Research progress on the NLRP3 inflammasome and its role in the central nervous system

Shen-Bin Liu, Wen-Li Mi, Yan-Qing Wang
Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China

Corresponding author: Yan-Qing Wang. E-mail: wangyanqing@shmu.edu.cn

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2013

The NLRP3 inflammasome, which consists of the NLRP3 (nucleotide-binding oligomerization domain (Nod)-like receptor 3) scaffold, the ASC (apoptosis-associated speck-like protein containing a CARD) adaptor and pro-caspase-1, is assembled after the cytoplasmic LRRs (leucine-rich repeats) of NLRP3 sense pathogens or danger signals. The NLRP3 inflammasome controls the activation of the proteolytic enzyme caspase-1. Caspase-1 in turn regulates the maturation of the proinflammasome cytokines IL-1β and IL-18, which leads to an inflammatory response. The inflammasome plays an important role in the development of Alzheimer’s disease and bacterial meningitis, and the NLRP3 inflammasome may become a new target for the prevention and treatment of central nervous system diseases.

Keywords: NLRP3; inflammasome; central nervous system

Introduction

There has been considerable interest in the recently-introduced inflammasome, a large molecular platform composed of the NLR (nucleotide-binding oligomerization domain (Nod)-like receptor) protein, the adaptor ASC (apoptosis-associated speck-like protein containing a CARD) and pro-caspase-1. The inflammasome is responsible for the proteolytic processing of immature forms of interleukin-1β (IL-1β) and IL-18, two powerful proinflammatory cytokines with pleiotropic activities. Since its proposal in 2002, the inflammasome has increasingly become a research hotspot with the number of publications increasing every year (Fig. 1A). Four types of inflammasome have been most intensely studied: the NLR pyrin domain containing 1 (NLRP1), NLRP3, NLR containing a caspase recruitment domain 4 (NLRC4), and AIM2 (absent in melanoma 2) inflammasomes. The NLRP3 inflammasome is the best-studied thus far with 274 publications, 67.8% of the currently available research articles on inflammasomes (Fig. 1B).

The NLRP3 inflammasome is linked to a number of diseases including inflammatory disease[1-5], metabolic disease[6] and carcinogenesis[7]. Currently, increasing attention is being paid to the function of the NLRP3 inflammasome in the central nervous system (CNS). Studies have reported that the NLRP3 inflammasome is associated with Alzheimer’s disease (AD)[8-10], bacterial meningitis[11,12], and experimental autoimmune encephalomyelitis (EAE)[13]. During certain CNS diseases, the NLRP3 inflammasome is activated (Table 1). Therefore, the NLRP3 inflammasome may play a critical role in CNS physiopathology and function as a proinflammatory mediator. Here, we review the recent research advances on the NLRP3 inflammasome, particularly its role in the CNS.

NLRP3 Inflammasome Structure

NLRP3 is the main component of the NLRP3 inflammasome[24]. NLRP3, also known as cryopyrin, PYPAFI or Nalp3, has a tripartite structure containing a central Nod (or NACHT domain), a carboxy-terminal leucine-rich-repeat
domain (LRR), and an N-terminal caspase-associated recruitment domain (CARD) or a heat protein domain (PYD). C-terminal LRRs provide a bracket for the interaction between pathogens and intracellular materials and identify pathogen-associated molecular patterns and other ligands. The central NACHT domain primarily mediates self-oligomerization during the activation process. The N-terminal PYD effector domain links NLRP3 to the downstream adapter protein ASC. Shenoy et al. found that guanylate-binding protein 5 (GBP5) directly interacts with NLRP3 and undergoes tetramerization in a GTPase-independent manner, and the GBP5 tetramer promotes oligomerization of the adaptor ASC via its interaction with NLRP3[25].

