
REVIEW

Potential Mechanisms Underlying the Therapeutic Effects
of Electroconvulsive Therapy

Jiangling Jiang1 • Jijun Wang1,2,3 • Chunbo Li1,2,3

Received: 5 August 2016 / Accepted: 23 November 2016 / Published online: 28 December 2016

� Shanghai Institutes for Biological Sciences, CAS and Springer Science+Business Media Singapore 2016

Abstract In spite of the extensive application of electro-

convulsive therapy (ECT), how it works remains unclear.

So far, researchers have made great efforts in figuring out

the mechanisms underlying the effect of ECT treatment via

determining the levels of neurotransmitters and cytokines

and using genetic and epigenetic tools, as well as structural

and functional neuroimaging. To help address this question

and provide implications for future research, relevant

clinical trials and animal experiments are reviewed.
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Introduction

Electroconvulsive therapy (ECT) was first used to treat

mental disorders in 1938 as a substitute for the chemical

induction of seizures [1]. It involves deliberately inducing

seizures for therapeutic purposes by administering an

electrical stimulus to a patient’s brain via electrodes

applied to the scalp. Although modified ECT (using anes-

thesia and muscle relaxants) significantly alleviates the

discomfort during the procedure and prevents severe

adverse side-effects such as fractures, unmodified ECT is

still preferred in Asia, Africa, and Latin America [1].

Today, brief-pulse wave ECT rather than sine-wave ECT

with a constant voltage and energy is recommended [2].

Bilateral placement is the most common electrode place-

ment [1]. Almost 80 years have passed since its first use,

and ECT is still widely administered worldwide [1]. It is

largely considered to be a treatment for affective disorders

in most western countries, while in many eastern countries

such as India, Thailand, and Japan, as well as in parts of

Africa, ECT is mainly applied as a first-line treatment for

schizophrenia [1]. For depression, ECT is probably more

effective than pharmacotherapy [3]. For schizophrenia,

ECT combined with antipsychotics is a treatment option

when the patient does not respond to pharmacotherapy

alone or rapid improvement is desired [4]. ECT is also used

for other severe conditions such as refractory status

epilepticus [5] and malignant catatonia [6]. Despite the

extensive use of ECT, the mechanisms of how its broad and

notable therapeutic effectiveness is generated remain

poorly understood.

Discredited Theories of ECT

Although ECT has proven to be an effective and safe

intervention [3, 4], its image in the media and in the public

domain remains negative [7, 8]. McCall et al. have listed

some misconceptions concerning the mechanism underly-

ing the treatment effects of ECT, such as brain damage and

the placebo effect [9]. Anderson et al. performed a post-

mortem brain examination on an 84-year-old man after 422

ECT sessions and found no identifiable structural changes
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in his brain [10], which further confirmed the results of

previous research [11, 12]. It is notable that in Anderson’s

study, the time interval between the last ECT treatment and

the postmortem examination was less than a month, which

is much shorter than in the previous reports (one year and

12 years). This provided evidence that ECT has no impact

on the structure of the brain even immediately after the end

of substantive ECT treatments. Besides pathological

changes, researchers have also explored the relationship

between ECT and brain damage by analyzing relevant

biomarkers. In previous trials, no elevations were found for

neuron-specific enolase or protein S-100 (S100b), which

are highly-specific and widely-used biomarkers of nervous

tissue damage [13–16]. There were also studies identifying

small and transient increases in S100b after ECT, which

showed no association with cognitive impairment [17, 18];

rather, such alterations of S100b may indicate neural

growth and synaptogenesis [19]. To date, both in vivo and

ex vivo evidence indicates that the therapeutic effects of

ECT are not generated by damaging the central nervous

system, although there is great concern about this issue

[20, 21].

Although ECT is known to be significantly more

effective than a sham procedure [3], discussion about

whether the placebo effect plays an important role in ECT

continues. Reviewers have criticized such trials in that

there are particular methodological and ethical limitations

with regard to the adequacy of placebo controls as a con-

sequence of insufficient allocation concealment [22]. Since

sham ECT is ineffective and it would be ethically wrong to

mimic the common side-effects of real ECT, participants

may be able to guess their allocation. As a consequence, we

are not able to rule out the possibility that the placebo

effect does contribute to its therapeutic effects. In fact,

emerging evidence favors ECT over active controls like

antidepressants and repetitive transcranial magnetic stim-

ulation [23, 24], further demonstrating that ECT may be the

most effective treatment for major depression. Placebo

effects cannot be the mainstay of such a powerful weapon

against various severe mental disorders. However, discus-

sion concerning the role of the placebo effect in ECT is

likely to continue until the mechanism is fully understood.

