adults,

OXTR methylation has been associated with activity in the

dorsal anterior cingulate cortex and temporal parietal

junction, regions strongly associated with social perception

[48].

In healthy populations, SNPs across the human OXTR

gene have been associated with pair-bonding behaviors

[49], parenting [50, 51], face-recognition skills [52, 53],

and emotional and cognitive empathy [54, 55]. Neu-

roimaging studies have shown that carriers of the OXTR

rs53576 AA allele have a smaller volume and reduced

functional connectivity of the hypothalamus [56, 57], and

GG homozygotes have an increased local volume in the left

hippocampus and amygdala [58], which indicates an

association between OXTR genetic variation and structural

and functional variability in brain regions relevant to social

cognition. In addition, rs53576 GG homozygotes are more

responsive to intranasal OXT administration. For example,

OXT administration increases preference for infants’ faces

[59] and social cooperation [60] among rs53576 GG

homozygotes but not in A allele carriers. The most plau-

sible mechanism by which OXTR SNPs influence the
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effects of OXT is through altering expression of the OXTR.

In prairie voles, one non-coding polymorphism in the Oxtr

(SNP2) explains the variance in OXTR expression in par-

ticular brain regions [61]. Specifically, T-allele genotypes

of SNP2 have double the OXTR density in the nucleus

accumbens than CC littermates.

CD38

Further evidence for an important role of the OXT system

in ASD comes from studies on CD38, a transmembrane

protein involved in OXT release in the brain [62] and in the

critical regulation of social behavior [14, 63]. Cd38-

knockout mice show severe social deficits (i.e., amnesia of

conspecifics) and have been discussed as a rodent model of

ASD [64, 65]. In individuals with ASD, two SNPs of CD38

(rs6449197 and rs3796863) have been associated with

high-functioning autism in the US population [66]. These

findings were partially confirmed in Israeli participants

[15], but not in Japanese cases [66]. For the rs3796863

SNP, ASD patients carrying the CC genotype are charac-

terized by more severe symptoms, such as restricted,

repetitive, and stereotyped patterns of behavior, than those

carrying the A allele [66].

In healthy populations, individuals homozygous for the

CC allele on CD38 rs3796863 show a lower level of

peripheral OXT than CA/AA carriers [67, 68]. When

exposed to social stimuli, healthy men with the CC allele

show slower reaction-times and higher activation of the left

fusiform gyrus [69], an area widely discussed in ASD

research. At the behavioral level, parents with high-risk

alleles have been shown to touch their infants less during a

free-play session, and low-risk CD38 alleles predict longer

durations of parent-infant gaze synchrony [67].

Besides the SNPs, a mis-sense mutation (4693C[T) of

CD38 has been found in 0.6%–4.6% of a Japanese popu-

lation and was associated with ASD in a case-control study

[66]. Partial deletion of CD38 has also been reported in a

patient with autism and asthma [70]. Furthermore, autistic

individuals also show low expression of CD38 in lym-

phoblastoid cells (LBCs) [15]. In LBCs, treatment with all-

trans retinoic acid (a known inducer of CD38 [69])

reverses CD38 mRNA expression [71]. Such a demon-

stration may provide in vitro ‘‘proof of principle’’ that

CD38 is a potential target in the clinical treatment of ASD.

AVPR1a

In contrast to only one form of OXTR, there are three

subtypes of AVPR, AVPR1a, AVPR1b, and AVPR2,

which are all G-protein-coupled receptors. Of those,

AVPR1a is predominantly expressed in the brain and is the

most strongly implicated in neuropsychiatric phenotypes.

Therefore, in this section, we mainly summarize associa-

tions between polymorphisms of AVPR1a and ASD.

Various studies have established possible associations

between polymorphisms in the promoter region of the

AVPR1a gene and autism phenotypes. The human AVPR1a

promoter region contains two microsatellite repeats, RS1

and RS3, in the 50 flanking region. Of these, RS3 is a

complex repeat located 3625 bp upstream of the tran-

scription start site, and RS1 is a (GATA)n repeat located

553 bp upstream of the start site [9]. The first genetic study

of AVPR1a and human behavior was conducted by Kim

et al. [72], who showed a nominally significant transmis-

sion disequilibrium between an AVPR1a microsatellite

(RS3) and ASD, but this association was not significant

after Bonferroni correction. Later, Wassink et al. [12] also

found significant disequilibrium with both RS1 and RS3

but in cases with less severe impairment of language. More

recently, Yirmiya et al. [73] failed to find associations of

specific AVPR1a alleles with ASD, but significant associ-

ations of haplotypes consisting of RS1, RS3, and an

intronic microsatellite (AVR). In addition, significant

associations have been reported between these three

microsatellite haplotypes and social phenotypes of ASD.

