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·Editorial·

Neuroscience is the scientific study of how the nervous 
system develops, its structure, and what it does. With 
the development of different sciences and technologies, 
neuroscience has become an interdisciplinary science that 
collaborates with other fi elds, and the research approach of 
neuroscience has also changed greatly. Molecular imaging 
is a powerful tool for neuroscience that can be used 
for understanding disease, identifying biomarkers, and 
developing novel therapeutics. Molecular imaging plays an 
important role in neuroimaging, especially for investigations 
of the living brain. While CT and MRI provide important 
structural and anatomical information on the brain, neuro-
molecular imaging allows the in vivo visualization and 
measurement of cellular/molecular processes in the living 
brain. 

The topics covered in this special issue include 
advances in PET/CT and CT imaging in neurological 
disease, tracer development for neuroreceptors, brain 
function evaluation, stroke therapy, and the translational 
imaging approach in dementia. For instance, changes in 
cerebral blood fl ow (CBF) and cerebral glucose metabolism 
have often been associated with regional neuronal activity 
in brain function. Advances in biomarkers in PET imaging 
for parkinsonism and middle cerebral arterial disease 
such as the ratio of CBF to cerebral blood volume as a 
marker of regional cerebral perfusion pressure[1,2], and 
brain network makers of cerebral glucose metabolism and 
blood fl ow[3] are reported and discussed. These biomarkers 
can serve as clinically useful markers of disease severity 
and therapeutic response, as well as aid in the differential 
diagnosis of parkinsonism. Along this line, Heiss[4]  reviews 
PET applications to pathophysiological changes caused 

by cerebrovascular diseases, which have broadened our 
understanding of fl ow and metabolic thresholds critical for 
the maintenance of brain function and morphology.

Imaging tracers provide possibilities for molecular 
imaging in neuroscience. PET uses biomolecules as tracers 
that are labeled with radionuclides with short half-lives, 
synthesized prior to imaging studies. The administration 
of such radiotracers to the brain provides images of 
transport, metabolic, and neurotransmission processes 
on the molecular level. The contribution by Peter et al.[5] 
reviews the strategy of radiotracer development bridging 
from basic science to biomedical application; this allows 
molecular neuroreceptor imaging studies in various small-
animal models of disease including genetically-engineered 
animals, and can be used for in vivo pharmacology during 
the process of pre-clinical drug development to identify 
new drug targets, to investigate pathophysiology, to 
discover potential drug candidates, and to evaluate the 
pharmacokinetics and pharmacodynamics of drugs in vivo. 

Tracer kinetic modeling in dynamic PET has been 
widely used to investigate the characteristic distribution 
patterns or dysfunction of neuroreceptors in brain diseases. 
Seo and co-workers[6] review graphical analysis (GA) 
which is a major parametric mapping technique that is 
independent of any compartmental model configuration, 
robust to noise, and computationally efficient. They 
describe recent advances in the parametric mapping of 
neuroreceptor binding based on GA methods. Hou and co-
workers[7] discuss the value of PET in drug addiction and 
review the major findings of PET imaging studies on the 
involvement of dopamine (DA) in drug addiction, including 
presynaptic DA synthesis, vesicular monoamine transporter 
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2, the DA transporter, and postsynaptic DA receptors. 
Imabayashi et al. [8] review the superiority of neurostatistical 
imaging for diagnosing dementia using PET, MRI, and 
CT. Dong and co-workers[9] report a study on the effect 
and safety margin of bevacizumab on the infarction area 
of cerebral ischemia using PET. They demonstrate an 
inhibitory effect on metabolic recovery after bevacizumab 
therapy in a rat model of cerebral ischemia. Cui et al.[10] 
review the role of cortical spreading depression in the 
pathophysiology of migraine. 

In summary, neuro-molecular imaging can integrate 
metabolomics and neurobiology and provides novel 
insights into pathophysiology in the brain. This special 
issue provides a platform on neuroscience research 
from molecular imaging technology which may have a 
high impact on brain science from basic to translational 
medicine. 
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Cerebrovascular diseases are caused by interruption or significant impairment of the blood supply to the 
brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and 
morphological damage. These pathophysiological changes can be assessed by positron emission tomography 
(PET), which permits the regional measurement of physiological parameters and imaging of the distribution of 
molecular markers. PET has broadened our understanding of the fl ow and metabolic thresholds critical for the 
maintenance of brain function and morphology: in this application, PET has been essential in the transfer of 
the concept of the penumbra (tissue with perfusion below the functional threshold but above the threshold for 
the preservation of morphology) to clinical stroke and thereby has had great impact on developing treatment 
strategies. Radioligands for receptors can be used as early markers of irreversible neuronal damage and 
thereby can predict the size of the fi nal infarcts; this is also important for decisions concerning invasive therapy 
in large (“malignant”) infarctions. With PET investigations, the reserve capacity of blood supply to the brain 
can be tested in obstructive arteriosclerosis of the supplying arteries, and this again is essential for planning 
interventions. The effect of a stroke on the surrounding and contralateral primarily unaffected tissue can 
be investigated, and these results help to understand the symptoms caused by disturbances in functional 
networks. Chronic cerebrovascular disease causes vascular cognitive disorders, including vascular dementia. 
PET permits the detection of the metabolic disturbances responsible for cognitive impairment and dementia, 
and can differentiate vascular dementia from degenerative diseases. It may also help to understand the 
importance of neuroinfl ammation after stroke and its interaction with amyloid deposition in the development of 
dementia. Although the clinical application of PET investigations is limited, this technology had and still has a 
great impact on research into cerebrovascular diseases.

Keywords: stroke; dementia; PET; brain metabolism; brain ischemia

·Review·

Introduction

The burden of cerebrovascular disease (CVD) is extremely 
high: in 2000 there were 15.3 million strokes world-wide, 
5.5 million of which resulted in death[1]. But CVD accounts 
not only for 10% of all deaths; it is also the leading cause 
of disability in patients surviving the insult[2]. However, 
there exists a high variation in stroke burden and mortality, 
with >85% of strokes occurring in low- and middle-income 
countries[3]. In addition, CVD not only causes strokes, but is 
also associated with a high incidence of silent infarcts and 

microhemorrhages that lead to cognitive and behavioral 
changes, finally presenting as vascular dementia or 
cognitive impairment. Eight percent of the US population 
aged over 65 years experience a stroke, 8% suffer from 
dementia, and 17% from mild cognitive impairment of 
predominantly vascular origin[4]. 

Requirements for Brain Function

The energy demands of nervous tissue are very high 
and therefore sufficient blood supply to the brain must 
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be maintained consistently. A normal adult male’s brain 
containing ~130 bill ion neurons (21.5 bill ion in the 
neocortex)[5] comprises only 2% of total body mass, yet 
consumes at rest ~20% of the body’s total basal oxygen 
supplied by 16% of the cardiac output. The brain’s oxygen 
uptake is almost entirely for the oxidative metabolism of 
glucose, which in normal physiological conditions is the 
almost exclusive substrate for its energy requirements[6]. 
The glucose metabolized in neurons is mainly to support 
cellular vegetative functions and the glucose consumption 
of neuronal cell bodies is essentially unaffected by 
functional activation, which is confined to synapse-rich 
regions, i.e. neuropil. The magnitudes of related increases 
in metabolism and blood-flow are linearly related to the 
frequency of action potentials in the afferent pathways 
regardless of whether they are excitatory or inhibitory. 
Increased metabolism by functional activation is mainly 
used to restore the ionic gradients across the cell 
membrane degraded by the spike activity and is rather high 
compared to the demand of the cell body[7]. Overall, 87% 
of the energy consumed is required by action potential 
propagation and postsynaptic ion fl uxes, and only 13% is 
used for maintaining membrane resting potential[8]. 

The consequence of CVD in tissue is ischemic cell 
death. This results from circulatory disturbances and an 
insufficient blood supply leading to a complex cascade 
of deleterious biochemical and molecular events, which 
in principle are amenable to therapeutic intervention[9, 10]. 
Better understanding of these complex processes in 
ischemic stroke has improved treatment in the last decade. 
Pathophysiological changes that lead to irreversible 
tissue damage must be targets for the development of 
effective therapies. For therapeutic interventions in acute 
ischemic stroke, the concepts of the penumbra (reduced 
tissue perfusion and disturbed function but preserved 
morphological integrity) and of the time-dependent 
progression of irreversible tissue damage play a central 
role. These concepts are based on results from animal 
experiments, and their translation into the management of 
stroke patients is diffi cult and requires specifi c methods.

The Concept of the Ischemic Penumbra and 

Identifi cation by Imaging

Experimental studies on the ischemic flow thresholds of 

brain tissue have demonstrated the existence of two critical 
levels of decreased perfusion: fi rst, a level representing the 
flow threshold for reversible functional failure (functional 
threshold); and second, a lower threshold below which 
irreversible membrane failure and morphological damage 
occur. The range of perfusion values between these limits 
is called the "ischemic penumbra"[11], characterized by the 
potential for functional recovery without morphological 
damage, provided that local blood fl ow can be reestablished 
at a suffi cient level. Whereas neuronal function is impaired 
immediately when blood flow drops below the threshold, 
the development of irreversible morphological damage 
is time-dependent. The interaction between severity and 
duration of ischemia in the development of irreversible cell 
damage has been established in simultaneous recordings 
of cortical neuronal activity and local blood fl ow[12]. These 
results complement the concept of the ischemic penumbra: 
the potential for post-ischemic recovery of functionally 
impaired cells is determined not only by the level of residual 
fl ow in the ischemic phase but also by the duration of the 
fl ow disturbance. 

Autoradiographic procedures cannot demonstrate the 
gradual disappearance of the penumbra with increasing 
duration of ischemia, the progression of irreversible 
damage, or the recovery of functionally impaired tissue 
after reperfusion. To follow these pathophysiological 
changes, non-invasive imaging modalities, which permit 
repeated measurements of regional cerebral blood flow 
(rCBF) and regional cerebral blood volume (rCBV), as well 
as regional cerebral metabolic rate of oxygen (rCMRO2) 
and of glucose (rCMRGlc), must be applied. To date, only 
positron emission tomography (PET) is able to quantify 
these variables repeatedly.

Early PET studies of stroke identified various tissue 
compartments within a cerebral region compromised by 
ischemia[13-16]. Tissue with rCBF <12 mL/100 g/min or 
rCMRO2 <65 μmol/100 g/min at the time of measurement 
(usually several hours after stroke) was found to be 
infarcted on late CTs. Relatively preserved CMRO2 is 
an indicator of maintained neuronal integrity in regions 
with CBF reduced to 12–22 mL/100 g/min. This pattern, 
coined misery perfusion[14], serves as a surrogate for 
the penumbra: it is the area with an increased oxygen 
extraction fraction (OEF) (to >80% from the normal value of 
~40%). PET studies allow the classifi cation of three regions 
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within the disturbed vascular territory: the ischemic core 
with a fl ow <12 mL/100 g/min usually showing a transition 
into necrosis; a penumbra region with a flow between 12 
and 22 mL/100 g/min of still viable tissue but with uncertain 
chances for infarction or recovery; and a hypoperfused 
area (>22 mL/100 g/min) not primarily damaged by the 
reduced blood supply. The conversion of the penumbra into 
infarction is a dynamic process, and irreversible damage 
spreads from the core to its border. This process can be 
imaged with advanced PET equipment, by which changes 
in regional blood-fl ow and oxygen consumption have been 
studied after occlusion of the middle cerebral artery (MCA) 
in baboons and cats (reviewed in [17-19]). 

In the cat, changes after MCA occlusion are immediate 

and severe. Sequential studies of rCBF, rCMRO2, and 
rCMRGlc from control to the endpoint 24 h after occlusion 
recorded an immediate decrease in CBF within the MCA 
territory to <30% (Fig. 1) of control upon arterial occlusion. 
rCMRO2 was preserved at an intermediate level and OEF 
was increased, indicating misery perfusion. Over time 
OEF decreased, refl ecting progressive necrosis spreading 
from the core to the periphery of the ischemic territory. 
Reversible ischemia was studied by reopening the MCA 
after 60 min. If OEF remained elevated throughout the 
ischemic episode, reperfusion prevented large infarcts. 
In contrast, if the initial OEF increase disappeared during 
ischemia, large infarcts developed and intracranial 
pressure increased fatally. These experimental findings 

Fig.1. Sequential PET images of CBF, CMRO2, and OEF after MCA occlusion in cats compared to images from patients after stroke 
(modified from Heiss WD. Stroke 2012[19]). Left columns: In the right cat panel, the progressive decrease of CMRO2 and the 
reduction of OEF predict infarction and cannot benefi t from reperfusion. Only if OEF is increased until the start of reperfusion can 
it be salvaged (left cat panel). Middle panels: in the patient, the areas with preserved OEF are not infarcted and can survive in the 
spontaneous course (posterior part of ischemic cortex in the left, and anterior part in the right patient as indicated on late MRI and 
CT). Right panels: in patients receiving recombinant tissue plasminogen activator treatment, measurements of CMRO2 and OEF 
are not feasible, but fl ow determinations show the effect. If reperfusion occurs early enough and before tissue damage, tissue can 
be salvaged (left patient). If reperfusion is achieved too late, tissue cannot be salvaged despite hyperperfusion in some parts (right 
patient).
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from sequential studies and clinical investigations at 
different time-points after the attack (Fig. 1)[20, 21] imply 
that the extent of the penumbra, i.e. of morphologically 
intact but functionally impaired tissue, depends on the 
time of measurement relative to the onset of ischemia. 
Flow measurements in the fi rst hours after a stroke allow 
the identification of various tissue compartments and 
their contribution to the fi nal infarct on CT/MRI. When the 
threshold for probable infarction was set to the conventional 
value of 12 mL/100 g/min and that for the upper limit of the 
penumbra to 18 mL/100 g/min, a large compartment of the 
final infarct (70%) was perfused at <12 mL/100 g/min, a 
level that predicts necrosis, while a smaller portion (18%) 
had fl ow values in the penumbra range (12–18 mL/100 g/
min), and a fairly small compartment (12%) had perfusion 
at a higher level[20]. Only the tissue with CBF >12 mL/100 g/
min could benefi t from thrombolysis.

Non-invasive Imaging of the Penumbra

Measurement of rCBF, rCMRO2, and OEF by 15O-PET 
necessitates arterial blood sampling. A marker of neuronal 
integrity is needed that can identify irreversible tissue 
damage irrespective of the time after the vascular attack 
without the necessity of arterial blood sampling. The 
central benzodiazepine receptor ligand flumazenil (FMZ) 
binds to the GABA receptors abundant in the cerebral 
cortex. These receptors are damaged early by ischemia 
and indicate early neuronal loss. In cats with transient 
MCA occlusion, reduction in FMZ-binding predicts the 
size of the final infarcts, whereas preserved FMZ-binding 
indicates an intact cortex[17, 22]. With this tracer (Fig. 2), the 
pathophysiological changes early after ischemic stroke 
can be accurately specifi ed: 55% of the volume of the fi nal 
infarct had decreased FMZ uptake, indicating infarction in 
the fi rst hours after stroke; and 21% of the fi nal infarct had 
fl ow <14 mL/100 g/min, but FMZ uptake above the critical 
value, indicating penumbra tissue[17]. However, selective 
neuronal loss can occur in tissue outside the documented 
penumbra or in re-perfused penumbra areas, and this can 
be documented by decreased cortical FMZ-binding[23]. 
These results indicate the potential and the limits of 
therapy in acute stroke: early reperfusion cannot reverse 
the already-developed neuronal damage, but is crucial for 
salvaging the penumbra. 

MR studies using diffusion and perfusion imaging 
might provide a differentiation between the core and the 
penumbra: the early diffusion-weighted imaging (DWI) 
lesion might defi ne the ischemic core and adjacent critically 
hypoperfused tissue might be identified with perfusion-
weighted imaging (PWI)[24]. Therefore, brain regions with 
hypoperfusion assessed by PWI but without restricted 
diffusion (PWI/DWI mismatch) have been assumed to 
represent the penumbra, but this surrogate definition 
has several uncertainties[25]. Several studies have been 
performed to validate this mismatch as a surrogate of the 
penumbra in the PET-derived discrimination of irreversibly 
damaged, critically perfused “at risk”, and oligemic “not 
at risk” tissue. These studies demonstrated that DWI is 
a rather reliable predictor of the finally infarcted tissue[26], 
but contains up to 25% false-positive, i.e. surviving 
tissue. The inaccuracy in defining the penumbra with the 
PWI/DWI mismatch is mainly related to the PWI, which 
uses variable parameters to estimate perfusion. As a 
consequence, the perfusion lesion size differs markedly 
depending on the parameters calculated[27] and is usually 
overestimated. Time-to-peak delays of 4 and 6 s reliably 
identify hypoperfused and exclude normoperfused tissue 
but overestimate the volume of critically perfused but 
salvageable tissue, i.e. the penumbra[28]. The mismatch 
volume in PWI/DWI as conventionally calculated therefore 
does not reliably refl ect misery perfusion, i.e. the penumbra 
as defined by PET (Fig. 3). Several validation studies of 
various perfusion parameters calculated from PW-MRI 
on the fl ow values obtained from H2

15O-PET[29, 30] resulted 
in corrections permitting reliable classification of critical, 
but potentially reversible ischemia (Tmax, CBF, and time-
to-peak). These thresholds have been implemented in 
recent clinical trials to improve the effi ciency of therapeutic 
interventions for stroke[31]. With the advances of arterial 
spin-labelling MR techniques[32] and CT perfusion studies 
for the determination of cerebral perfusion[33], it will be 
necessary to validate the results of flow values from 
quantitative methods.