ECT and Neurotransmitters

ECT is mainly used to treat depression and schizophrenia

[1]. The main treatments of both disorders are pharma-

cotherapies involving the modulation of serotonin (5-HT)

in the case of antidepressants and an antagonistic effect on

dopamine D2 receptors in the case of antipsychotics

[25, 26]. Thus, many researchers have investigated the

mechanism underlying the effects of ECT by identifying its

impact on the 5-HT and the dopamine systems in the brain.

Most studies have shown no significant changes in

5-hydroxyindoleacetic acid, a major metabolite of 5-HT, in

cerebrospinal fluid (CSF) with ECT [27–31]. Using a

positron emission tomography (PET), Lakshmi et al. found

a widespread reduction in 5-HT2A receptor binding in all

of the cortical regions of patients with major depressive

disorder (MDD) [32]. These results are consistent with the

findings from studies on antidepressant agents [33–35] and

in non-human primates [36]. Moreover, the reductions in

the right medial prefrontal cortex, right lingual gyrus, and

parahippocampal gyrus showed a trend to be correlated

with improvement in depressive symptoms. In addition,

variation in the 5-HT2A receptor gene is a potential pre-

dictor of the response to ECT [37] and antidepressants

[38, 39]. Lanzenberger et al. found a widespread reduction

in 5-HT1A receptor binding in cortical areas and the hip-

pocampus-amygdala region [40], while Saijo et al. reported

no significant changes in the brains of MDD patients [41].

On the basis of the limited data from these three trials, one

might hypothesize that ECT and antidepressant agents

share a common mechanism, the down-regulation of 5-HT

receptors, in the treatment of depressive disorders. How-

ever, these findings in human participants are inconsistent

with most of the preclinical experiments, which indicate

that electroconvulsive shocks (ECS) up-regulate 5-HT

receptors in the central nervous system [42].

Similarly, ECT did not produce any significant changes

in CSF homovanillic acid, a major metabolite of dopamine,

in most studies [27–31]. Using PET with [11C]FLB 457,

Saijo et al. found that dopamine D2 receptor binding

decreases in the anterior cingulate among patients with

depression following ECT [43]. Nevertheless, Tiger et al.

reported a 98% increase in dopamine D2 receptor binding

with [11C]raclopride in half of the patients, while there was

virtually no change in the other half [44]. This sharp dis-

crepancy might partially be attributed to the impact of

dopamine receptor polymorphism on the ECT response

[45–47]. The results of preclinical studies are relatively

consistent, and most indicate that ECT activates the

dopamine system at various levels, including hormone

release, neurotransmission, and receptor binding [42].

ECT and Neurotrophins

Brain-derived neurotrophic factor (BDNF) plays an

important role in mediating the differentiation and survival

of neurons, as well as in synaptic plasticity [48]. It is the

most extensively-studied neurotrophin in psychiatry, and

numerous meta-analytic reviews have suggested that

BDNF decreases in various mental disorders and increases

after pharmacological treatments [49–56].

Polyakova et al. have performed a comprehensive meta-

analysis concerning the impact of ECS/ECT on BDNF
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levels in experimental animals and in patients with MDD

or bipolar disorder [57]. They reported an increase in the

BDNF protein and its mRNA in the brains of rodents, with

the greatest change in the dentate gyrus, as well as an

increase in blood BDNF levels in patients irrespective of

their response to ECT. The increase in BDNF after ECT/

ECS is correlated with the number of intervention sessions.

It seems that ECT does raise the BDNF levels in the brain

but the increase has nothing to do with its therapeutic

effects. However, subgroup analysis revealed more infor-

mation. Although there were no significant differences

between responders and non-responders, the BDNF

increase (pre- versus post-treatment) was significant only in

responders (pre- and post-treatment). And an increase in

blood BDNF levels was found in the plasma of partici-

pants, but there was no change in the serum of either rats or

humans. More recent evidence has confirmed the potential

of BDNF as a predictor of the response to ECT [58–61].

Nevertheless, it is notable that most of the results are

markedly heterogeneous, and this cannot be settled by

subgroup analysis, thus, the findings of this study are not

conclusive. In addition to the direct assessment of BDNF,

researchers have also explored the role of BDNF in the

effects of ECT by investigating the influence of BDNF

gene polymorphisms on its efficacy [47, 62–64]. Yet only

the polymorphism rs11030101 has been associated with the

therapeutic effects of ECT [63].