Another study genotyped 148 Korean trios (a family with

parents and a child) and also found evidence for associa-

tions between AVPR1a microsatellites (RS1 and RS3) and

ASD [74]. In a study of an Irish population, a weak asso-

ciation was found between short alleles of RS1 and the

SNP rs11174815 and ASD [75]. Recently, a Finnish study

analyzed the association of three microsatellites (RS1,

RS3, and AVR) and 12 tagged SNPs in the promoter and

coding regions of AVPR1a, and found that the best asso-

ciation was located in RS1 [76]. Promoter analysis pre-

dicted one potential binding site for MEF2C (myocyte

enhancer factor 2C) at RS1, which may be involved in

autistic behavior [77]. In addition, the AVPR1b SNPs

rs35369693 and rs28632197 have been associated with

ASD, and the significance remained after correction for

multiple comparisons [78]. This was the first study

reporting associations between AVPR1b SNPs and ASD.

These findings provide evidence for a contribution of

genetic polymorphisms of AVPR1a to the risk for ASD,

which is further supported by the social impairment found

in mice lacking functional Avpr1a [79]. Interestingly,

microsatellite repeats are also found upstream of Avpr1a in

prairie voles, a commonly-used animal model for affiliative

social behavior related to neuropeptide signaling [80]. In

this type of animal, microsatellite length causes

intraspecific variation in Avpr1a expression and, conse-

quently, social behavioral traits [81].

In individuals who have developed normally, long

AVPR1a RS3 repeats are associated with higher expression

of hippocampal AVPR1a [82] than in those carrying short
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RS3 repeats. In addition, longer alleles of RS3 are asso-

ciated with a higher level of economic altruism [82] and a

greater level of prepulse inhibition [83], which is an indi-

cator of social cognition. Moreover, polymorphisms of RS3

are also linked to adulthood social interaction [84], pair-

bonding [85], trust behavior [86], and non-clinical autism

spectrum phenotypes [87] in healthy individuals.

OXTR Gene Polymorphisms and Efficacy of OXT

Administration

Since OXT is closely associated with a series of social

behaviors, the neuropeptide is regarded as a potential agent

for ASD treatment [9, 88–93]. Accumulating evidence has

suggested that exogenous OXT administration is beneficial

for the remission of autistic symptoms by improving

cooperation and a sense of trust [94], as well as enhancing

social responsiveness [95, 96] and social reciprocity

[97, 98]. However, several studies failed to replicate the

beneficial clinical effects of OXT on ASD [99, 100]. We

speculate that these inconsistent findings may be at least

partly associated with genetic polymorphisms of OXTR.

Because intranasally-administered OXT is considered to

act through the OXTR [18] and the latter contains several

dozen SNPs, the administered OXT would not be expected

to have a pharmacological effect if there is a loss-of-

function mutation in OXTR. Therefore, the efficacy of OXT

administration might differ according to OXTR gene

polymorphisms.

Animal studies have suggested that some OXTR SNPs

contribute to individual differences in OXTR expression,

but only in particular brain regions [61]. A single-dose

study in healthy volunteers showed that OXTR gene poly-

morphisms alter the sensitivity to reward-relevant features

and/or their aversive properties in infants [59] and also

influence the improvement of neural responses associated

with social cooperation [60]. With long-term OXT

administration, ASD patients carrying a T-allele at

rs6791619 of the OXTR show improved Clinical Global

Impression-Improvement scores, providing direct evidence

that OXTR SNPs are associated with the efficacy of OXT

treatment [101]. Therefore, besides the regimen (e.g.,

dosage and number of administrations per day), participant

characteristics including their genetic background are also

important factors that need to be considered in clinical

trials of OXT administration [102].

Conclusions and Perspectives

In the current review, we summarize the key findings on

associations between ASD and genetic polymorphisms of

five genes that are key players in the architecture of the

OXT-AVP neural pathways. We suggest that targeting

elements of the OXT and AVP pathways is a potentially

fruitful approach for drug discovery as well as a source of

potential biomarkers for the early diagnosis of social dis-

orders, especially ASD.

Animal studies suggest that epigenetic markers,

including methylation and histone acetylation of the OXTR,

are important in regulating the OXTR and AVPR1a genes

[103, 104]. Notably, failure to examine the epigenetic

modulation of OXT-pathway genes may be one reason for

the lack of conclusive findings in a recent meta-analysis of

OXTR rs53576 and rs2254298 [105]. Further investigations

need to focus on not only the functional significance of

OXTR SNPs but also potential epigenetic mechanisms,

which will allow stronger and more comprehensive con-

clusions as to whether disruptions in oxytocinergic sig-

naling contribute to a risk for ASD or are associated with

variability in social deficiency in ASD.
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