Detection of Hypoxic Tissue

Markers of hypoxia have been investigated with respect to 
their sensitivity in identifying penumbral tissue. Increased 
uptake of labeled nitroimidazole-derivatives is found in 
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the histologically-damaged ischemic core and in adjacent 
areas that are intact at follow up[34, 35]. The nitroimidazole-
derivative misonidazole labeled with 18F-fl uoromisonidazole 
(FMISO), was fi rst used by Yeh et al. in 1994[36] to investigate 
ischemic stroke in patients and revealed increased uptake 
surrounding a zone without FMISO uptake. The high uptake 
disappeared during the chronic phase, indicating that the 
FMISO-positive tissue had either infarcted or recovered. 
These results were confirmed in a larger study by Read 
et al. in 1998[37]: in 9 cases, FMISO-trapping was detected 
6.25–42.5 h after stroke onset, but was absent in later 
examinations. Tissue with increased FMISO uptake was 

usually present in the periphery of the infarct identified on 
the co-registered late CT, but extended into normal tissue 
adjacent to the infarct in a few cases. The volume of tissue 
with increased FMISO uptake declined after stroke onset. 
The proportions of hypoxic tissue that infarcted or survived 
varied between patients. Within 6 h of stroke onset, ~90% 
of the FMISO-positive region was included in the fi nal infarct 
but this percentage was reduced later on[38]. In addition, the 
volume of initially affected tissue is correlated with the initial 
severity of neurologic defi cits, and the proportion of initially 
affected tissue progressing to infarction is correlated with 
neurological deterioration during the fi rst week after stroke[39]. 

Fig. 2. Co-registered transaxial PET images at the caudate/ventricular level of CBF, steady-state FMZ binding (Bdg), and OEF at 12 h, as 
well as CMRGlc (glucose consumption) and MRI at 2 weeks after moderate left hemiparesis and hemihypesthesia of acute onset in 
a 52-year-old male patient (adapted from Heiss WD et al. Stroke 1998[12]). The large territorial defect is visible in all PET modalities 
with different extensions. The contour delineates the cortical infarct as determined on late MRI. FMZ-binding precisely predicts the 
extension of the fi nal infarct, whereas CBF and FMZ distribution (as markers of perfusion) delineate a considerably larger volume of 
disturbed perfusion. In the cortical region outside the infarct with initially disturbed perfusion, OEF is increased, indicating preserved 
CMRO2 at 12 h post-ictus. The permanently decreased CMRGlc in this region could be caused by neuronal loss and/or diaschisis.
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As high FMISO uptake in these areas fulfi lls the defi nition 
of the penumbra, the topography of FMISO-trapping can be 
used to generate a “penumbragram”[40]. 

After 2-h transient occlusion of the MCA in the rat, 
the area of FMISO uptake is much larger than the area 
of subsequent infarctions, since a variable portion of the 
tissue detected by FMISO uptake does not go on to infarct if 
untreated[41]. However, in order to provide adequate time for 
the washout of unbound tracer, scanning of FMISO uptake 
cannot be performed until 2 h after injection. In addition, 
due to tracer dynamics, the timing of imaging is crucial 
with an optimal time of 2 h for the identifi cation of tissue at 
risk[42]. In permanent experimental MCA occlusion[43] and in 
human stroke[44], a portion of the FMISO-trapping area may 
lie outside the final infarct and a portion of the final infarct 
may not exhibit early tracer mapping, indicating that FMISO-
trapping does not accurately identify preventable infarction 
and therefore may not be specifi c to the penumbra. This may 
indicate that the hypoxia necessary for FMISO-binding is less 
severe than the oxygen depletion responsible for neuronal 
necrosis[18]. The required delay between tracer injection 
and imaging (>2 h) further limits the value of FMISO for the 
selection of effective treatment in acute ischemic stroke.

PET as a Surrogate Marker for Treatment Effi ciency

The efficacy of treatment in ischemic stroke can only be 
established by controlled, randomized, double-blind clinical 
trials, as successfully performed for thrombolysis with 
intravenous recombinant tissue plasminogen activator 
(rtPA)[45]. Such controlled trials require large groups of 
patients from many stroke centers, usually take a long 
time, and are expensive. Therefore surrogate markers 
may help to predict therapeutic effects in small groups of 
patients. Effects demonstrated with surrogate markers 
must be confi rmed in controlled trials with suffi cient patient 
populations. In recent years, identification of salvageable 
tissue by neuroimaging has attracted much interest as a 
surrogate marker for treatment effi ciency in stroke. 

The effect of thrombolysis, the only approved 
treatment for acute ischemic stroke, has been shown in 
imaging studies, in which reperfusion to penumbral tissue 
is associated with improvement in neurological deficits 
(Fig. 4): reperfusion significantly improves in rtPA-treated 
patients compared to controls[46]. The volume of tissue 
salvaged by reperfusion was determined by H2

15O-PET 
within 3 h of stroke onset and compared with the volume of 

Fig. 3. A, B: Volumetric comparison of time-to-peak (TTP) (MRI) and OEF (PET) images in 2 patients in the chronic phase of stroke. In both 
patients, a TTP delay of  4 s indicates a considerable mismatch volume (red contour on TTP images). The mismatch volumes were 
473 cm3 for patient A and 199.7 cm3 for patient B. However, only patient B had a corresponding volume of penumbra (260 cm3). C: 
Volumes of penumbra and mismatch defi ned by TTP >4 s  in 13 patients. All 13 showed mismatch, but only 8 showed a penumbra, 
which comprised 1–75% of the mismatch volume (modifi ed from Sobesky J et al., Stroke 2005[28]).
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infarction assessed on MRI 3 weeks after the stroke[47]. The 
percentage of voxels with an initial fl ow below the threshold 
of 12 mL/100 g/min that became re-perfused predicted the 
degree of clinical improvement within 3 weeks. Overall, 
only 22.7% of the grey matter initially perfused below the 
conventional threshold of critical ischemia became necrotic 
after thrombolytic therapy in this small sample, indicating 
that a considerable portion of the critically hypoperfused 
tissue is salvaged by this therapy. However, hypoperfused 
tissue can benefit from reperfusion only if cortical 
fl umazenil-binding is not reduced below a critical value[48]. 
This marker identifies irreversibly damaged tissue that is 
not amenable to treatment. 

In 34 patients with ischemic changes in >50% of 
the MCA territory in early cerebral CT scans, PET was 
performed with 11C-FMZ to assess CBF and irreversible 
neuronal damage. Thereafter, probes for microdialysis and 
for measurement of intracranial pressure and tissue oxygen 
pressure were placed in the ipsilateral frontal lobe[53]. PET 
studies within 24 h after stroke identifi ed larger volumes of 
ischemic core and larger volumes of irreversible neuronal 
damage in patients with a subsequent malignant course 
(i.e., edema formation with midline shift) than in patients 
with a benign course (Fig. 5). CBF within the ischemic core 
was significantly lower and the penumbra was smaller in 
the malignant than in the benign group. Therefore, PET 
may allow the prediction of malignant MCA infarction 
within the time window suggested for hemicraniectomy. 
Neuromonitoring helps to classify the clinical courses by 
characterizing the pathophysiological sequelae of malignant 
edema formation. In contrast to PET, however, it does not 
predict a fatal outcome early enough for the successful 
implementation of invasive therapies.

Microglial Activation as an Indicator of Infl ammation

Microglia constitute up to 10% of the total cell population 
of the brain. As resident macrophages of the central 
nervous system (CNS), microglia phagocytose cellular 
debris, present foreign antigens, and are sensors of 
pathological events, including ischemia[54]. Microglia 
change from a resting to an activated state in response 
to CNS insults and function as phagocytes. In this 
activation process, they undergo a shift in their effector 
program by transforming their morphology, proliferating, 

releasing pro-inflammatory compounds, and increasing 
the expression of immunomodulatory surface antigens[55]. 
As one consequence, the translocator protein 18 kDa 
(TSPO), formerly known as the peripheral benzodiazepine 
receptor (PBR), is upregulated in the mitochondria of 
activated microglia and may thus serve as a biomarker of 
inflammation. Several radioligands have been developed 
to image the activation of microglia in experimental models 
and in various diseases of the CNS[56]. Early studies in 
ischemia models using 3H-PK 11195 autoradiography 
demonstrated increased binding sites in the area of 
infarction and in the boundary zones between major 
arteries in hypertensive animals. These were associated 
with reactive glial cells and macrophages and reached a 
maximum 4–8 days after the induction of local ischemia. 
When high-resolution microPET was applied to the 
expression of TSPO/PBR in transient experimental 
ischemia, a high signal was detected in the ischemic core 
starting on day 4 and increasing to day 7, and this strong 
signal was associated with microglia/macrophages. A less 
prominent signal indicating elevated TSPO expression was 
observed in the region surrounding the infarct at day 7, 
and this could be attributed to reactive astrocytes. These 
results demonstrated that the cellular heterogeneity of 
TSPO/PBR expression depends on the intrinsic features of 
infl ammatory cells[57, 58]. In permanent ischemia induced by 
microspheres injection into the MCA of rats, no increase in 
3H-PK 11195-binding was found in the infarct core 7 days 
after the attack, but the permanent MCA ischemia caused 
increased tracer-binding in the normoperfused peri-infarct 
zone, which was co-localized with increased glucose 
metabolism and accumulated microglia and macrophages. 
This peri-infarct neuroinflammation might contribute to 
the extension of tissue damage[59]. After temporary (45 
min) MCA occlusion in hypertensive rats, significant 
increases in 11C-PK 11195-binding in both the infarct and 
the surrounding areas were observed after 14 days, and 
less but still increased uptake was already present after 
2 days[60]. With multimodal imaging including a tracer 
for mitochondrial complex I activity, neuronal damage is 
identifi able in the areas with neuroinfl ammation[61].

Many histological studies have identified activated 
microglia in the ischemic brain after stroke in humans, 
especially in the ischemic core within 1 to 2 days after 
stroke. Over time, they extend from the ischemic core into 
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Fig. 4. Effect of thrombolysis (intravenous rTPA) in a 45-year-old woman with stroke due to multiple cerebral emboli via an open foramen 
ovale originating from deep vein thrombosis. The patient showed defects in the right MCA and left ACA territories at initial CBF 
PET, then lysis reperfusion was applied to both territories. Early control after 1 day showed hyperperfusion in the right MCA. MRI 
after 2 weeks did not indicate permanent tissue damage, indicating the patient had completely recovered.
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the peri-infarct zones[55, 62]. In several studies, increased 
11C-PK11195 uptake has been observed around the 
ischemic lesions after several days, but also in regions 
distant from the lesion[56]. Increased PK-binding has 
also been documented in the ipsilateral thalamus and in 
the subcortical white matter. This relationship between 
neuroinflammation and the integrity of fiber tracts has 
been investigated more systematically by combining 
microglia PET with diffusion tensor imaging (DTI), which 
yields information about the anisotropic diffusion of 
water molecules along white-matter fiber tracts. Using 
DTI in a prospective controlled study, Radlinska et al.[63] 
demonstrated that microglial activation occurs along the 
pyramidal tract anterograde to the lesion only in those 
patients with acute subcortical stroke where the cortico-
spinal tract is affected. These anterograde regions of the 
tract undergo Wallerian degeneration in the weeks and 
months after the stroke. This relationship was further 
investigated in a similarly-designed but longitudinal 
study[64], in which the extent of anterograde microglial 
activity in the brainstem was found to be linearly related to 
the extent of pyramidal tract damage (Fig. 6). This remote 

Fig. 5. Benign and malignant infarction in patients and cats (adapted from Heiss WD. Stroke 2012[19]). A: FMZ-distribution and FMZ-binding 
in patients with large MCA infarcts. In benign infarcts, the volumes of severe hypoperfusion and neuronal damage, i.e. reduced 
FMZ binding, were smaller than those in patients with a malignant course. B: Sequential PET CBF images in 2 cats with malignant 
(left) and benign (right) courses after transient MCA occlusion. Note the hyperperfusion immediately following recirculation and 
subsequent deterioration extending even to the contralateral hemisphere in the cat with malignant infarct.

microglial activity is positively associated with the outcome, 
suggesting a neuroprotective role or repair function of 
microglial cells along the tract regions undergoing Wallerian 
degeneration. In contrast, local microglial activity in the 
area of the infarct is only related to persisting tract damage 
in the chronic phase and is correlated negatively with 
clinical outcome. 

Hemodynamic and Metabolic Reserve

Patients with arterial occlusive disease are protected 
against  ischemic damage to a cer ta in extent  by 
compensatory mechanisms, which help to prevent critical 
ischemia when perfusion pressure drops. In patients 
with uni- or bilateral carotid artery disease, PET using 
15O-labelled tracers[66] indicates regional vasodilatation 
as a focal increase in cerebral blood volume (CBV) in the 
respective territory, and the ratio of CBF to CBV is used 
as an indicator of local perfusion pressure. By calculating 
CBF/CBV ratio (normal value 10), the territories of patent 
carotids, unilateral occlusion, occlusion with contralateral 
stenoses, and bilateral occlusions can be discriminated. 
The reciprocal of the local mean vascular transit time is a 
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measure of the perfusion reserve: the lower its value, the 
lower the fl ow velocity and the longer the residence time. 
The lowest ratios are found in patients with symptoms 
indicating a hemodynamic rather than a thrombotic cause 
of the ischemia. At maximal vasodilatation, the perfusion 
reserve is exhausted and a further decrease in arterial 
pressure produces a proportional decrease in CBF and the 
CBF/CBV ratio. With this hemodynamic decompensation, 
the brain must draw upon the oxygen-carriage reserve 
to prevent energy failure and the OER is increased from 
the normal value of 40% to up to 85%[66-68]. Patients with 
submaximal elevations of OER represent 10% to 15% of 
the patients with cervical occlusive disease[66]; their clinical 
symptoms are suggestive of hemodynamic ischemia. 

On the basis of such PET measurements, it is 
therefore possible to discriminate patients with impaired 
hemodynamics only, as well as to quantify the impairment 
of perfusion reserve, using the CBF/CBV ratio. In addition, 
patients who are in a more precarious physiological 
state can be identified because (a) their hemodynamic 
reserve is exhausted and (b) their focal OER is increased. 
These two homeostatic mechanisms seem to act in 
series, thereby preventing a fall in CMRO2 and, hence, 
preventing functional disorder. Therefore, elevated OEF is 
an independent predictor for subsequent stroke in patients 

Fig. 6. Microglial activation in infarct and peri-infarct areas (A) (adapted from Gerhard A et al. Neuroimage 2005[62]) and in remote fi ber 
tracts imaged by 11C-PK11195-PET (B) (adapted from Thiel A et al. Stroke 2011[65]): 11C-PK11195-PET is overlaid on T1-weigthed MRI 
(left) and the fractional anisotropy (FA) image shows fi ber tracts (right). Tracer binding is high in the infarct but also follows the 
pyramidal tract (arrows) in an anterograde direction to the level of the pons. Scale indicates uptake ratios.

with symptomatic internal carotid artery disease, increasing 
the relative risk for ipsilateral stroke to ~7[69-71]. The 
exhausted metabolic reserve can lead to selective neuronal 
loss in the cortex; this cannot be detected by morphological 
imaging (CT or MRI) but can be documented by FMZ-
PET[72]. Removal of the arterial lesion by endarterectomy or 
stenting is successful in preventing further ischemic attacks; 
repeated multiparametric PET can reveal accompanying 
improvements in CBF, perfusion pressure, and oxygen 
metabolism[73].