ASC was originally discovered as a detergent-insoluble

Table 1. NLRP3 inflammasome activation in central nervous system diseases

<table>
<thead>
<tr>
<th>Pathology</th>
<th>NLRP3 activation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer's disease</td>
<td>Overproduction of Aβ and phosphorylation of tau protein resulting in plaques and tangles</td>
<td>[9, 14, 15]</td>
</tr>
<tr>
<td>Meningitis</td>
<td>Inflammation of the leptomeninges resulting in tissue and vascular injury and increased intracranial pressure</td>
<td>[11, 16–20]</td>
</tr>
<tr>
<td>Prion disease</td>
<td>Accumulation of an abnormal disease-associated prion protein</td>
<td>[21–23]</td>
</tr>
<tr>
<td>Experimental autoimmune encephalomyelitis</td>
<td>Reactive glia trigger inflammatory processes and subsequent oligodendrocyte and axonal destruction</td>
<td>[13]</td>
</tr>
</tbody>
</table>

Fig. 1. Yearly publications and research trends on inflammasomes from 2002, when the inflammasome was proposed, to 2011. The search was performed in the Web of Science using the keywords “inflammasome”, “NLRP1 inflammasome”, “NLRP3 inflammasome”, “NLRC4 inflammasome”, and “AIM2 inflammasome”. A: The research trend on inflammasomes from 2002 to 2011. B: Distribution of the four intensely-studied inflammasomes among published research articles.
protein and was subsequently found to participate in apoptosis\cite{26}. The ASC protein consists of 195 amino-acids and connects to NLRP3 via adjoining N-terminal PYD domains. The C-terminal portion contains a CARD effector domain that interacts with the CARD domain of pro-caspase-1. The oligimerization of two adjacent pro-caspase-1 molecules leads to enzymatic hydrolysis and the generation of biologically active caspase-1\cite{27,28}.

The NLRP3 inflammasome is composed of NLRP3, ASC and pro-caspase-1, which oligomerizes upon activation\cite{29}. This activation results in the recruitment of ASC through homotypic PYD–PYD interactions. ASC, in turn, forms large speck-like structures and recruits pro-caspase-1 via CARD–CARD contact, leading to the autocatalytic activation of caspase-1\cite{28}. Active caspase-1 converts the inactive pro-IL-1β and pro-IL-18 into their active and secreted forms, mediating the subsequent response.

Activation of the NLRP3 Inflammasome

Prior to activation, the NLRP3 inflammasome consists of an NLRP3 scaffold, known as ubiquitin ligase-associated protein SGT1 (suppressor of the G2, of skp1 allele) and HSP90 (heat shock protein 90 kD)\cite{30}, and the SGT1–HSP90 complexes work together to maintain the pre-activation status. However, upon activation by a corresponding irritant, the complex dissociates from NLRP3, and then NLRP3 becomes activated\cite{31}. It has also been demonstrated that the tripartite-motif protein 30, a RING protein, negatively regulates the activation of NLRP3 through the generation of reactive oxygen species (ROS)\cite{32}.

The NLRP3 inflammasome can be activated by a wide range of signals of pathogenic, endogenous and environmental origins and also by endogenous danger signals. Several of the activating irritants are listed in Table 2.

<table>
<thead>
<tr>
<th>Irritants</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogens</td>
<td></td>
</tr>
<tr>
<td>Endogenous and environmental origin</td>
<td>[33, 44–46]</td>
</tr>
<tr>
<td>Silica, asbestos, vaccine adjuvants, aluminum adjuvants</td>
<td></td>
</tr>
<tr>
<td>Endogenous danger signals</td>
<td>[1, 9, 47–50]</td>
</tr>
<tr>
<td>Uric acid, uric acid monosodium, crystal, β-amyloid protein, adenosine triphosphate, hyaluronic acid</td>
<td></td>
</tr>
</tbody>
</table>

To date, three distinct mechanisms have been proposed to explain the assembly of the NLRP3 inflammasome: lysosomal rupture, the generation of mitochondrial DNA (mtDNA), and the generation of ROS (Fig. 2).