Although not as thoroughly evaluated as BDNF, an

association between vascular endothelial growth factor

(VEGF) and the efficacy of ECT has also been evaluated.

VEGF, a key growth factor for blood vessels, has various

effects on neurons [65] and is increased in the blood of

MDD patients [66]. Minelli et al. conducted a series of

trials, and consistently found that a serum VEGF increase

is associated with a reduction of depressive symptoms

[67–69]. These results further confirm the conclusions

drawn from preclinical research that VEGF plays an

important role in the mechanism of ECT [70–73].

ECT and the Immune System

Meta-analytic reviews have revealed significant changes in

inflammatory cytokines in various mental diseases [74–80]

as well as their potential as predictors of disease develop-

ment and treatment response in depression and psychosis

[81–84]. Increases in C-reactive protein, interleukin-6, and

tumor necrosis factor alpha (TNF-a) in the blood of

patients with depression or psychosis are consistently

reported by these studies.

Despite the great efforts to identify cytokine changes

following ECT since the beginning of the twenty-first

century [85–92], only a few studies have shown that ECT

works by normalizing the inflammatory factor levels in the

same way as pharmacotherapy [93, 94]. In fact, many

studies have suggested that ECT raises the concentration of

these cytokines which were already elevated before treat-

ment. But some relatively promising results have been

reported, such as a reduction in TNF-a, a consistently

raised inflammatory cytokine in depressed patients [86]. In

addition, significantly low serum interleukin-5 (IL-5) and

tumor necrosis factor beta (TNF-b) have been reported,

both correlated with the severity of depressive symptoms

[89]. These results are consistent with previous findings of

up-regulated IL-5 and TNF-b in MDD patients [95–98]. In

addition, an increase in indoleamine 2,3 dioxygenase

(IDO) has been found in MDD and its level drops fol-

lowing ECT [91], providing evidence for the IDO activa-

tion theory of mood disorders [99]. In another study, lower

serum levels of TGF-b in schizophrenic patients have been

reported, and they increase following ECT, showing a

negative correlation with a reduction of psychotic symp-

toms [92]. Nevertheless, these results contradict previous

evidence that TGF-b increases in schizophrenic patients

and is normalized after antipsychotic treatments [81].

ECT and Epigenetics

Epigenetics commonly refers to a stably heritable phenotype

as a consequence of chromosome modification without

changing DNA sequences [100]. It may be involved in the

development of various mental diseases and thus indicate new

directions for treatment [101–104]. It is a novel approach to

investigating the mechanism of ECT, but most research

remains preclinical and methodologically limited. The main

findings from these very preliminary studies include an

increase in histone H4 acetylation, alterations of DNA

methylation patterns, and changes in miRNA levels [105].

We found two reports concerning the epigenetic effects of

ECT on human subjects. In MDD patients, Kleimann et al.

found a lower methylation rate in the BDNF promoter in ECT

responders than in non-responders, and a negative correlation

between the methylation rate and serum BDNF levels [106].

In addition, changes in the blood concentrations of several

miRNAs following ECT in MDD patients have been reported

by Kolshus et al. [107]. In short, a limited number of studies

preliminarily reveal the potential of investigating the mech-

anism of ECT via epigenetic means.

ECT and Structural Neuroplasticity

In addition to the molecular-level changes noted above,

ECT may also be able to reverse the structural abnormal-

ities found in patients with mental diseases. Examples of

these abnormalities are the multiple structural and

microstructural changes in both the cortical and subcortical

areas among MDD patients [108–113], and hippocampal
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size is a potential predictor of response to medication

[114].

Recently, Joshi et al. found that ECT normalizes the

decreased volumes of the hippocampus and the amygdala,

and the changes are correlated with clinical improvement

[115]. Several other studies showed that ECT enlarges the

hippocampus and the amygdala [116–119], with correla-

tions between volume increases and symptomatological

improvement [120]. One study suggested that such

increases reverse within six months and are not likely to be

induced by edema [121]. These results are consistent with

previous findings that the hippocampus and the amygdala

are involved in the dysfunction of emotion regulation

among depressive patients [122]. Although evidence of an

association between hippocampal volume changes and

autobiographical memory function has been found [123], a

reasonable explanation of the discrepancy in hippocampal

volume increases and autobiographical memory dysfunc-

tion following ECT has yet to be provided [124].