Deactivation of Remote Tissue (Diaschisis)

Even the earliest PET studies of ischemic brain lesions[74] 
revealed reduction of metabolism and blood fl ow exceeding 
the extent of morphologically damaged tissue (Fig. 7) – 
a regular finding since then with other functional imaging 
modalities as well, such as single-photon emission CT. 
The most conspicuous effect is a reduction of CBF and 
metabolism in the contralateral cerebellum, called “crossed 
cerebellar diaschisis” (CCD)[75], occurring immediately 
after a stroke and persisting permanently in patients 
suffering from lesions involving the cortico-ponto-cerebellar 
pathways, but it is reversed by successful reperfusion 
therapy[76](Fig. 7). This CCD is clearly due to a neuronally-
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mediated functional effect, since a primary vascular 
cause can be excluded on account of the remote vascular 
territory. Further remote effects include reductions of CBF 
and metabolism in the ipsilateral cortex and basal ganglia. 
Their cause is less clear, since selective ischemic neuronal 
loss or inadequate blood supply could also contribute 
in these areas. However, similar effects have also been 
observed in non-ischemic lesions such as brain tumors 
and intracerebral hematomas, so they seem therefore 
to be more closely related to the site than to the nature 
of the primary lesion[77]. Among cortical and subcortical 
lesions, infarcts of the parietal and frontal lobes most often 

cause signifi cant reductions of CBF and metabolism in the 
ipsilateral basal ganglia and the contralateral cerebellum. 
Infarcts of the basal ganglia may induce ipsilateral cerebral 
as well as contralateral cerebellar deactivation. Thalamic 
infarcts have mainly diffuse ipsilateral cortical effects; 
lesions of the medial thalamic nuclei apparently cause more 
widespread cortical metabolic reductions than those restricted 
to the anterior, ventrolateral, and posterior nuclei[78]. Infarcts 
of the brainstem and the cerebellum usually do not cause 
signifi cant asymmetric inactivations of forebrain structures. 
It is important to note that diaschisis cannot be reliably 
detected by the usual PWI parameters[79].

Fig. 7. Crossed cerebellar diaschisis (CCD) in acute stroke and response to supratentorial reperfusion. In patient #1, CCD persisted 
despite marked supratentorial reperfusion/hyperperfusion. Infarct volume was 60 cm3, clinical outcome was poor (National 
Institutes of Health stroke scale (NIHSS) 9). In patient #2, supratentorial reperfusion was accompanied by a CCD decrease. Follow-
up CT showed no infarct and the NIHSS outcome score was 0 (from Sobesky J et al. J Cereb Blood Flow Metab 2005[76]).
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Clinical symptoms not explained by the infarct 
proper can often be related to remote effects, and the 
severity of the metabolic changes appears to have an 
impact on functional recovery[80]. Especially in complex 
syndromes affecting parts of widespread functional 
networks, disturbance of a distinct function (e.g. language 
comprehension) is closely associated with the metabolic 
deactivation of a defined region (left temporo-parietal 
area) irrespective of infarct location[81]. Therefore, regional 
deactivation in specialized parts of a functional network 
plays a major role in the presentation of clinical syndromes 
and their resolution; re-organization of the affected network 
is of great importance for the recovery and rehabilitation of 
stroke victims. This complex topic is discussed in several 
reviews[82-85]. 

Vascular Dementia and Vascular Cognitive Impairment

Vascular cognitive disorders (VCDs)[86] include vascular 
cognitive impairment, vascular dementia (VaD, charac-
terized by predominant deficits in executive functions 
and less prominent memory defects) ,  and mixed 
Alzheimer VaD, and are responsible for cognitive deficits 
in 5% of people over the age of 65 years[87]. VCDs are 
heterogeneous diseases and may be caused by multiple 
neuropathological substrates[88, 89]. For the diagnosis of 
VaD and its differentiation from Alzheimer disease (AD), 
the presence of vascular risk factors and clinical features 
such as acute onset, stepwise progression, and emotional 
lability are used[90, 91]. In addition, neuroimaging can detect 
the location and extent of pathological changes related to 
disturbed brain function[92].

Overall, PET studies in patients with VaD demonstrate 
reduced CBF and CMRO2, but normal OEF due to chronic 
ischemia[93]. In patients with large infarcts, leukoaraiosis 
and deep white-matter abnormalities, decreased CBF and 
CMRO2 in the overlying grey matter are associated with the 
severity of cognitive impairment[94]. 

In VaD, fludeoxyglucose (FDG) PET shows focal 
cortical and subcortical hypometabolism, a pattern different 
from the changes in metabolism in AD (Fig. 8) affecting 
the association areas[95]. However, various patterns of 
disturbance of CBF and metabolism are observed in 
different conditions of vascular pathology (details in 
review[92]).

Post-stroke dementia (PSD) is a special case 
with cognitive impairment developing after the stroke, 
irrespective of signs of pre-existing cognitive decline. The 
prevalence of PSD is ~30%, i.e. 3.5 to 5.8 times greater 
than age-matched controls[96]. The high rate of cognitive 
impairment after a stroke could be caused by vascular 
risk factors and AD-typical metabolic changes. Clinical 
and experimental studies (summarized in[97]) indicate 
a link between vascular risk factors and degenerative 
dementia which is mediated by inflammation. In animal 
models, microglial activation after ischemia is exacerbated 
in the presence of amyloid and infarcts over time[98]. The 
processes responsible for the development of PSD can be 
investigated by multi-tracer PET and may serve as a basis 
for the development of preventive therapy.

Complex Activation Studies

Regional cerebral metabolism and blood f low are 
dependent on the functional state of the brain tissue. This 
has been well established in animal experiments using 
autoradiography[99]. A direct coupling of neuronal activity 
and focal blood flow has been demonstrated directly by 
simultaneous recordings with microelectrodes[100]. The 
transfer to human studies was achieved by the 133Xenon 
clearance method for the measurement of regional cerebral 
blood fl ow[101], by which two-dimensional cortical activation 
patterns for various tasks including speech and memory 
were obtained. With the advance of PET, three-dimensional 
regional activation studies became feasible in healthy controls 
and in patients with various CNS disorders[102]. Due to the 
radiation exposure and the complex logistics required by 
PET, these activation studies were taken over by fMRI 
with the availability of high-resolution MR equipment[103]. 
However, PET activation studies are still required and 
justified for the detection of changes in the complex 
patterns elicited by stimulation procedures not feasible in 
MRI.

Our group has long experience with activation studies 
in aphasia[84]. In the brain of right-handers and many left-
handers, language is a function of the left, dominant 
hemisphere. This asymmetry is established during 
maturation and maintained by fi ber bundles connecting both 
hemispheres across the corpus callosum. These fi bers are 
glutaminergic and are connected to inhibitory interneurons 



Wolf-Dieter Heiss.    PET imaging in ischemic cerebrovascular disease: current status and future directions 725

Fig. 8. Glucose metabolism in a normal control, in a patient with vascular dementia (VaD), and a patient with Alzheimer disease (AD) 
(Adapted from Heiss WD et al. J Neurol Sci 2012[92]). The severity of dementia was comparable, and the pattern of pathologic 
changes differentiated these two cases: patchy metabolic defects in VaD in the frontal lobe, basal ganglia, and thalamus; bilateral 
hypometabolism in the parieto-temporal cortex and to a lesser degree in the frontal association areas in AD.

in the non-dominant hemisphere. This means that language 
areas active in Broca’s area suppress homologous areas 
in the non-dominant hemisphere (transcallosal inhibition). 
The existence of these inhibitory mechanisms has been 
deduced from imaging studies in patients with brain lesions 
and has been demonstrated directly in normal subjects 
using imaging-guided repetitive transcranial magnetic 
stimulation (rTMS) (Fig. 9)[104]. A lesion in the language 
areas of the dominant hemisphere not only reduces activity 
in the affected hemisphere, but also activates areas in 
the unaffected hemisphere by interrupting transcallosal 
inhibitory fibers[105]. This activity of regions in areas of 
the non-dominant hemisphere after a stroke has been 
repeatedly detected in imaging studies[106]. In the following 
weeks and months, activation shifts back to the dominant 
hemisphere. This backward shift varies considerably 
and might be responsible for the successful recovery of 
language function[107]. For successful rehabilitation, the 
reactivation of networks in the dominant hemisphere seems 
to be a more effi cient strategy than recruiting homologous 

brain regions in the unaffected non-dominant hemisphere. 
Right-hemispheric regions can be compensatory in chronic 
aphasics[108], but this seems to be a less effective long-term 
strategy if left-hemisphere areas can no longer be recruited. 
Based on these data, a strategy for the rehabilitation of 
language function should suppress the right hemisphere 
and enhance left-hemisphere activity after stroke. Results 
from a study in post-stroke aphasia show that activity of the 
non-lesioned hemisphere can be decreased by inhibitory 
rTMS. The induced shift of activation to the dominant 
hemisphere is associated with an improvement in language 
function. Speech therapy combined with inhibitory rTMS 
of the area in the non-dominant hemisphere homologous 
to Broca’s area might be a successful treatment for post-
stroke aphasia[109].

Future Perspectives: Multimodal Imaging 

With technical developments for the integration of different 
modalities, e.g. MRI and PET, the investigation of various 
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parameters (morphology, metabolism, blood flow and 
perfusion, and molecular activities) can be performed 
simultaneously. Combining the functional metabolic values 
in the picomolar range provided by PET with the fast high-
resolution information in the micromolar range from MRI 
already has widespread applications in experimental 
research[111] and promising potential in humans[112-114]. The 
co-registration of various parameters also improves the 
quality of results: MR data are used for the correction of 
partial volume effects in small structures and dynamic 
information from MRI can be used for the quantifi cation of 
parametric values by PET (Fig. 10).

Simultaneous multifunctional and multiparametric 
imaging might have a signifi cant impact in stroke research: 
it guarantees exactly the same physiological state for 
comparative measurements of perfusion by PET and 
MRI; it permits differentiation of core and penumbra, 
demonstrates time-dependent growth of infarction, and 
may be used to determine the optimal therapy for a certain 
time after the stroke; the vascular origin of the stroke can 
be detected by magnetic resonance angiography, and 

Fig. 9. Effect of repetitive transcranial magnetic stimulation on the activation pattern during verb generation. The activation pattern (left 
panel) and coil position (right panel) are shown in 3D rendering. Middle panels: left side, images in 3D show activation of the left 
inferior frontal gyrus during verb generation (red arrows); right side, decreased activation on the left (green arrows), and increased 
activity on the right (red arrows) during rTMS interference (modifi ed from Thiel A et al. J Cereb Blood Flow Metab 2006[110]).

perfusion or oxy/deoxyhemoglobin changes (the BOLD 
effect) can be related to the extent of oxygen deprivation 
(15O) and hypoxia (FMISO) and to changes in metabolic 
markers (FDG-PET, MR spectroscopy (MRS) for lactate, 
choline, N-acetylaspartate) – complimentary information 
important for therapeutic decisions. This high-resolution 
anatomical information is complemented by diffusion-
based tractography, and can be related to the activation or 
inhibition of neurotransmitter and receptor activity as well 
as to infl ammatory reactions.

Another field of new applications may open up by 
combining MRS and PET. Monitoring glucose metabolism 
by FDG yields precise information about glycolysis. Other 
molecules important in glucose metabolism, such as lactate 
and pyruvate, can be detected by 13C-MRS, which could be 
used together with FDG-PET to monitor different aspects of 
glucose metabolism in various diseases[116]. 

Some innovative strategies might result from the 
transfer of experimental findings into clinical applications 
of PET/MR: imaging of angiogenesis by 18F-galacto RGD 
(a cyclic growth factor receptor peptide) combined with 



Wolf-Dieter Heiss.    PET imaging in ischemic cerebrovascular disease: current status and future directions 727

Fig. 10. The fi rst simultaneous PET/MR acquired on the BrainPET prototype, Siemens, Knoxville, TN: Complete set of acquired MR and 
PET data from a 66-year-old man after injection of 370 MBq of FDG. A: T2-TSE, tracer distribution in PET recorded for 20 min at 
steady-state, superimposed combined PET/MR and EPI; B: time-of-fl ight MR-angiography; C: proton MR-spectroscopy showing 
increased choline relative to creatine in white matter areas (left spectra) compared to normal gray matter (right spectra) (modifi ed 
from Schlemmer HP et al. Radiology 2008[115]).

dynamic contrast-enhanced MR might become feasible 
and yield information on revascularization processes in the 
course after stroke[117]. Monitoring the location and following 
the migration of grafted stem or progenitor cells will be 
essential in the development of cell replacement strategies 
for the treatment of various neurological disorders. The 
cells can be labelled with iron oxide particles and their 
survival and migration to the ischemic lesion can be 
followed by MRI[118]. Combining MRI for tracking cells with 
PET for detecting their biological activity could demonstrate 
the viability of the cells as well as their integration into 
functional networks[119, 120].

Conclusion

Over the years, PET has been the most effi cient technique 
for providing accurate quantitative in vivo regional 
measurements of cerebral blood fl ow, cerebral metabolism, 

and cerebral molecular markers in human subjects. It 
therefore has played a prominent role in the translation of 
research concepts from experimental models to clinical 
application, which is fundamental for understanding the 
pathophysiology and for developing treatment strategies in 
various brain diseases including stroke. With the advent of 
high-resolution integrated PET/MRI facilities, simultaneous 
investigations of several molecular, metabolic, perfusional, 
and morphological parameters are feasible, and these 
might enhance our insights into brain function and 
disorders.
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Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate 
the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal 
has progressed from regional data quantifi cation to parametric mapping that produces images of kinetic-model 
parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a 
major parametric mapping technique that is independent on any compartmental model confi guration, robust to 
noise, and computationally effi cient. In this paper, we provide an overview of recent advances in the parametric 
mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic 
modeling are presented, including commonly-used compartment models and major parameters of interest. 
Technical details of GA approaches for reversible and irreversible radioligands are described, considering both 
plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric 
imaging.

Keywords: dynamic positron emission tomography; graphical analysis; neuroreceptor imaging; parametric 
image; tracer kinetic modeling

·Review·

Introduction

Tracer kinetic modeling in dynamic positron emission 
tomography (PET) has played a leading role in quantitative 
in vivo studies on the functional and molecular bases of 
brain diseases, mainly because of its high sensitivity and 
quantitative accuracy[1-5]. Using a tiny amount of radioactive 
tracer or radioligand injected into the living body, dynamic 
neuroreceptor PET can accurately capture the temporally 
changing spatial distribution of the radioligand in the brain, 
which refl ects the targeted receptor’s density and dynamic 
interaction with the radioligand[6-8]. Nevertheless, the 
spatiotemporal distribution also contains other distracting 
information such as the inherent statistical noise associated 
with radioactive decay, and physiological factors of 

secondary interest[3, 7, 9]. The techniques of tracer kinetic 
modeling, through a mathematical framework, can refi ne this 
noisy information from PET data into several quantitative 
parameters that characterize the receptor distribution and/
or the binding process in the brain[1, 6, 10]. Therefore, in both 
clinical and basic research, this method has been widely 
used to investigate the characteristic distribution patterns of 
neuroreceptors or their dysfunction, which is related to brain 
diseases, and the effects of new drugs[11-16]. 

Over the last few decades, the practical goal of 
tracer kinetic modeling in PET has progressed from an 
analysis of regional data to the production of images of 
kinetic-model parameters[17-19]. The typical procedure 
of tracer kinetic modeling involves fitting a suitable 
kinetic model to the tissue time-activity curves (TACs) 
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at the regional or voxel level that are collected from the 
reconstructed dynamic PET images[3, 17, 20]. The regional 
analysis can be easily performed at a lower computational 
cost and with better statistical properties owing to the 
smaller number and lower noise-level of the regional TACs 
that are usually obtained by averaging the voxel TACs 
within a predefi ned region-of-interest (ROI). However, the 
delineation of ROIs requires prior knowledge of the receptor 
distribution and is operator-dependent and time- and labor-
consuming when done manually[5, 8]. More importantly, 
the results from regional analysis can provide only the 
average information within a given ROI, and their accuracy 
is dependent on the size of the ROI. On the contrary, the 
analysis of voxel TACs can fully exploit the spatiotemporal 
information captured in dynamic PET frames, and produce 
images of kinetic-model parameters that quantitatively 
characterize the targeted neuroreceptor system[8, 21]. 
Furthermore, such parametric images allow the analysis 
of the entire brain volume regardless of specifi c anatomy, 
such as in voxel-based statistical analysis using the SPM 
package (Statistical Parametric Mapping, University 
College London, UK)[16, 19, 22]. Therefore, the estimation of 
parametric images is becoming preferable, though regional 
analysis is still important for the exploration of the overall 
characteristics of tracer kinetics.