Lysosomal Rupture

NLRP3 is activated upon lysosome destabilization. The phagocytosis of specific crystalline and particulate structures leads to lysosome destabilization and the release of lysosomal contents, including cathepsin B. Cathepsin B binds to NLRP3 and induces the proteolytic activation of a positive regulator of NLRP3, resulting in inflammasome assembly\cite{33,34}.

Generation of mtDNA

The release of oxidative mtDNA upon mitochondrial damage can activate the NLRP3 inflammasome. There are two pathways for mitochondrial damage: intracellular K⁺ efflux and Ca²⁺ mobilization.

K⁺ efflux results in low K⁺ concentrations in the intracellular environment, leading to mitochondrial dysfunction, apoptosis and the subsequent release of ROS and oxidative mtDNA, which can activate the NLRP3 inflammasome\cite{48,51-53}. Several mechanisms underlying the outflow of K⁺ have been proposed. Upon bacterial infection, the release of perforin can destroy cell membranes and allow for the outflow of K⁺ down its concentration gradient\cite{48}. ATP can activate the membrane selectivity of the K⁺ channel P2X7, which leads to a rapid outflow of K⁺. P2X7 activation gradually recruits the gap junction protein pannexin-1,
resulting in the formation of a larger-aperture channel\cite{54,55}. In addition, studies have shown that, after the formation of gap junctions by pannexin-1, NLRP3 inflammasome activators such as muramyl dipeptide can pass through the plasma membrane and directly trigger the activation of caspase-1\cite{56}. Recently, it has been reported that Ca\(^{2+}\) mobilization-mediated mitochondrial damage can also activate the NLRP3 inflammasome, and Ca\(^{2+}\)-sensing receptors regulate the inflammasome through Ca\(^{2+}\) and cAMP\cite{57,58}. In response to ATP and perhaps other stimuli, Ca\(^{2+}\) release from endoplasmic reticulum stores or the extracellular space can trigger mitochondrial damage.

Generation of ROS

ROS are induced by activators of the NLRP3 inflammasome and are mainly produced by the mitochondria\cite{60,61}. The complex of thioredoxin and thioredoxin-interacting protein (TXNIP) dissociates with increased ROS levels. The subsequent binding of TXNIP to NLRP3 leads to the activation of NLRP3.

Regulation of NLRP3 Inflammasome Activity

The host needs to tightly regulate NLRP3 inflammasome...
activity to avoid excess production of cytokines and cell death, and in fact, distinct mechanisms have evolved to regulate its activation and prevent serious consequences. This regulation occurs at both the transcriptional and post-transcriptional levels.

First, alternative splicing of the NLRP3 inflammasome components generates protein variants with different activities. Splice variants of ASC have been identified with distinct adaptor capabilities, with one variant ASC-c displaying inhibitory activity. The host expresses proteins that regulate NLRP3 inflammasome activity primarily by sequestering inflammasome components through homotypic interactions with CARDs or PYDs or through the direct inhibition of caspase-1 function.

Furthermore, inflammasome activity is also regulated through crosstalk between cellular stress-associated processes, such as autophagy. The induction of autophagy leads to the degradation of cellular substrates, such as protein aggregates and organelles, in autolysosomes for the recycling of metabolites. Strikingly, cells deficient in autophagy have a decreased threshold for NLRP3 inflammasome activation. This may result from the impaired clearance of defective mitochondria, resulting in elevated levels of ROS, suggesting the involvement of NLRP3 as a sensor.

Another aspect of inflammasome activity is its down-regulation either through secreted factors or cell–cell interactions. The signaling interactions between CD4+ T cells and macrophages or dendritic cells lead to the transcriptional and post-transcriptional downregulation of inflammasome activity, respectively.

Roles of the NLRP3 Inflammasome in the CNS

The NLRP3 inflammasome is expressed at high levels in microglia when activated by irritants. An unresolved question, however, is whether astrocytes and neurons possess NLRP3 inflammasomes. Recent studies have reported that the NLRP3 inflammasome is associated with several CNS diseases, such as AD and EAE.