As for microstructural changes, fractional anisotropy

(FA), which is a measure of white matter coherence, is the

most used image biomarker in research on depression.

Decreased FA is a stable finding in depression despite the

fact that the reported regions are relatively inconsistent

with different analytical methods [109, 111, 113]. In

addition, there is evidence associating non-remitters with

lower FA [125]. However, the results of recent studies

concerning the impact of ECT on brain FA values vary

substantially. Two studies have revealed increased FA

[126, 127], one revealed no changes [128], and one

revealed a decreased FA [119].

ECT and Neural Functional Changes

Using various techniques such as single positron emission

computer tomography, near-infrared spectroscopy, and

PET, investigators have examined the impact of ECT on

regional cerebral blood flow, but found mixed results

[129–140]. Interestingly, one study showed significant

normalization of frontal hypoperfusion in MDD patients

with an excellent response to ECT but not in those with a

minimal or moderate response [133]. In addition, a higher

degree of perfusion was found in ECT treatments produc-

ing generalized seizures than in those which did not induce

such seizures [139]. Changes in glucose metabolism are

stably reported following ECT. Most relevant studies

report decreased uptake in some frontal regions after ECT

[141–145], and a correlation between such decreases and

the reduction of depressive symptoms has also been

reported [142]. In contrast, most resting-state network

analysis has revealed increased connectivity correlated

with clinical improvement, but the reported regions are

inconsistent [118, 146–150]. Notably, van Waarde et al.

claimed promising accuracy of two networks in predicting

the ECT response, one centered in the dorsomedial pre-

frontal cortex with a sensitivity of 84% and specificity of

85%, and the other centered in the anterior cingulate cortex

with a sensitivity of 80% and a specificity of 75% [150]. In

addition, normalization of default mode network coherence

was found in ECT responders but not in non-responders

[151].

Summary

Despite decades of tremendous effort, a comprehensive

understanding of how ECT works is still a distant goal.

With regard to molecular changes, consistent positive

results towards normalization correlated with symptom

improvement are rare. For neuroimaging changes, incon-

sistencies in altered regions are the main limitation. The

small number of samples, the diversity of methods used in

Table 1 Summary of relatively consistent findings

Levels Relatively consistent findings Symptomatic

correlations

Genetic

correlations

Neurotransmitters Cortical 5-HT2A receptor binding; [32, 36] ± [32] ? [37]

Neurotrophins Blood BDNF: [57–61] ? [58–61] ? [63, 106]

Blood VEGF: [67–72] ? [67, 69] -

Inflammatory factors Blood TNF-a; [86] - -

Blood TNF-b; [89] ? [89] -

Blood IL-5; [89] ? [89] -

Structural changes in brain Hippocampus: [115–121] ? [115, 120] -

Amygdala: [115, 117, 119, 120] ? [115, 120] -

Functional changes in brain Frontal glucose uptake; [141–145] ? [142] -

Resting state network: [118, 146–150] ? [118, 146–150] -

: Increase; ; decrease; ? statistically significant; ± showing a trend; - neither significant nor showing a trend.

342 Neurosci. Bull. June, 2017, 33(3):339–347

123



both data collection and data analysis, and the hetero-

geneity within a certain mental disorders may all contribute

to the inconsistency of current findings. Large trials and

meta-analytic reviews are necessary to tackle these

shortcomings.

Fortunately, there are still some promising findings

despite the fact that they cannot fully explain the mechanism

of ECT. Relatively consistent findings are listed in Table 1.

Among the molecular biomarkers, neurotrophins seem more

likely to be able to solve the mystery of the therapeutic

effects of ECT and have become a hotspot in this field.

Increases in blood BDNF and VEGF are consistently found

after ECT, and many studies have revealed a positive cor-

relation between the improvement of symptoms and these

two neurotrophins. For similar reasons, we also recognize the

volume increases of the hippocampus and amygdala to be the

most promising structural imaging biomarkers, and

increased connectivity of the resting state network to be the

most promising functional imaging biomarker.

Besides exploring new biomarkers, what we already

have must be fully utilized. For example, whether volume

and functional changes of brain structures are mediated by

neurotrophins must be further investigated. In addition,

models using these biomarkers either separately or in an

integrated manner should be built to see whether they can

accurately predict clinical responses. The work discussed

above may not only provide a better understanding of the

mechanism of action of ECT, but also eventually facilitate

clinical decision-making.
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