Because of the huge numbers of voxels in dynamic 
images and the high-level noise therein, parametric imaging 
is more challenging in terms of computational complexity 
and statistical reliability than ROI-based analysis[4, 8, 18, 19, 22]. 
This issue will become more crucial as the resolution of 
PET images improves or the injection dose of a radioligand 
diminishes, based on the advancement of PET scanners 
(e.g., high-resolution research tomography[23]). Thus, 
parametric imaging techniques need to be very robust 
to noise, computationally efficient, and moreover user-
independent and automatic[17, 19]. 

Conceptually, most kinetic analysis techniques are 
applicable for the estimation of both regional parameters 
and parametric images. In practice, however, methods 
based on nonlinear parameter estimation are undesirable 
for parametric imaging because of a higher computational 
burden and less reliability than those relying on linear 
techniques[8, 21, 22]. Therefore, the use of compartmental 
analysis has long been limited mostly to regional data, 

although it is now being extended to voxel data thanks 
to the recently increased computational power and 
regularization techniques[24-27] developed to address 
the high noise-susceptibility issue. In parametric image 
generation, instead, preferable approaches have relied on 
the linearization of t   he standard compartment models in 
various ways so that computationally effi cient and reliable 
linear estimation techniques are applicable.

One major linearization technique is to integrate the 
compartment model equations to produce a simple linear 
regression model that is linear in the parameters[17]. This 
method based on the simple model is called graphical 
analysis (GA), and its parameter estimation depends 
on a linear estimation technique that has a closed form 
solution and is thus computationally simple. In contrast 
to compartment modeling, in which the best model 
configuration needs to be determined in advance, this 
method achieves a level of model independence by fi tting 
only the later portion of the measured data to a simple 
linear model with only two parameters[17]; this strategy 
enables the use of common properties among the 
compartmental models (steady state of specific binding). 
Furthermore, the results are relatively stable because they 
are estimated using only late time frames, which have a 
relatively higher signal-to-noise ratio (SNR) than earlier 
time frames[8]. In sum, both the simplicity of the model and 
the closed-form linear least squares (LLS) solution enable 
simple, reliable, and computationally efficient parameter 
estimation.

In this article, we introduce recent advances in these 
GA approaches, focusing on parametric image generation 
for neuroreceptor ligand PET studies. Although extensive 
applications of these approaches are based mostly on 
relatively fast, simple, and reliable parameter estimation 
rather than various other techniques, they may suffer from 
complicated noise structures or a limited amount of data. 
Hence, their statistical properties are discussed.

Basic Theory in Tracer Kinetic Modeling

Before introducing the GA methods, we briefl y describe the 
basic concepts in tracer kinetic modeling for neuroreceptor 
PET studies. Throughout this paper, we follow the 
consensus nomenclature suggested by Innis et al.[28] as 



Seongho Seo, et al.    Parametric imaging of neuroreceptors 735

much as possible. More detailed concepts and principles of 
tracer kinetic modeling have been presented in numerous 
studies[3-5, 7-9, 29-31].
Dynamic PET Acquisition
In dynamic neuroreceptor PET studies, a very small amount 
of radioligand with high specifi c activity, which is designed 
to follow a substrate physiological and biochemical process 
of interest without disturbing the associated system, is 
introduced into the bloodstream of an individual participant 
(mostly by a single intravenous bolus). The radioligand 
administered is delivered to capillaries in the brain by 
arterial blood fl ow, is subsequently extracted from arterial 
blood into tissue space across the blood-brain barrier in 
the capillaries, and finally binds to high-affinity receptors 
in the tissue through the targeted biochemical process[9]. 
Accordingly, the radioligand is differentially accumulated 
into and cleared from diverse brain tissues over time, along 
with the physiological and biochemical properties of the 
radioligand as well as the target process[8].

The characteristic spatiotemporal distribution of the 
radioligand in the brain can be imaged by a dynamic 
PET scan in which the radioactivity from the delivered 
radioligand is counted and then recorded in a series of 
image frames over irregular time intervals. Although an 
individual ith dynamic frame represents the average spatial 
distribution of radioactivity during the frame duration, it is 
usually assumed to be instantaneous at the midpoint of 
the frame (ti). After a number of corrections (including a 
radioactivity-decay correction), reconstruction, and calibration, 
each dynamic PET image then represents the instantaneous 
measurement (C*T(ti)) at the frame time of the time-varying 
radioligand concentration in each tissue region, CT(t), (Bq/
mL); t is the post-injection time and the superscript * denotes 
noisy measurement. Therefore, by collecting the time course 
of the measurements from each voxel of dynamic PET 
images (or averaging them over the voxels within a specifi c 
ROI), we obtain voxel-wise TACs (or ROI TACs). 
Compartmental Models
The measured PET data can be described with a 
mathematical model or a comprehensive description of the 
underlying processes that is developed based on a prior 
understanding of the kinetic behavior of radioligands in 
brain tissue[7-9]. Most widely used is a compartmental model 
that forms the basis for tracer kinetic modeling in PET[3, 29].

With prior knowledge of their expected in vivo kinetics, 
the injected radioligands can be assumed to form a 
limited number of separate pools, called compartments, 
according to their physical and chemical states. In general, 
the concentration of unmetabolized parent radioligand in 
plasma (CP) (Bq/mL) is considered as one compartment 
because it serves as the input for the radioligands delivered 
into the tissue. As for the radioligands in the tissue, the 
following pools are considered plausible in studies of 
receptor-ligand binding: those in free form (CF), those 
specifi cally bound to the receptor of interest (CS), and those 
nonspecifically bound to other proteins (CNS). Then, we 
have the following relationship:

Together  wi th  severa l  assumpt ions,  such as 
homogeneous concentration and instantaneous mixing of 
radioligands within a compartment, the small injection dose 
and high specifi c activity enable the use of fi rst-order rate 
constants to describe exchanges of radioligand between 
compartments[1, 2, 6, 9, 32]; so, the transport and binding rates 
of the radioligand are assumed to be linearly related to the 
concentration differences between compartments. These 
considerations lead to linear compartment models.

Figure 1 (top) depicts the standard two-tissue 
compartment model (2TCM) that involves only two 
compartments to represent the radioligand concentration 
within the tissue and that is commonly used to study 
neuroreceptor ligand binding. By assuming a rapid 
equilibrium between free and nonspecifi cally-bound tissue 
compartments, the two compartments can be considered 
as one unified compartment, called the non-displaceable 
compartment (CND)[1, 2, 10]. This assumption applies well to 
most neuroreceptor ligand studies because of the limited 
temporal resolution and statistical quality of the PET data; 
usually, the aforementioned model containing three tissue 
compartments is in practice too complex to provide reliable 
results[3, 10]. In this model, the exchanges of radioligand 
are described by four rate constants: K1 (mL/cm3 per min) 
is for the delivery of the radioligand from arterial plasma 
to tissue while k2 (min-1) is for its efflux from tissue; and 
k3 and k4 (min-1) are for the binding and release from the 
neuroreceptor, that is, the exchange between CND(t) and 
CS(t).
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For radioligands showing fast kinetics, i.e., where 
the binding and release of the radioligand from the 
receptor are rapid enough and thereby CND(t) and CS(t) are 
indistinguishable, the model can be further simplifi ed into a 
one-tissue compartment model (1TCM)[10, 33]. In this case, 
the efflux rate constant k2 is replaced by the apparent 
one                               . Furthermore, the 2TCM is also 
commonly used for irreversibly-binding radioligands whose 
binding process is intrinsically irreversible or seems so 
during the time period of PET studies. The irreversible 
accumulation of these radioligands can be analyzed by 
assuming that k4 = 0.

In compartmental modeling, the final goal is to 
estimate the rate constants, which characterize the kinetics 
of the radioligand, from the measured data. Besides the 
measured PET data C*T(ti), the input function CP(t) also 
needs to be measured to obtain the rate constants. The 

process of measuring CP(t) generally relies on frequent 
invasive arterial blood sampling[34, 35] under the assumption 
that the arterial plasma concentration is the same as the 
capillary plasma concentration[8]; arterial blood samples are 
measured separately during the dynamic PET acquisition 
and subsequently are corrected for metabolites since the 
standard model assumes that no plasma metabolites cross 
the blood-brain barrier. As the sampling times of blood data 
are incompatible with dynamic frame times, some simple 
signal processing may be required to match them. Contrary 
to the measured tissue data C*T(ti), where ti is the matched 
sampling time for the ith measurement, we also maintain 
CP(ti) without the superscript for the measured input data, 
because the data are usually refi ned through plasma input 
modeling[36].

Although the arterial blood sampling method is 
considered to be the gold standard of measuring CP(t) 
based on its accuracy[8], it has several disadvantages such 
as invasiveness and technical demands[8, 31, 37]. Therefore, to 
minimize or eliminate the need for invasive and technically-
demanding blood sampling and metabolite correction, the 
following approaches have been proposed and applied[37, 38]: 
image-derived methods[39-41], model-based methods[42-44], 
reference region methods[33, 45-48] and other sophisticated 
approaches[49-55].

In reference region methods, the kinetics of the 
radioligand in the tissue is described as a function of a 
reference region by assuming that there exists a reference 
area of brain tissue effectively devoid of specific binding 
sites[29]. Therefore, they require an additional compartment 
CR(t) and related rate constants K’1 (mL/cm3 per min) and  
k’2 (min-1) as shown in Figure 1 (bottom) (hereafter, the 
superscript ’ is used for the parameters in reference tissue). 
As these additions increase the complexity of the model 
and thus uncertainty in the resulting estimates, a series of 
assumptions is usually made to reduce the complexity[21]: 
(1) nonspecific binding is the same in both areas though 
delivery is not, and (2) an equilibrium is rapidly achieved 
between CND and CS so that tissue kinetics effectively 
follows the 1TCM.
Parameters of Interest in Neuroreceptor Ligand 
Study
In studies of reversible neuroreceptor-ligand binding, 
the primary outcome is the equilibrium concentration of 

Fig. 1. Standard two-tissue compartment model for a target 
region or tissue (top) and one-tissue compartment model 
for a reference region (bottom) to describe the in vivo 
kinetic behavior of neuroreceptor radioligands. Top: 
concentrations (Bq/mL) of radioligands in the same states 
are represented as compartments: plasma concentration 
of unmetabolited parent radioligand (CP), that of non-
displaceable (free and nonspecifi cally bound) radioligand 
(CND), that of specifically bound radioligand (CS); their 
exchanges between compartments are explained with the 
rate constants: K1 (mL/cm3 per min) and k2–k4 (min-1); and 
CT represents the total tissue concentration, that is, the 
sum of CND and CS. In addition, k2a denotes the apparent 
efflux rate constant from tissue when the tissue region 
can be approximately described with one compartment 
(dashed box) because of the equilibrium between CND and 
CS. Bottom: CR represents the total concentration in the 
reference region and K'1  (mL/cm3 per min) and K'2 (min-1) 
are the rate constants for their infl ux and effl ux from CP.
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the radioligand specifically bound to the target receptor 
(CS) that reflects the density and affinity of the receptors 
available to react with the radioligand in vivo[28]. Since 
the density and affinity are inseparable under the single 
tracer injection protocol, the concentration of specific 
radioligand binding is usually quantified as its equilibrium 
ratio to another pool of radioligand concentration, termed 
binding potential (BP)[6]. In the literature, there are three 
different practical definitions of in vivo BP depending 
on the use of distinct normalization factors (or the input 
measurements): non-displaceable concentration in tissue 
(CND), total concentration in plasma (CP), or its free fraction 
(fPCP)[28]. These in vivo BPs represent the potential of 
available receptors to bind with the radioligand, and refl ect 
the density of available receptors under the assumption 
that there are no substantial regional changes in receptor 
affi nity.

For consistency throughout this article, however, we 
limit ourselves to BPND = CS(t)/CND(t) (unitless) because 
only BPND can be obtained from both the reference 
region model (usually directly) and from the plasma input 
model (indirectly) that we describe. Although the other 
parameters, BPP = CS(t)/CP(t) and BPF = CS(t)/(fPCP(t)), are 
considered to be more suitable to describe specifi c binding 
than BPND, the measurement of plasma concentration or its 
free fraction is necessary to estimate them. Therefore, BPND 
is also frequently used (in a variety of applications) mainly 
because of practicality. However, the interpretation of BPND 
requires careful attention because its use is based on the 
assumption that VND (more precisely, its free fraction) has 
no regional or group difference; the comparison of BPND 
may not clearly reveal the group difference associated 
with specific binding when VND has a group difference or 
treatment effect[28, 56]. 

Another common endpoint is the volume of distribution 
of total radioligand concentration in tissue (VT). In the 
field of in vivo imaging, volume of distribution refers to 
the volume (mL) of plasma (with a certain concentration) 
required to account for the amount at equilibrium of 
radioligand in the unit volume (1 cm3) of the target 
region, and is therefore usually represented as the ratio 
of the radioligand concentration in the target (tissue or 
compartment) to that in the plasma (mL/cm3). Thus, VT has 
the following relationship with the volume of distribution of 

each compartment:

where VND and VS are the volumes of distribution for 
nondisplaceable and specific binding compartments, 
respectively.

Though VT does not directly reflect specific binding, 
but rather total radioligand uptake in tissue, it is also widely 
used in studies of neuroreceptor binding[57]. Indeed, most 
GA using the plasma input function provides VT as a major 
outcome. Because these methods yield a VND estimate for 
a receptor-free region, BPND can be indirectly computed as 
BPND = VT/VND − 1. Similarly, even most reference region 
methods produce estimates of the tissue-to-reference ratio 
of VT (VT/VND), called the distribution volume ratio (DVR), 
to derive BPND. Furthermore, it is noteworthy that the VS is 
BPP in itself; thus, for a tracer with a high level of specifi c 
binding and/or a low level of nonspecifi c binding (e.g. [11C]
fl umazenil), VT ( ≈ VT − VND = VS) can yield a good estimate 
of the receptor density[10].

Meanwhile, the concept of BP or volume of distribution 
is not useful for irreversibly binding radioligands. The major 
outcome of interest for these radioligands is the influx 
rate constant (Kin, mL/cm3 per min) which is the net influx 
rate of the radioligand from plasma into the irreversible 
compartment. Kin can be directly obtained from GA using 
the plasma input function, while only relative values 
normalized by reference region information such as Kin/V'T 
or Kin/K'in can be acquired from reference region methods[29].

The aforementioned parameters can be related to 
the rate constants of the 2TCM for reversibly binding 
radioligands as follows[10]:

Similarly, when the 2TCM can be simplified, we can 
consider the following relationship:

For a reference region commonly described by the 1TCM[57, 58], 
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we have

Therefore, under the assumption 

reference region methods can provide direct estimation of 
BP by using reference region data to acquire information 
about the non-displaceable component in tissue. Hence, 
the identification of a reliable reference region effectively 
devoid of specific binding is crucial[56]. On the other 
hand, when modeling the kinetics of irreversible binding 
radioligands using the 2TCM with k4 = 0, we have

Limitations in Parametric Image Generation
Although the standard compartment model describes a 
linear system, it is not linear in parameters. Therefore, 
the estimation of parameters in compartment models 
requires nonlinear estimation techniques. Because 
of its optimal statistical accuracy and reliability[59], the 
NLS  method is considered to be the method of choice 
for tracer kinetic modeling and is often used as the gold 
standard to assess the performance of other methods in 
terms of ROI parameters[8, 17]. However, nonlinear fitting 
approaches have no closed-form solution and are usually 
solved in an iterative way. This iterative approach imposes 
a tremendous computational burden when applied to 
voxel-by-voxel analysis. Furthermore, the performance 
of nonlinear fitting is dependent on the initial guessing of 
parameters; poor initial values result in finding incorrect 
optima at local minima of the cost function and slow 
convergence. In addition, an appropriate convergence 
threshold and constraints on the parameters should be 
determined by experience[5].

Graphical Analysis

The GA method is the simplest approach that relies on a 
linear parameter estimation technique. In some literature, 
the term ‘graphical analysis’ has been used to indicate 
specific early methods such as the Gjedde-Patlak (GP) 
plot for an irreversible system[60-62] or the Logan plot for 
a reversible one[57, 63]. However, it is now considered as 
a category rather than a specific method, since several 
different GA models have also been developed to measure 

different parameters or to improve other models[64-67]. Table 1 
lists the characteristics of all GA methods.

In each GA approach, the kinetic behavior of the 
radioligand is described by only two variables (for a simple 
linear regression) that are transformed from the measured 
data, including input functions, and that establish a linear 
relationship partially and asymptotically. The slope and 
intercept of that asymptotic linear portion can be interpreted 
as physiologically meaningful parameters, such as VT 
or Kin

[68]. Hence, first the linearity of the relationship is 
examined graphically by plotting one variable versus the 
other (which is why it is called graphical analysis; see Fig. 2) 
and then the slope and intercept are estimated by fitting 
a straight line to the specified linear portion via the LLS 
method.