NLRP3 Inflammasome and AD

During the development of AD, β-amyloid deposits are phagocytosed by microglia in the brain and enter lysosomes, leading to lysosomal swelling and instability. Cathepsin B released from lysosomes activates the formation of the NLRP3 inflammasome and caspase-1, resulting in the secretion of mature IL-1β. IL-1β plays an important role in neuronal injury, and leads to NO and TNF-α production, causing neurotoxicity. NO and TNF-α promote the transformation of diffuse amyloid plaques into inflammatory plaques, resulting in the decay of cortical neurons and brain atrophy.

NLRP3 Inflammasome and Meningitis

ASC or NLRP3 knockout mice, upon infection with pneumococcal meningitis, exhibit decreased scores of clinical and histological disease severity and brain inflammation. Besides, during pneumococcal meningitis, the NLRP3 inflammasome is activated by ATP-dependent lysosomal cathepsin B release.

NLRP3 Inflammasome and Prion Disease

Prion diseases are neuroinflammatory and neurodegenerative disorders characterized by the accumulation of the abnormal disease-associated prion protein, PrPSc. The accumulation of PrPSc leads to the activation of microglia which in turn produce chemotactic factors, pro-inflammatory cytokines and neurotoxic factors. Activation of the NLRP3 inflammasome by PrP fibrils leads to the release of IL-1β, which signals through IL-1R. Upon activation, IL-1R recruits the intracellular adaptor MyD88. It has also been reported that activation of the NLRP3 inflammasome is indispensable for PrP106–126-induced IL-1β release, and K+ efflux and ROS production are implicated in PrP106–126-induced NLRP3 activation.

NLRP3 Inflammasome and EAE

In the mice spinal cord, the NLRP3 expression was elevated upon infection with pneumococcal meningitis during EAE, and it is proposed that NLRP3 participates in the induction of EAE through effects on capase-1-dependent cytokines which then influence Th1 and Th17. More recently, Inoue et al. found that the NLRP3 inflammasome induces chemotactic immune cell migration to the CNS during EAE, and the NLRP3 inflammasome enhances the migration of Th17 and Th1 cells to the CNS.

Conclusion

The inflammasome is a multiprotein complex that promotes the maturation of inflammatory cytokines, such as IL-1β and IL-18. These cytokines are extremely powerful molecules with myriad functions that are widely and rapidly induced...
in the CNS upon infection, trauma or stress. Therefore, inflammasomes are likely to control many aspects of neuroinflammation. However, research on the role of the NLRP3 inflammasome in the CNS is still in the preliminary stage, and a number of questions remain unresolved. The distribution of NLRP3 inflammasomes in the cell and the CNS needs further investigation. In addition, whether the NLRP3 inflammasome is involved in other CNS diseases, such as stroke, Parkinson’s disease, epilepsy, or pain remains unclear. Furthermore, the exact molecular mechanisms by which the NLRP3 inflammasome is activated should also be further examined. Whether this protein complex is biochemically and genetically regulated may be a focus in years to come. Clinical trials have confirmed that IL-1β and its receptor antagonist can be used to treat a variety of diseases[78-80], and the widely-used drug glyburide plays a role in the treatment of diabetes through inhibition of the NLRP3 inflammasome[81]. Thus, investigations into the NLRP3 inflammasome will shed light on the pathogenesis of CNS diseases and provide critical clues for seeking new targets for clinical drug development.

ACKNOWLEDGEMENTS

We thank Mr. Chris White at Harvard University for the language editing. This review was supported by the National Natural Science Foundation of China (31000495, 30970975), the Research Fund for the Doctoral Program of Higher Education of China (20100071120046, 20100071120042) and the Fundamental Research Funds for the Central Universities and Young Scientist Foundation of Fudan University, China.

Received date: 2012-10-10; Accepted date: 2013-02-01

REFERENCES

Shen-Bin Liu, et al. Research progress on the NLRP3 inflammasome and its role in the central nervous system 785