To model the linear portion, GA methods rely on a 
simple linear regression model, or a linear model with a 
single independent variable, of the following matrix form:

where y and x1 are n × 1 vectors of dependent and 
independent variables, respectively; X = [x1, 1] is an n × 
2 matrix of the x1 and all-ones vector (1) for the intercept 
term; β = [β1, β0]

T is a vector of the 2 parameters, slope (β1) 
and intercept (β0); and  is an n × 1 vector of 
the error term. Then, the slope (β1) and the intercept (β0) 
characterizing the linear portion are usually obtained by 
solving the LLS problem:

which has the following closed form solution or the LLS 
estimator:

The GA methods have several advantages that 
are mainly attained by linearizing compartment model 
equations into the simple linear model so that the LLS 
approach can be used[67, 68]. Both the simplicity of the 
model and the closed-form solution of the LLS method 
enable simple, reliable, and computationally efficient 
parameter estimation. Furthermore, in contrast to standard 
compartmental modeling, the GA methods are consistently 
applicable across different tissue data with no a priori 
knowledge on the best model structure for each tissue, 
because their equations are derived from a general multi-
compartment model in which an arbitrary number of 
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Fig. 2. Various graphical plots for the slow kinetic radiotracers, [11C]WIN (left) and [11C]MDL (right). (A) Relative equilibrium (RE), (B) 
Gjedde-Patlak, and (C) Logan plots (reprinted from Zhou et al. Neuroimage 2010[67] with permission).
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compartments is assumed[61, 63]. These strengths of GA 
methods can greatly facilitate the generation of parametric 
images in which numerous voxels covering various brain 
regions can be analyzed.

However, a series of assumptions underlie the 
linearization and simplification of kinetic models for GA 
that allows the use of simple linear regression and thus 
provides various advantages. First, GA methods require 
the determination of t*, the time when the plot becomes 
linear, because the model is valid only for the later part 
of the dynamic frames. A poor determination can yield 
erroneous estimates by violating the linearity requirement. 
In addition, slow kinetic tracers have a late starting point of 
the linear portion that reduces the amount of data available 
for estimation. Thus, the results can suffer from high 
uncertainty because of limited data. Moreover, unbiased 
parameter estimation in the simple linear regression 
depends on basic assumptions of LLS: that there are no or 
negligible errors in the independent variable of the linear 
model, and that the independent variables are uncorrelated 
with the error term. Any violation of these conditions can 
lead to inaccurate results.

Because most PET radioligands bind reversibly, 
revers ib le  rad io l i gand  mode ls  have  been  used 
extensively[1, 69]. Therefore, though most of them were 
extended from the GP plot for an irreversibly binding 
radioligand (the first GA method), we introduce the 
reversible radioligand models fi rst.
Reversible Radioligand Models
Logan plot  The Logan plot (Fig. 2) is a representative 
graphical method used to analyze a reversible radioligand-
receptor binding[57, 63]. The model equation using the plasma 
input function is given by

where VT,Logan is the total distribution volume, and t* is the 
time when the intercept βLogan becomes effectively constant. 
Given the measured noisy TAC, C * 

T (ti) (1 ≤ i ≤ n) obtained 
from n sequential dynamic frames, we have

and β = [VT,Logan, βLogan]
T for 1 ≤ i ≤ n. yi and x1i are the ith 

elements of y and x1, respectively. Here,

represents the numerical integration of C* 
T (ti) that are 

discrete sample data, not the integral of a continuous 
function.

As in other GA methods, the Logan plot is consistently 
applicable to data from different voxels or ROIs regardless 
of their underlying model configurations. However, if a 
particular model configuration is assumed for the given 
data, VT,Logan and βLogan can be related to the specific rate 
constants included in that confi guration; usually the 1TCM 
or the 2TCM is considered for receptor-ligand studies. 
The slopes are differently interpreted as Equations (3) or 
(7), according to the model confi gurations. For the 1TCM 
(without k3 and k4), the linearity is simply met for all the 
frame times since βLogan = −1/k2. On the contrary, for the 
2TCM, we have to determine t* because the intercept is not 
actually a constant:

The limit value −1/k * 
2a is defi ned at the steady-state condition 

of tissue tracer kinetics

However, the constancy of βLogan can be approximately 
achieved before the steady state, yielding a good estimate 
of VT,Logan

[63, 68, 70].
Meanwhile, the Logan equation can be re-written for a 

reference region: 

Rearranging Equation (15) gives

Then, by approximating the plasma integral in Equation (12) 
using Equation (16), the noninvasive Logan plot based on 
a reference TAC can be obtained as follows: 

If the reference region is approximately devoid of receptor 
sites, BPND can be determined as VT,Logan/V′T,Logan−1 under 

the assumption that

There are several t ips for technical eff iciency 
in the implementation of the noninvasive Logan plot. 
The slope in Equation (17), the DVR, may be stably 
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estimated by using a population average of β′Logan, 
(or the more physiologically meaningful      in place of 
the individual β′Logan (or k′2). In this case, the inter-subject 
variability in β′Logan is blended into an error term of the 
model and then removed by the fi tting process. In addition, 

the term                         can be ignored when it is relatively 

small or becomes constant[57]; in fact, the term is merged 
into the error or the intercept term. It is noteworthy that, 
although the term in parenthesis in Equation (17) is treated 
as one independent variable in the noninvasive Logan 
plot method, it can be used as two separate variables for 
the parameter estimation[71] that requires multiple linear 
regression analysis.

Because of i ts diverse merits, such as model 
independence,  computat iona l  e f f ic iency,  s imple 
implementation, and statistical reliability under low-
noise data, the Logan plot has been extensively used in 
neuroreceptor binding studies. However, the Logan plot 
suffers from a crucial limitation, especially in parametric 
imaging (Figs. 3 and 4), in that it produces a severe 

negative bias in VT,Logan or                 when CT(t) is highly 

contaminated[72-74]. As shown in Equations (12) and (17), 
the noise in CT(t) is entered into both the independent 
and dependent variables of its model equation while 
establishing a correlation between them, which therefore 
makes the model violate the LLS assumptions mentioned. 
Furthermore, the magnitude of the bias depends on the 
noise level that is also dependent (but not linearly) on 
the radioactivity concentration[72-75]. The effect of noise 
is also not consistent throughout the parametric image 
space; high-binding regions usually undergo more severe 
underestimation. One minor disadvantage of the Logan plot is 
the requirement of full dynamic scanning to compute
though only the later parts of the measurements (after t*) 
are used for parameter estimation.
Relative equilibrium plot  To address the noise-dependent 
bias issue in the Logan plot, the relative equilibrium-based 
graphical method (RE plot) was developed for both plasma 
and reference tissue input functions[66]. When the tissue to 

plasma concentration ratio,            becomes a constant, i.e., 

the RE established after a certain time t* (Fig. 5, left), tracer 

concentrations satisfy the following relationship: 

This model can be derived from compartment model 
equations or by multiplying the Logan plot model (Equation 

(12)) by         Note that the constant ratio of tissue-to-

plasma concentrations can be achieved at the steady state, 
but it is also possible to achieve it earlier than the steady 
state. However, this generally requires somewhat longer 

times than the Logan linearity condition 

In addition, when a reference region is also in the RE 

state for t > t*                      we have the noninvasive RE 

plot model as follows:

where V′T,RE and β′RE are the slope and intercept of the RE 
plot in the reference region. Thus, the invasive RE plot 
can provide BPND if the non-receptor region is used for the 
reference region.

One merit of the RE plot is its high computational 
efficiency. As shown in Equations (18) and (19), the 
independent variable is not dependent on the tissue data 
and is common over all voxel TACs. Therefore, once X

is computed from the input function, it can be used for all 
tissue data, that is, only one matrix conversion is required 
for parametric image generation. However, in the case of 
the Logan plot, X needs to be computed and inverted for 
every voxel. In addition, it is noteworthy that both 
independent and dependent variables in Equations (18) 
and (19) have a much lower noise level compared with 
C* 

T (t) because the integration reduces fluctuations in the 
later part of TAC, and CR(t) is obtained by averaging voxel 
TACs over a reference ROI. Therefore, the RE plot can 
achieve effectively unbiased estimation with low variance 
provided that linearity is established. However, for linearity, 
tissue tracer kinetics must be at a relative equilibrium state 
during PET scans, and thus only late data points can be 
used for the estimation. Thus, good precision properties 
obtained from a less noisy dependent variable could be 
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compromised with the data reduction because of the 
relatively late t*. 
Bias reduction for Logan plot  In addition to the RE plot, 
there have been a variety of attempts to reduce the bias in 

the LLS estimates from the Logan plot[19, 36, 56, 69, 76-80]. Those 
approaches can be categorized by (1) methods to increase 
the SNR in dynamic images, and (2) those that adopt more 
sophisticated estimation techniques. In this subsection, we 

Fig. 3. Top: parametric images of VT (represented as DVRE or DVT) and Kin (represented as KP) from various methods: RE plot, RE-GP plot, 
and Logan plot (reprinted from Zhou et al. Neuroimage 2010[67] with permission). Bottom: results from de-noised dynamic images 
(reprinted from Zhou et al. Neuroimage 2010[67] with permission).

Fig. 4. VT images from the Logan plot with linear least squares (LLS), total least squares (TLS), and likelihood estimation in graphical 
analysis (LEGA). The images were made from the same original PET data using [11C]SA4503, a radioligand for the σ1 receptor 
(reprinted from Kimura et al. Ann Nucl Med 2007[75] with permission).
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introduce these two categories.   
Data de-noising  The most simple and straightforward 
solution to the bias issue in the Logan plot may be to 
apply smoothing techniques directly to the dynamic data. 
Although smoothing approaches are effective, they are not 
a direct improvement over the Logan plot[81] and thus can be 
applied not only to GA but also to all other methods that are 
affected by noise in the dynamic data. Logan et al.[76] used 
generalized linear least squares (GLLS)[42, 82] as a temporal 
smoothing technique to reduce noise in TAC data, and 
subsequently applied the Logan plot to the noise-reduced 
TACs, the result of GLLS. This combination of the Logan 
plot and GLLS yielded unbiased estimates of VT up to 
intermediate noise levels, but suffered from overestimation 
and significant variability at high noise levels. Joshi et 
al.[79] suggested the use of principal component analysis 
(PCA) for the temporal smoothing of TACs. This PCA-
based approach demonstrated good performance with both 
increased accuracy and precision. However, it requires 
pre-processing for the selection of optimal principal 
components, and too many components may reintroduce 
a bias. For spatial domain de-noising, grouping TACs 
with similar properties such as proximity or functional 
relations may also be useful[68, 77, 83]. The main drawback of 
spatial smoothing techniques is a loss of spatial resolution 
and additional partial volume effects (Fig. 3 bottom)[67]. 
Cselényi et al.[19, 80] proposed two wavelet-based de-noising 
techniques that can overcome the noise susceptibility 
with generally good accuracy and not much loss of spatial 
resolution. However, these techniques are computationally 
demanding compared with other approaches. In addition 
to these methods, many other approaches aimed at 
increasing the SNR of the reconstructed images are also 
applicable[27].
Total least squares (TLS)  Varga and Szabo[78] proposed 
the use of TLS estimation[84], also referred to as the 
‘perpendicular linear regression model’, instead of LLS for 
the Logan plot model because the TLS considers the noise 
in the independent as well as in the dependent variables. 
The TLS method seeks to minimize the following sum of 
squared orthogonal distances from the measured points 
to the fi tted line (or hyperplane), by perturbing all the noisy 
variables X and y, as follows: 

Although this approach may seem to be complicated, it has 
a closed form solution and thus maintains computational 
simplicity like LLS.

In the original work[78], using this TLS method showed 
that the bias was dramatically reduced and thus the 
resulting VT was consistent in accuracy regardless of the 
noise levels of the TAC but at the expense of increasing 
variance (Fig. 4). However, such good performance was 
not reproduced well in other studies where the TLS only 
partially removed bias[19, 68, 75, 85]. Although the reason for 
such discrepancy in the performance between studies is 
unclear, there are some speculated sources for the 
remaining bias: a heterogeneity of variances or a 
correlation between the noise in all the variables[84, 85]. We 
speculate that the poor performance of TLS in the Logan 
plot is mainly due to high noise correlation because the 
same noise is shared in all the variables of the Logan 
model through the denominator (C * 

T (t)).
Likelihood estimation in graphical analysis (LEGA)  
Ogden[36] proposed the LEGA method to suppress the 
noise-induced bias in the result of the Logan plot. However, 
the LEGA method implicitly uses the Logan model, unlike 
other bias-reduction approaches that transform the 
measured TAC and then directly use the Logan model 
equation[19, 69, 76-80]; the Logan model is converted into the 
following recurrence relation to generate the noise-free 
TAC predicted by the model, 

for k ≤ i ≤ n, where ∆ti denotes the duration of the ith frame, 
CT(ti) is the predicted tissue concentration at the mid-frame 
time ti (for k ≤ i ≤ n), and k is the index of the first frame 
satisfying ti > t*. Then, the solution of the following least 
squares problem,

provides maximum likelihood estimators for VT,Logan and 
βLogan under the assumption that errors in the values of the 
measured TAC, C * 

T (ti), are independently and identically 
distributed normal random variables with zero mean. 
Because Equation (21) is valid only for k ≤ i ≤ n, the 
measured values of C* 

T (ti) for 1 ≤ i ≤ k−1 are used for the 
calculation of CT(tk). The LEGA that was originally 
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developed for the plasma input function was also extended 
to a reference region method with more complicated update 
equations for both target tissue and reference tissue 
TACs[56].

Since the LEGA method applies the l ikelihood 
estimation not to the transformed data but to the original 
TAC (C* 

T (ti)), it can circumvent the bias issue associated 
with the Logan model. However, it does not provide any 
graphical inspection of the binding characteristic, in contrast 
to the Logan plot. Hence, to choose a proper value of t* or 
k, it needs to rely on the Logan plot or other t*-selection 
approaches[85]. Furthermore, because of the recurrence of 
predicted values and the nonlinear involvement of VT,Logan 

and βLogan, the solution must be computed using an iterative 
nonlinear optimization algorithm (at least over one-
dimensional parameter space for βLogan); the results of the 
Logan plot may be used for the initial values for the 
iteration, and for surrogate values when numerical 
instability occurs.

The major drawback of LEGA in parametric imaging is 
that the improved accuracy is accomplished at the expense 
of precision loss that contributes to noisy parametric 
images as shown in Figure 4[81, 86]. To improve the variance 
properties of LEGA, Shidahara et al.[81] suggested a new 
method based on a maximum a posteriori estimation, 
where a physiological range of parameters is incorporated 
as prior knowledge and the measured TAC is compared 
with the predicted TAC, not in the original TAC space, but 
in the lower-dimensional space that is reduced from the 
original space using PCA.
Instrumental variable (IV)  Logan et al.[69] introduced the 
IV method[87, 88] to address the bias problem encountered 

in the Logan plot because of the noise in the independent 
variable. In several disciplines including statistics, the IV 
method is basically used to remove a correlation between 
the independent variables (X) and the error term (ε) that 
can lead to biased estimates in standard linear regression. 

Although the correlation between X and  can stem 
from the noise in the independent variable (even if it is 
uncorrelated with the noise in the dependent variable) as 
well as several other sources, the IV method can eliminate 
the bias regardless of its source[89]. In addition, TLS can 
also be considered as a variation on the IV method with a 
specifi c instrument that is nonetheless not used explicitly; 
however, the IV method makes no assumptions about the 
noise models, unlike the TLS[90].

The key concept in the IV method is the use of 
one or more extra variables (not in the model), called 
instrumental variables or instruments, to separate the 

(exogenous) part of X that is uncorrelated with  from the 
remaining (endogenous) part that is correlated with . Only 
the segregated exogenous part of X is then used for the 
parameter estimation because the endogenous part is the 
source of bias in the LLS estimates; given the instruments Z, 
the IV estimator is defi ned as

This estimator yields unbiased estimates if Z is uncorrelated 

with , and if it is correlated with the endogenous 
independent variables after removing the effect on them 
of the other uncorrelated exogenous variables (i.e., 
conditional on the other independent variables).

The critical point of the IV method is to construct 
legitimate instruments satisfying these requirements. Logan 
et al.[69] suggested two methods for the construction: an 

Fig. 5. Left: relative equilibrium (RE) state after t* = 42.5 min in [11C]raclopride PET (reprinted from Zhou et al. Neuroimage 2009[66] with 
permission). Right: violation of RE condition in [11C]WIN PET (reprinted from Zhou et al. Neuroimage 2010[67] with permission).
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iterative approach proposed by Minchin[91] and another 
based on less noisy regional TACs. The main idea common 
to the two methods is to use                                          
the denoised version of X that can be considered as the 
exogenous part of X by itself when the correlation between 
X and  is primarily due to the noise in X. The fi rst method 
involves the prediction of CT(ti) using Equation (21) and the 
parameter estimates from the original Logan plot, and the 
subsequent computation of      ; this process is repeated 
until      converges. In the second method, a regional 
TAC of a large ROI is used for CT(ti), and       is estimated 
without any iteration. Because the iterative approach has 
convergence issues, the second method is preferable. 
Furthermore, according to Logan et al.[69], the second 
method showed good results when the smoothed reference 
TAC was used in Z. On the other hand, the IV approach 
was extended to the noninvasive Logan plot but Z was 
constructed using only the second method based on ROI 
TACs. 

The IV methods successfully reduce the bias but at 
the expense of variance, much as in other bias-reduction 
approaches. Instead of improving the IV method itself, 
to reduce both the bias and variability, Logan et al.[69] 
suggested the use of the median of the values determined 
by various modifi cations of the Logan plot as well as the IV 
method, methods that have different noise characteristics 
for the same data.
Irreversible Tracer Models
Invasive Gjedde-Patlak (GP) plot methods  For a tracer 
with an irreversible binding, the GP plot[60-62] (Fig. 2) has 
been widely used. Although the term ‘Patlak plot’ or simply 
‘graphical analysis’ is often used for this method, we keep 
the ‘GP plot’ for consistency with the RE-GP plot throughout 
the paper.

The model equation including the plasma input 
function (Equation (24)) can be obtained from the 2TCM 
by assuming k4 = 0 as well as from a general multi-
compartment model[61, 63]. When an equilibrium has 
been established between the plasma and reversible 

components (or               becomes effectively constant) for 

t > t*, the following linear model achieves an asymptotic 
linearity for an irreversibly-binding tracer: 

where the influx rate constant                      and the 

intercept term                          Thus, βGP has a positive 

value in contrast to its equivalents in the Logan or RE plots.
In addition to the common advantages of GA methods, 

the GP plot has a discriminative one in that it does not 
require a full dynamic scan because the integration of CT(t) 
is not involved, in contrast to other methods such as the 
Logan plot or the RE plot. Furthermore, it is noteworthy 
that the GP plot has a model equation very similar to the 
RE plot (Equation (18)), except for how CT(t) is involved 
in a dependent variable. Therefore, the two methods 
share similar bias properties and computational effi ciency 
owing to using the same independent variable. On the 
other hand, the variance of the parameter estimate from 
the GP plot is more sensitive to noise (Fig. 6) than that 
from the RE plot because CT(t) (i.e., more noisy data) is 
directly involved in the dependent variable of the GP plot, 
while its integration (i.e., less noisy data) is used in the RE 
plot. This noise sensitivity of the GP plot can be improved 
through multiple linear analysis for irreversible radiotracers 
(MLAIR) methods[22]. Moreover, for a tracer assumed to 
have effectively irreversible binding (k4 ≈ 0) over the scan 
duration, Kin,GP may be underestimated if the dissociation 
of binding is appreciable[8]; in such a case, a more general 
model equation is required to obtain unbiased results[62].
Noninvasive GP plot methods  Concerning the reference 
region model, the GP plot has two different model 
equations according to the tracer’s binding type in the 
reference region. When the reference region has only 
reversible binding sites, the relationship between CP(t) 
and CR(t) can be represented by the Logan plot equation 
with a slope V′T,Logan and an intercept β′Logan (for t > t*). Then, 

by multiplying both sides of Equation (24) by         and 

substituting Equation (16) into Equation (24), a noninvasive 
GP plot model can be obtained as follows:

Thus, the slope and the intercept terms can be estimated 

using simple linear regression when

and β′Logan become effectively constant for t > t*
[62, 68]. 

Meanwhile, for a reference region with irreversible uptake, 
the invasive GP equation is used to describe CP(t) using 
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CR(t). Then, another linear model of a noninvasive GP plot 
can be obtained as follows[37, 38],

where K′in,GP and β′GP  are the slope and intercept of the 
invasive GP plot applied to the reference region. This 
method requires that the kinetics of the radioligand in both 
the tissue and reference regions can be modeled using the 
invasive GP plot (Equation (24)).

The former noninvasive model would inherit all the 
properties of the original invasive GP plot model, provided 
that a sufficiently large ROI size is used so as to obtain 
CR(t) with as low a noise-level as that of CP(t); otherwise, 
the accuracy of the resulting estimates can be damaged 
by the noisy independent variable, like in the Logan plot. 
On the contrary, the latter noninvasive model has several 
distinct features compared with the original invasive and the 

Fig. 6. Kin parametric images from 90-min [11C]MeNTI PET of a healthy volunteer obtained using various methods: (A) GP plot using t* = 
10 min, (B) GP plot using t* = 20 min, (C) GP plot using t* = 30 min, (D) MLAIR1, and (E) MLAIR2 (reprinted from Kim et al. J Cereb 
Blood Flow Metab 2008[22] with permission; GP: Gjedde-Paltak, MLAIR: multiple linear analysis for irreversible radiotracers).

former noninvasive models. First, this model is not a simple 
linear regression model but a multiple linear regression 
model. Therefore, a graphical plot with a straight-line fi t is 
not provided; although the visualization of 3-dimensional 
hyper-plane fi t is possible instead, its interpretation is not 
as straightforward as that of GA. In addition, this model 
includes the integration of CT(t) in contrast to the others. 
Nevertheless, it also avoids the requirement of a full 
dynamic scan like the others; this property of the original 
GP plot model is just transformed into the integration from 
t* to t.

One drawback of these noninvasive methods is that 
the net accumulation of radioligand is acquired only in 
a relative or normalized form. Nevertheless, the former 
noninvasive model has found applications because of its 
history going back to 1985; the method has been frequently 
used in 6-[18F]fluoro-L-dopa studies because of a good 
correlation between its own results and those from the 
invasive counterpart[92-95]. However, the latter method was 
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introduced in relatively recent years and thus has not been 
suffi ciently investigated or used, and has been applied only 
to ROI data. Although the ROI results have shown good 
accuracy and precision, future parametric imaging may 
suffer from severe underestimation because CT(t) is used 
for independent variables.
Bi-graphical Analysis
Although GA generally provides robust parameter 
estimation by focusing on only two parameters, it may end 
up missing some information or exploiting only fragmentary 
information from given data. However, a combination of two 
methods or a dual application to different parts of the data 
may take full advantage of the data. In this sense, graphical 
methods to estimate VT, which we went through in the 
previous subsections, can also be viewed as a bi-graphical 
technique when they are applied to target and reference 
regions separately to provide BPND computation.
RE-GP plots  Recently, a bi-graphical analysis, named 
the RE-GP plot, has been proposed for the quantifi cation 
of reversible tracer binding that may not be at the RE 
state during a PET scan because of slow binding kinetics 
as shown in Fig. 5 (right). Its model equation is given as 
follows,

where VT,RE and βRE, (or Kin,GP and βGP) are the slope and 
intercept of the RE plot (or the GP plot) based on a plasma 
input function, respectively. Note that this RE-GP equation 
is the same as Equation (12) of the Logan plot except for 
the parameters. However, the parameters VT,REGP and βREGP 
are estimated not by regression as in the Logan plot, but by 
arithmetic operations on the parameter estimates obtained 
by applying the RE plot and the GP plot separately. Thus, 
the RE-GP method requires the measurement of the 
plasma input function to estimate the parameters of the RE 
and GP plots.

The linearity period t > t* for the RE-GP method mainly 
follows that of the Logan plot[67]. It is better to use the t* 
suitable for the Logan plot in each application of the RE 

plot and the GP plot rather than to determine and use the 
individual t* for each plot; the t* for each may be uncertain 
because of the slightly curved shape of the RE plot or high 
fl uctuation in the GP plot as shown in Fig. 2.

The RE-GP plot maintains the properties of both 
plots, such as computational efficiency and statistical 
characteristics. As the RE plot and the GP plot have the 
same effectively noise-free independent variable in their 
model equation, accuracies of their target parameter 
estimates and thus those of the RE-GP method are not 
affected by noisy CT(t) in contrast to the Logan plot. 
However, the GP parameters are usually of high variance 
because of noisy CT(t) in the dependent variable (Figs. 3 
and 6). Therefore, it is advantageous to apply a spatial 
smoothing filter to the GP parametric images before 
computing the parametric images of VT,REGP and βREGP

[67].
The original RE-GP can circumvent not only the 

bias issue in the Logan plot but also that of the RE plot 
(Fig. 3). As we introduced previously, the RE plot yields 
an underestimated VT when sufficient time is not allowed 
for the tracer kinetics to reach the RE state (Fig. 3). The 
missing information, which the RE plot failed to capture 
because of the violation of the RE requirement, can be 
compensated for by the results from the GP plot (Fig. 3). 
In other words, the results of the RE plot describe the 
components achieving the RE state during the PET scan 
while those of the GP plot compensate for non-relative 
equilibrium components.
Ito plot  Ito et al.[65] developed a form of bi-graphical 
analysis where the Yokoi plot[64] is applied to the early part 
of the data frames and the later part separately, and then 
the resulting parameters from the separate applications are 
combined to generate BPND, the parameter of interest; the 
Yokoi plot was originally proposed to estimate the cerebral 
blood flow (K1) and the total distribution volume (VT) only 
for tracers well described by the 1TCM, and was recently 
generalized into the Ito plot[65] for the neuroreceptor-
radioligand binding studies where the 2TCM is involved. 
The Yokoi plot and thus the Ito plot rely upon the following 
linear relationship: 

Equation (30) yields a straight line through all data 
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frames (Fig. 7) when there is no specifi c binding in a target 
region (e.g., the Yokoi plot for 1TCM confi guration tracers), 
and the slope (β1), y-intercept (β2), and x-intercept (β2/
β1) of the regression line represent −k2, K1, and VT (= VND), 
respectively. On the contrary, when applied to regions with 
specific binding (e.g., the Ito plot for 2TCM configuration 
tracers), Equation (30) generates a curve (Fig. 7) that 
refl ects the dynamic effect of specifi c binding concentration 
on the measured tissue data. The fitted regression line 
can be characterized by −k2 (slope), K1 (y-intercept), and 
VND (x-intercept) for the early part of the data for t → 0 in 
which CND(t) dominates the measured tissue concentration 
CT(t). The line can be specifi ed by −k*

2a, k
*
2aVT and VT (=VND 

+ VS), respectively, for late-part data (t > t*) that can be 
approximately described with the 1TCM and its apparent 
rate constants k*

2aVT (for infl ux) and k*
2a (for effl ux) after t* 

(Ito et al. 2010[65, 67]); k*
2a becomes k2a (Fig. 1 and Equation 

(6)) when rapid equilibrium is established at t* ≈ 0 owing 
to relatively large k3 and k4. Care should be taken in VND 
estimation because the use of more data points increases 
not only the reliability of estimation but also the bias due to 
the violation of CT(t) ≈ CND(t) for t → 0[96].

Based upon the plot characteristics that vary according 

to the model confi guration, the Ito plot model (Equation (30)) 
can be useful for graphically distinguishing whether a target 
region is devoid of specifi c binding or not[65]. Furthermore, 
the Ito plot can be used to compute BPND using the resulting 
VND and VT estimates. The major distinction between 
this and other reference region methods is that a priori 
knowledge of the reference region is not required. These 
features may be obtained with the Logan plot because 
the Ito plot and the Logan plot are based on the same 
linear relationship except for the different arrangement 
of parameters and variables (thereby, different noise 
characteristics). Note that the Yokoi and Ito plots are both 
GA techniques for VT estimation, even though we introduce 
them here as bi-graphical analysis methods for BPND 
generation.

On the other hand, the main drawback of the Yokoi 
and Ito plots is that the precision of estimates is usually 
low because of noise effects[65, 69, 96], particularly at the 
voxel-level, for several reasons: (1) the dependent variable 
includes CT(t), the major source of noise in kinetic modeling, 
as its numerator; (2) the estimation of VND involves early 
time frames, usually with a very low SNR[8]; and (3) the 
parameters of interest, VT and VND, are computed by 
dividing the y-intercept by the slope. Therefore, as shown 
in Figure 8, the de-noising of dynamic images is essential 
to improve the SNR of parametric images[8, 96].

Summary

PET research has greatly contributed to advance our 
understanding of the brain in health and disease[4, 97-102]; 
quantitative neuroreceptor mapping with kinetic modeling 
has played a key role in such contributions by offering 
accurate visualization and voxel-wise analysis of the 
distribution and activity of various neuroreceptors that are 
the most infl uential structures in the brain. 

In this article, we have presented an overview of 
GA-based parametric image generation from dynamic 
neuroreceptor PET data. Although parametric imaging 
may cover broad concepts, including the voxel-wise 
measurement of standard uptake values from a single 
static image, or other standard kinetic parameters 
such as peak concentration from dynamic data[5, 8, 31], 
throughout the paper, it refers to a voxel-wise application 
of specifi c mathematical modeling approaches to analyze 

Fig. 7. An example of Ito plot analysis. The y- and x-intercepts of 
the regression line represent K1 and VND, respectively, for 
early data frames, whereas Ki = k*

2aVT  and VT for the late 
part of the data (after the equilibrium time) (reprinted from 
Ito et al. Neuroimage 2010[65] with permission). Open (or 
fi lled) circles display examples of applications for one- (or 
two-) tissue compartment model data.
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reconstructed dynamic PET images. In GA methods, a 
simple linear model with only two parameters is used to 
fit only the later portion of the measured data. Thanks 
to the linearization and simplification of the underlying 
model, GA methods achieve very desirable parametric 
imaging that is independent of any compartmental model 
confi guration, robust to noise, and computationally effi cient. 
However, both the linearization and simplification depend 
on several assumptions that are commonly hard to satisfy 
simultaneously. Therefore, the recent advances in GA 
approaches have been mainly based on a reduction of 
specifi c assumptions or replacement with new ones. 

Recently, parametric imaging techniques have shown 
two major trends: a conventional pipeline of analyzing the 
reconstructed dynamic data and a direct reconstruction 
of parametric images from coincidence count data[17, 20]. 
Although the direct reconstruction technique is considered 
as the ultimate path for parametric image generation 
because of its potential advantages in high-resolution 
PET[17], this fi eld was inactive until recently despite its early 
emergence and has several challenges to address, such as 
high algorithmic complexity[20]. Therefore, we believe that 

the indirect parametric imaging methods, especially the GA 
techniques we have considered, are still invaluable and 
furthermore will play a leading role in achieving the ultimate 
goal. We refer readers interested in direct parametric 
imaging to a comprehensive review by Wang and Qi[20], 
since it is beyond the scope of this paper.
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Statistical analysis in neuroimaging (referred to as “neurostatistical imaging”) is important in clinical neurology. 
Here, neurostatistical imaging and its superiority for diagnosing dementia are reviewed. In neurodegenerative 
dementia, the proportional distribution of brain perfusion, metabolism, or atrophy is important for understanding 
the symptoms and status of patients and for identifying regions of pathological damage. Although absolute 
quantitative changes are important in vascular disease, they are less important than relative values in 
neurodegenerative dementia. Even under resting conditions in healthy individuals, the distribution of brain 
perfusion and metabolism is asymmetrical and differs among areas. To detect small changes, statistical 
analysis such as the Z-score – the number of standard deviations by which a patient’s voxel value differs from 
the normal mean value – comparing normal controls is useful and also facilitates clinical assessment. Our 
recent fi nding of a longitudinal one-year reduction of glucose metabolism around the olfactory tract in Alzheimer’s 
disease using the recently-developed DARTEL normalization procedure is also presented. Furthermore, a 
newly-developed procedure to assess brain atrophy with CT-based voxel-based morphometry is illustrated. 
The promising possibilities of CT in neurostatistical imaging are also presented.

Keywords: neurostatistical imaging; Neurostat; 3DSSP; eZIS; VSRAD; neurodegenerative disease; CT 
segmentation

·Review·

Introduction

Statistical analysis in neuroimaging (described here as 
“neurostatistical imaging”) is crucial in clinical neurology 
as, for example, 3DSSP (three-dimensional stereotactic 
surface projections) in Neurostat[1]. Neurostatistical 
imaging can be applied not only to the functional imaging 
like brain perfusion single photon emission computed 
tomography (SPECT) or glucose metabolism positron 
emission tomography (PET), but also to morphological 
images like magnetic resonance imaging (MRI) with voxel-
based morphometry (VBM). Useful information can be 
extracted by the superimposition of statistical results onto 
high-resolution images like MRI. Accordingly, even though 

the original image resolution is low, additional anatomical 
information can be obtained.
Neuroimaging in Diagnosing Dementia 
An essential part of neuroimaging for the cl inical 
investigation of dementia is to differentiate the underlying 
disease after systemic diseases have been excluded 
by blood chemistry or other clinical examinations. In 
vascular disorders of the brain, absolute quantitative 
regional changes are clinically important. In the same 
way, in brain tumors, focal information about the tissue 
surrounding tumors is important. In both diseases, 
direct inspection of the original images is useful and 
important. When the symptoms indicate the possibility 
of idiopathic normal-pressure hydrocephalus (iNPH), 
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not only the disproportionately enlarged subarachnoid 
space hydrocephalus pattern in the original morphological 
images, but also the distribution pattern of neurostatistical 
imaging are helpful for diagnosis[2]. In iNPH, neurostatistical 
imaging demonstrates inhomogeneity of the distribution 
of cerebrospinal fluid (CSF) space, which modifies the 
statistical results in both volumetric and functional images, 
according to the partial volume effect. Adjacent gray matter 
volume, perfusion, or metabolism is proportionally reduced 
if neighboring gyri are far, due to focal CSF abundance. On 
the contrary, these parameters are proportionally increased 
if neighboring gyri are closer, resulting from apparent focal 
CSF reduction. That is, fake signifi cant reductions of gray 
matter volume, perfusion, and metabolism are observed 
surrounding the Sylvian fissure and ventricles and fake 
significant increases are observed in the area of the 
convexity. 
Contribution of Neurostatistical Imaging to 
Neurodegenerative Dementia 
When neurodegenerative dementia is suspected, the 
proportional distribution of whole-brain perfusion, metabolism, 
or atrophy should be examined using neurostatistical 
imaging, because slight changes resulting from early 
degeneration or remote effects of that degeneration can 
be extracted. Even in resting conditions, the distribution 
of brain perfusion or metabolism in normal controls is 
asymmetrical and inhomogeneous. This inhomogeneity 
makes it difficult to assess the slight changes by visual 
inspection of the original tomographic images. Statistical 
analysis comparing normal controls makes the slight 
changes clear because the asymmetry and inhomogeneity 
in normal controls can be canceled out.  In many cases of 
neurodegenerative disease, the changes are too obscure 
to detect without using neurostatistical imaging.  

To diagnose the disease underlying dementia, the 
symptoms or status of patients are assessed, the region 
of pathological damage is predicted, and the dysfunction 
or volume loss of the lesion or remote areas is estimated. 
Combining the original tomographic images, neurostatistical 
imaging, and clinical information, the pattern of damage 
distribution is judged based on whether or not they match 
the suspected disease. Recently, more accurate analysis 
has been achieved due to the development of computer 
technology. 

Historical Background of Neurostatistical Imaging
In 1994, Minoshima et al . [3] showed that glucose 
metabolism decreases in the posterior cingulate in 
Alzheimer’s disease (AD) using Neurostat (Department of 
Radiology, University of Washington, Seattle, WA[3], http://
www.rad.washington.edu/research/Research/groups/
nbl/neurostat-3d-ssp). At that time, statistical parametric 
mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) had 
already been developed and used for functional analysis in 
neuroscientifi c studies. Compared with SPM that had been 
used for statistical analysis of many subjects, the Z-score 
analysis in Neurostat was developed to analyze a single 
individual’s data against a normal database obtained from 
many control subjects. The Z-score is calculated as: (mean 
voxel value of normal controls − patient voxel value) / standard 
deviation of normal controls. In 1997, after the launch of 
Donepezil (donepezil hydrochloride, E-2020, Aricept; Eisai 
Co., Ltd, Tokyo, Japan) as the fi rst drug for the symptomatic 
treatment of AD in the UK, many imaging studies were 
performed to diagnose AD as early as possible. In 2001, 
Ohnishi et al.[4] applied VBM to AD patients. Subsequently, 
in 2004, brain amyloid deposition was visualized using 
PET[5], and in 2013, even brain tau protein was observed 
using a PET scanner[6]. 

Neurostatistical Imaging and Alzheimer’s Disease

Findings in the Alzheimer Brain 
In neurostatistical imaging, usually images from all 
participants in the patient and normal control groups are 
anatomically standardized into the same space using 
templates, and voxel-based comparisons are performed 
to detect the specific lesions associated with the target 
disease. This is one of the objective methods available 
to avoid subjectivity and dependence on an a priori 
hypothesis, and to adopt the principle of data-driven 
analysis[7].

For example, group comparison between AD patients 
and normal controls shows a significant decrease in 
glucose metabolism in the posterior cingulate and 
precuneus in AD[8]. Also, Kogre et al. reported reduced 
perfusion in the posterior cingulate and precuneus in 
very early stages of AD using 99mTc-ethylcysteinate dimer 
SPECT[9]. 
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Morphologically, because gray-matter thickness 
reflects the number of residual neurons, MRI has been 
used to derive anatomical and tissue volume information 
for the gray and white matter. The VBM technique maps 
gray-matter or white-matter loss on a voxel-by-voxel 
basis after anatomical standardization. In patients with 
AD, a significant reduction of gray-matter volume in the 
hippocampal formation and the entorhinal cortex has been 
described[4, 10].
Estimation of Evidence for Diagnosis of AD Using 
Z-score Analysis
As described in the former section, the Z-score is calculated 
as: (mean voxel value of normal controls − patient voxel 
value) / standard deviation of normal controls (Fig. 1). After 
anatomical standardization, the Z-score of each voxel in an 
image is calculated and superimposed on an image such 
as the MRI template. Before Z-score calculation, all values 
in voxels are globally normalized to the mean whole-brain 
value or the mean cerebellar value. Finally, the Z-score 
map of one patient compared with many normal controls is 
obtained, and inspection of the Z-score image is considered 
along with the symptoms and status.

To estimate the diagnostic accuracy of a Z-score 
map, a volume of interest (VOI) is placed on the Z-score 
map where a significant reduction was determined by 

group comparison[11]. By averaging the Z-scores within the 
VOIs and using these values as thresholds, the receiver 
operating characteristic (ROC) curves discriminating 
patients from controls are drawn and then the accuracy is 
calculated. From the results, the areas that contribute most 
are chosen as diagnostic tools. 

Evidence for the discrimination of AD from other forms 
of dementia has accumulated. By evaluating atrophy 
using three-dimensional (3D) T1 images with MRI, using 
the VBM method and VOIs in the hippocampus and 
parahippocampus, Hirata et al.[10] reported a discrimination 
accuracy of 87.8% between AD in the very early stage 
(amnestic type of mild cognitive impairment) and age-
matched healthy controls. By evaluating the distribution of 
the decrease in brain glucose metabolism, Kawachi et al. 
reported an accuracy of 88.5% using VOIs in the bilateral 
posterior cingulate gyri and the right parietotemporal 
cortex[12]. Using SPECT, we reported an accuracy of 86.2% 
using VOIs in the posterior cingulate and precuneus[11]. 
Evidence-based Practice for Clinical Discrimination 
of AD from Other Forms of Dementia 
For MRI, more than 2 000 institutes in Japan use VSRAD® 
(Eizai Co., Ltd.) for Z-score analysis of brain volumetry. 
In this software, tissue segmentation is fi rst applied to the 
3D-volume T1-weighted image, and gray-matter and white-

Fig. 1. Z-score analysis for diagnosis. Even with only one patient, the value can be calculated. A: Schema of Z-score calculation. Z-score = 
(mean voxel value of normal controls − patient voxel value) / standard deviation of normal controls. The Z-score is an absolute 
value that can be used both for an increase and a decrease. B: Schematic of evaluation of Z-score.
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matter images are obtained from each individual. Then, 
diffeomorphic anatomical registration using the exponential 
Lie algebra (DARTE) algorithm in SPM8 is used for spatial 
normalization. Both gray- and white-matter atrophy can be 
estimated using this software. 

For nuclear medicine images, in Japan, two types of 
software for Z-score analysis of SPECT images are mainly 
used, eZIS[13] (easy Z-score imaging analysis; Fujifilm RI 
Pharma Co., Ltd, Tokyo, Japan) and iSSP (Nihon Medi-
Physics Co., Ltd, Tokyo, Japan)[14]. 

eZIS includes spatial normalization parameters in 
SPM2. Normal databases are included in this software 
and inter-institutional differences can be corrected. That is, 
correction can be made for data obtained in the institute 
where the database was built, using previously-scanned 
phantom data. Otherwise, an original database can be built. 

iSSP includes spatial normalization parameters in 
Neurostat. Normal databases are included and can be used 
as they are or an original database can be built. 

The results of Z-score analysis of a suspected 
AD patient are shown in Fig. 2. MRI was analyzed with 
VSRAD®, and SPECT from the same patient was analyzed 
with eZIS. Voxels with signifi cant gray-matter reduction or 
reduced perfusion, that is, voxels with Z-scores >2, were 
superimposed on the MRI template. VOIs within the areas 
of signifi cant atrophy or reduced perfusion were assessed 
by group comparison.  
Preparation of Normal Database
Neuroimaging is affected by many factors, such as (1) 
age, race, sex, and education, (2) institution, machine, and 
reconstruction method, and (3) head position and functional 
activity during the build-up time when the functional image 
is obtained. 

Concerning age, race, sex, and education, selection 
of the normal database affects the results of analysis. 
The more similar the conditions, the higher the sensitivity 
obtained. However, as the precision of subject selection 
increases, the size of the database decreases. As for age, if 
each group in the normal database consists of only a single 
decade, then the number is less than a database with two 
or three decades. In many cases, the size of the normal 
database is limited, and conditions are usually merged. 

As for institution, machine, and reconstruction 
method, data acquisition should be performed in the 

same way, using the same machine, with the same 
procedure, especially in functional imaging like SPECT 
and PET. When anatomical data like MRI are used for 
VBM, the limitation is expanded to machines with the 
same specifications. Concerning SPECT data, with eZIS 
software, inter-institutional differences can be corrected 
using the 3D Hoffman phantom as an intermediary. In most 
other cases, including other modalities like PET, an original 
normal database or disease control should be built. When 
examining the subjects, head position and brain functional 
activity during the build-up time should be carefully 
considered. In SPECT, if the tracer is injected in a bright 
room with the individual’s eyes open, activity in the occipital 
region is much higher than when injected in a dark room. 

Moreover, it is very important that only clinical non-
image data and anatomical data are used for subject 
selection. The anatomical data are used for screening 
the space occupying lesion like infarction, tumor or 
hemorrhage. The functional data itself should never be 
used. Clinical information is of importance when choosing 
normal data. Normal database should not be selected 
only from functional image appearance, as we can hardly 
differentiate normal distribution from abnormal distribution 
with visual inspection. 

Neurostatistical Imaging of Other Neurodegenerative 

Dementias

Dementia with Lewy Bodies versus AD
Reduced occipital metabolism and perfusion or loss of 
dopamine transporters is used to supplement the clinical 
diagnosis of dementia with Lewy bodies (DLB). Recently, 
it has been reported that glucose metabolism in the 
posterior cingulate cortex in DLB[15] appears to be relatively 
spared compared with that in AD. Lim et al.[15] found that 
reduced glucose metabolism in the medial occipital area 
and the cingulate island is a highly specific sign of DLB, 
with specifi cities of 97% and 100%, respectively, while the 
sensitivity of visual inspection ranged from 43% to 50% for 
the medial occipital and from 62% to 86% for the cingulate 
island. 

Using VBM with VSRAD®, Nakatsuka et al. [16] 
examined its ability to discriminate between DLB and 
AD. Atrophy in the midbrain, pons, and cerebellum was 
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observed as white matter atrophy in DLB compared with 
AD. Using averaged Z-scores in VOIs in the midbrain, ROC 
analysis showed a sensitivity of 80%, a specifi city of 64%, 
and an accuracy of 72%[16] for discrimination of DLB from 
AD.
Differential Diagnosis of Frontotemporal Lobe 
Degeneration: Progressive Supranuclear Palsy 
versus Corticobasal Syndrome
Corticobasal disease (CBD) and progressive supranuclear 
palsy (PSP) are difficult to diagnose because of the 
wide variety of symptoms and overlaps in symptoms 
and neurological findings. Sakurai et al.[17] evaluated the 
utility of white-matter atrophy to differentiate patients with 
clinically diagnosed CBD (corticobasal syndrome, CBS) 
and PSP (Richardson’s syndrome, RS). They found that 
with the target VOIs for CBS in the bilateral frontal white 
matter, the two diseases are discriminated with sensitivity 
of 89%, specificity of 100%, and accuracy of 96% with a 
cutoff Z-score of 1.30, and with the target VOI for RS in the 
midbrain, they were discriminated with sensitivity of 81%, 
specifi city of 81%, and accuracy of 81% with a cutoff Z-score 
of 0.97. 

New Findings Owing to Technology Development

Recently, the resolution of medical equipment and the 
precise procedures for image analysis have progressed 
tremendously. With these methods, particularly DARTEL 
for normalization, we compared the longitudinal reduction 
of glucose metabolism in AD patients and cognitively 
normal volunteers. With DARTEL, precise anatomical 
normalization generates relatively homogeneously-shaped 
images. Nine 11C-PiB-positive AD patients and 10 11C-PiB- 
negative normal volunteers were studied. Two 18F-FDG 
PET scans were performed at an interval of 12 months, and 
all images were spatially normalized using the DARTEL 

algorithm and analyzed with SPM8. The one-year reduction 
of glucose metabolism in AD patients was significantly 
greater in the area surrounding the orbital sulcus, including 
from the subgenual area to the anterior olfactory nucleus 
(AON) in addition to the posterior cingulate and medial 
temporal lesions, where decreases in glucose metabolism 
have been described (Fig. 3). Fouquet et al.[18] reported 
that although the largest annual decrease in metabolism 
occurs in the posterior cingulate-precuneus area, patients 
who convert to AD have a significantly greater decrease 
than non-converters in two ventro-medial prefrontal areas, 
the subgenual (BA25) and anterior cingulate (BA24/32). 
Moreover, Villain et al.[19] suggested that hippocampal 
atrophy in AD patients progressively leads to disruption 
of the cingulum bundle and uncinate fasciculus, which 
in turn leads to glucose hypometabolism in the cingulate 
and subgenual cortices. We speculate that the AON may 
be included in this subgenual area where decreased 
metabolism occurs[20]. Pathologically, amyloid deposition 
and neurofibrillary changes have been reported in the 
AON of AD patients. The AON has connections to the 
piriform cortex, anterior amygdala, periamygdaloid cortex, 
rostral entorhinal cortex, hypothalamus, and habenula. 
Due to these pathways, the AON is rich in dendrites and 
astrocytes, resulting in abundant glucose consumption 
in this small region. We also speculate that reduction of 
glucose metabolism in the AON is responsible for the 
olfactory disturbances in AD patients.

Prospective Application of Neurostatistical 

Imaging

Brain CT has more homogeneity and less distortion than 
MRI, even when using different machines or scan protocols. 
It is also relatively economical and widely available. 
Moreover, nowadays, CT data are easily available from 

Fig. 2. A clinical case of suspected Alzheimer’s disease (AD). A–C: VBM analyzed with VSRAD®. A: Segmented results for quality check of 
the procedure. Left column: original transaxial MR images; next 3 columns: extracted gray matter, white matter, and cerebrospinal 
fluid images, respectively. B: Z-scores superimposed on the cortical surface T1-weighted 3D volume MR image. C: Z-scores 
superimposed on the transaxial T1-weighted MR image. Purple VOIs indicate voxels with signifi cant volume reduction in early 
AD by group comparison. D–F: Z-score analysis with eZIS. D: 99mTc-ethylcysteinate dimer SPECT sagittal images from the same 
patient. E: Z-scores calculated from SPECT superimposed on the cortical surface T1-weighted 3D volume MR image. F: Z-scores 
calculated from SPECT superimposed on the transaxial T1-weighted MR image. White VOIs indicate voxels with signifi cant volume 
reduction in early AD by group comparison.
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Fig. 3. One-year reduction of glucose metabolism is proportionally greater in Alzheimer’s disease (AD) patients than in cognitively normal 
volunteers. The one-year proportional reduction of glucose metabolism was signifi cantly greater in AD patients than in controls in 
the bilateral posterior cingulate gyri, right precuneus, bilateral parahippocampal gyri, left amygdala, right rectal gyrus, and medial 
orbital gyrus, including caudal to the right rectal gyrus and the olfactory sulcus corresponding to the right olfactory tract (threshold 
at uncorrected P <0.01; k >150 voxels). The SPM of the t-statistics is displayed in a standard format as a maximum intensity 
projection viewed from the top, right-hand side and the back (top three images from left to right respectively), and as orthogonal 
sections (middle and bottom ranks).

Fig. 4. A: Signifi cant reduction of regional gray matter volume in the bilateral medial temporal cortex, temporopolar areas, right caudate, 
and anterior cingulate in Alzheimer’s disease (AD) patients with CT-VBM. Signifi cance maps of decreased gray matter volume in 
AD patients superimposed on a T1-weighted surface MRI template image in MNI space. B: Signifi cant reduction of regional gray 
matter volume in the bilateral medial temporal cortex in AD patients with MR-VBM. Signifi cance maps of decreased gray matter 
volume in AD patients superimposed on a surface T1-weighted MRI template image in MNI space.
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routine PET/CT studies. We compared the results from 
CT-VBM with those from MRI-based VBM (MR-VBM) in 
the same individuals[21]. All of the AD patients showed 
positive 11C-PiB accumulation and none of the cognitively 
normal controls showed an accumulation. In CT-VBM, the 
AD group showed a significant decrease of gray matter 
volume in the bilateral entorhinal cortex, left hippocampus, 
left anterior cingulate gyrus, right temporopolar area, 
and right head of the caudate, compared to a cognitively 
normal group (Fig. 4). In MR-VBM, the AD group showed a 
signifi cant decrease of gray matter volume in the bilateral 
hippocampus and left entorhinal cortex at BA28 compared 
to the cognitively normal group (Fig. 4). The most signifi cant 
atrophy was observed in the left hippocampus. 

The results of Z-score analysis comparing one 11C-PiB 
positive AD patient with a normal database are shown in 
Figure 5. The normal database was constructed with gray 
matter extracted from CT images. Blue color in bilateral 
medial temporal regions shows signifi cant volume reduction 
in this AD patient’s CT image.

Although for clinical use, a simpler and proper program 
for CT-VBM or an advanced scanning technique for more 
precise tissue contrast without heavier radiation exposure 
is desirable, our results suggest that CT-VBM has the 
potential to replace MR-VBM for diagnosing AD. Moreover, 
the cortical gray matter volume from CT can also be used 
for partial volume correction (PVC); especially in amyloid 
imaging, PVC may be necessary for accurate assessment 

Fig. 5. CT-based VBM. A: CT images from an 11C-PiB-positive 60-year-old female AD patient. Left column, original CT images; right 
column, segmented gray matter from CT images. B and C: Z-scores obtained from gray matter image in A superimposed on 
the cortical surface (B) and transaxial and coronal (C) images of a T1-weighted 3D volume MR image in MNI space. Warm color 
indicates increase and cool color indicates decrease. That is, blue color in bilateral medial temporal regions (white arrow) shows 
signifi cant volume reduction in this AD patient’s CT image.
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of the increased accumulation in the atrophied brain in 
AD. Without PVC, more atrophied brain in AD patients 
than in healthy volunteer shows underestimation of PiB 
accumulation. The availability of PET/CT scanners allows 
the application of PET data with CT-based PVC and VBM 
for patients with a single visit. Furthermore, when PET/MRI 
is used more frequently, these PVC and VBM procedures 
can be more precisely and easily approached.

Conclusion

In diagnosing neurodegenerative dementia, recently many 
procedures using new technology like machine learning 
have been developed. In the near future, better procedures 
for automatic diagnosis may be developed. At present, as 
shown in this article, Z-score analysis of each patient’s 
image is useful for routine clinical use, especially after the 
diagnostic accuracy is estimated. This can be used for both 
anatomical and metabolic images. 

Many art i facts can occur in these t radi t ional 
procedures due to mis-segmentaion, mis-registration, 
normalization errors, and calculation errors. Accordingly, 
when neurostatistical imaging is used, it should always be 
compared to the original tomographic images to confi rm a 
tendency in the neurostatistical analysis. Inconsistencies 
should be further investigated. When neurostatistical 
imaging is used adequately, much useful and beneficial 
information is revealed.  
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Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction 
remains unclear. Positron emission tomography (PET) is the fi rst technology used for in vivo measurement of 
components of the dopaminergic system in the human brain. In this article, we review the major fi ndings from 
PET imaging studies on the involvement of DA in drug addiction, including presynaptic DA synthesis, vesicular 
monoamine transporter 2, the DA transporter, and postsynaptic DA receptors. These results have corroborated 
the role of DA in addiction and increased the understanding of its underlying mechanisms.

Keywords: dopamine; dopaminergic system; drug addiction; positron emission tomography 

·Review·

Brain Dopaminergic System

Dopamine (DA) is a catecholamine neurotransmitter in 
the nervous system. It has many functions in the brain, 
including punishment, reward, voluntary movement, mood, 
attention, motivation, sleep, working memory, and learning[1]. 
DA is synthesized by the hydroxylation and decarboxylation 
of L-tyrosine in DA neurons and, before being released into 
the synapse in response to an action potential, it is stored 
within presynaptic vesicles (Fig. 1). The action of DA occurs 
by binding to postsynaptic DA receptors, resulting in the 
formation of second messengers. There are fi ve subtypes 
of DA receptors, which can be grouped into two classes or 
families: D1-like and D-2 like[1, 2]. The D1-like receptor family 
comprises the D1 and D5 receptors, encoded by genes 
with no introns, acting by way of Gs-proteins and activating 
adenylyl cyclase, thus increasing cAMP production[3, 4]. 
The D2-like receptor family comprises the D2, D3, and 
D4 receptors, encoded by genes containing introns. D2-

like receptors act via Gi-proteins, inhibit adenylyl cyclase 
activity, and thus decrease cAMP activity[3, 5]. 

The action of DA in the synapse is terminated primarily 
by reuptake to the presynaptic membrane through the 
dopamine transporter (DAT)[6]. Otherwise, DA is partially 
removed by oxidation by monoamine oxidase orcatechol-
O-methyltransferase in the synaptic cleft (Fig. 1).

The  dopamine rg i c  neu rons ,  whose  p r imary 
neurotransmitter is DA, interconnect many areas of the 
brain to form a system which originates in the substantia 
nigra (SN) pars compacta, ventral tegmental area (VTA), 
and hypothalamus. The dopaminergic system is typically 
divided into four major pathways: mesocortical (from the 
VTA to the frontal cortex), mesolimbic (from the VTA to 
the nucleus accumbens), nigrostriatal (from the SN to the 
striatum), and tuberoinfundibular (from the hypothalamus 
to the pituitary gland). The mesostriatal and mesocortical 
pathways are currently recognized to contribute most to 
drug addiction[7].
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Drug Addiction

The term addiction is derived from the Latin verb addicere, 
which referred to the Roman court action of binding a 
person to another. From the 17th century, addiction has 
been used to refer to psychoactive substances (e.g. alcohol, 
tobacco, heroin) which cross the blood-brain barrier, 
temporarily altering the chemical milieu of the brain[8]. 
Currently, addiction is identified as continued involvement 
with a drug, despite the negative consequences associated 
with it — such as compulsive drug seeking and taking, loss 
of control over drug-taking, or emergence of a negative 
emotional state (e.g., dysphoria, anxiety, irritability) — 
when access to the drug is prevented or terminated[9]. 

Recently, “behavioral addiction” has also been proposed, 
but is beyond this review and has been described in detail 
elsewhere[10-18]. 

The neuronal basis of addiction has been guided by 
the premise that the motivation of an addict to take drugs 
results from the desire to experience the hedonic (i.e., 
rewarding) effects or from the desire to avoid the anhedonia 
and aversive consequences of withdrawal[19]. There are 
mounting studies suggesting that the rewarding properties 
of addictive drugs depend on their ability to provoke DA 
release in the brain[20-22]. 

Over the past few decades, the progressive develo-
pment of functional neuroimaging technology, especially 
positron emission tomography (PET), has made possible 

Fig. 1. Schematic representation of a dopaminergic synapse. ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; 
COMT, catechol-O-methyltransferase; D1R, dopamine receptor 1; D2R, dopamine receptor 2; DA, dopamine; DAT, dopamine 
transporter; DOPA, dioxyphenylalanine; MAO, monoamine oxidase.
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the elucidation of brain functions associated with 
addiction[23-25]. 

PET Imaging of Alterations of the Brain Dopa-

minergic System in Drug Addiction

PET is a technique that measures the radioactivity released 
by specific radioligands, and can therefore be used to 
generate cross-sectional brain images with anatomical 
or detailed functional information about changes in 
neurotransmitter responsiveness or receptor expression[26]. 
The commonly-used isotopes 11C, 13N, 15O, and 18F have 
short half-lives, making possible repeated studies within 
a short time-span. Moreover, the quantity of PET tracers 
injected is too low (in the nanomolar range) to cause harm. 

The dopaminergic system has been identified as a 
key substrate for the rewarding effects of abused drugs 
and PET was the first technology that enabled the direct 
measurement of components of the DA system in the living 
human brain[27]. PET imaging studies have also shown 
that in drug-addicted individuals, DA function is markedly 
disrupted[25, 28]. In this article, we review PET radiotracers 
that are currently available for imaging the dopaminergic 
system in drug addiction and the main findings of in vivo 
imaging studies. 
PET Studies of Presynaptic DA Synthesis
Addictive drugs exhibit a wide range of structures and 
actions, but the unifying principle appears to be that they 
each acutely enhance DA neurotransmission by means that 
dissociate it from normal drive by environmental cues[29, 30]. 
The function of DA synthesis in the presynaptic neuron can 
be currently measured in preclinical animal studies and in 
human subjects. Thus, if DA synthesis by the presynaptic 
DA neurons in drug-addicted individuals were impaired, this 
would be expected to translate into a blunted DA response.

L-dopa (L-dihydroxyphenylalanine) is the immediate 
precursor of DA. Although DA in the circulation does not 
cross the blood-brain barrier, L-dopa is carried into the brain 
by the large neutral amino-acid transport system, is then 
converted into DA by L-aromatic amino-acid decarboxylase, 
and is stored in intraneuronal vesicles from which DA 
is released when the neuron fires[31]. 18F- or 11C-labeled 
L-dopa is an analog of L-dopa, and this positron-emitting 
compound is used clinically to trace the dopaminergic 
pathway and to evaluate presynaptic function. Uptake 

of L-dopa labeled with a positron-emitting radionuclide 
refl ects the synthesis rate of DA in the terminals, under the 
conditions of PET[32, 33]. Studies with PET and radionuclide-
labeled L-dopa and their main fi ndings are summarized in 
Table 1.

In cocaine addiction, PET imaging with [18F] dopa 
(6-[18F] fluoro-L-dopa) shows a delayed decrease in DA 
terminal activity in the striatum of detoxified cocaine 
abusers compared with controls[34, 35]. Also, a decrease 
in presynaptic DA activity during cocaine abstinence or 
withdrawal is associated with relapse[36, 37]. 

Methamphetamine (MA), another prevalent psycho-
stimulant drug of abuse, induces more deleterious changes 
in the brain than cocaine when a toxic dose is used[35]. 
This is evident from the significant reductions in striatal 
[18F] dopa uptake in MA-treated mice, suggesting the 
neurodegeneration of dopaminergic cells and DA synthesis 
in MA abuse[35]. 

In alcohol addiction, although there is no difference 
in the net influx of striatal [18F] dopa (an index of DA 
synthesis) between detoxifi ed alcoholic patients and control 
subjects[33], fi ndings from several studies have shown that 
low DA synthesis correlates with alcohol craving, negative 
mood states, and a high risk of relapse[33, 38]. Further, 
among late-onset (type 1) alcoholics, [18F] dopa uptake is 
elevated in the putamen and caudate, which is correlated 
with poor performance on the Wisconsin Card Sorting Test. 
This study suggests that the magnitude of the change in 
presynaptic DA function correlates with the patients’ degree 
of inability to modify their behavior[39].

In smokers, significantly higher [18F] dopa uptake 
occurs in the putamen and caudate than in non-smokers, 
which suggests that smoking is related to greater DA 
activity in the human basal ganglia, and nicotine-induced 
DA activity may be a mechanism relevant to dependence 
on cigarette smoking[40].

Ecstasy (+/-3,4-methylenedioxymethamphetamine, 
MDMA) is a popular recreational drug with known neuro-
toxicity. Its potential long-term effects on dopaminergic 
function have been verified recently by an in vivo PET 
study in human subjects. In the study by Tai et al. [41] 
[18F] dopa uptake in the putamen was 9% higher in ex-
users of ecstasy than in controls, even after >3 years of 
abstinence.
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PET Studies of Vesicular Monoamine Transporter 2
Vesicular monoamine transporter 2 (VMAT2) is a protein 
responsible for transporting monoamine neurotransmitters 
from the cytoplasm into synaptic vesicles[42], so it plays 
an important role in regulating the presynaptic DA 
concentration. The most-used ligand in VMAT2-binding 
studies in vivo is 11C-labeled dihydrotetrabenazine (DTBZ). 
Binding of [11C] DTBZ to VMAT2 is commonly considered 
to be a stable marker of DA neuronal integrity and an in 
vivo marker of DA nerve terminals[43]. PET imaging studies 
of VMAT2 in drug addiction and the main findings are 
summarized in Table 2.

Postmortem studies comparing the VMAT2 density in 
cocaine abusers with healthy subjects using radiolabeled 
DTBZ found signifi cantly reduced [3H] DTBZ binding in the 
striatum of cocaine abusers[44]. A recent in vivo PET study 
with [11C] DTBZ confirmed the previous in vitro findings, 
suggesting compensatory down-regulation of the DA 
storage vesicles in response to chronic cocaine abuse and/
or a loss of dopaminergic terminals[45].

Animal studies and preclinical investigations have 
established that drugs of abuse produce long-term changes 
in DA neuronal integrity. In a PET imaging investigation 
of “heavy” MA users, the striatal [11C] DTBZ binding 
was decreased by 10%, even after at least 3 months of 
abstinence, reflecting the long-lasting effect of MA on 
VMAT2[46]. And in the study of Boileau et al.[43], who used 
human subjects to measure striatal [11C] DTBZ binding 
after an acute oral dose of amphetamine (AMPH), a slight 
decrease of [11C] DTBZ binding was also found. 

However, in a subsequent study, the striatal [11C] 
DTBZ binding in early-abstinence MA abusers (mean, 19 
days; range, 1–90 days) was increased[47]. One potential 
explanation for this increase is that [11C] DTBZ binding 
not only reflects DA synaptic integrity, but also indicates 
changes in the endogenous vesicular DA storage levels 
with unchanged VMAT2 protein expression[47]. This 
hypothesis was verifi ed by Kilbourn et al.[48], who conducted 
a systematic study in rats, in which in vivo PET analysis 
of [11C] DTBZ binding was examined as a function of DA 

Table 1. PET imaging of presynaptic DA synthesis in drug addiction

Ref. Radioligand Drug Subjects Controls Main fi ndings

[34] [18F] dopa Cocaine 11 cocaine addicts  8 normal participants (↓) [18F] dopa uptake negatively 

     correlated with days off cocaine

[35] [18F] dopa Cocaine 10 male mice treated with  10 male mice treated with  (↓)

   cocaine (30 mg/kg) for 7 days  saline for 7 days  

[35] [18F] dopa MA 10 male mice treated with   10 male mice treated with  (↓)

   MA (30 mg/kg) for 7 days saline for 7 days

[33] [18F] dopa Alcohol 12 detoxifi ed male alcoholics 13 age-matched healthy men (-) [18F] dopa uptake positively 

     correlated with alcohol craving

[38] [18F] dopa Alcohol 11 detoxifi ed male alcoholics   13 normal controls (-) 

[39] [18F] dopa Alcohol 10 type 1 alcoholics  8 normal controls (↑) [18F] dopa uptake in putamen 

     and caudate negatively 

     correlated with Wisconsin Card  

     Sorting Test performance among 

     alcoholics

[40] [18F] dopa Nicotine 9 smoking men 10 normal controls (↑)

[41] [18F] dopa MDMA 14 ex-MDMA users  12 normal controls (↑)

   (abstinent >3 years)

(↓) striatal radioligand uptake decreased, (↑) increased, or (-) did not signifi cantly differ from healthy controls; MA, methamphetamine; MDMA, 

ecstasy (+/-3,4-methylenedioxymethamphetamine).
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depletion with alpha-methyl-para-tyrosine (AMPT) and 
repletion with L-dopa. Repeated treatment with AMPT 
at doses that markedly depleted (-75%) brain DA levels 
resulted in increased (+36%) in vivo [11C] DTBZ binding 
to VMAT2 in the striatum. This increase in binding was 
completely reversed by treatment with L-dopa to restore 
the DA levels. But there were no changes in the total 
number of VMAT2 binding sites, as measured by in vitro 
autoradiography. Further, Boileau et al. attributed their 
findings of a slight decrease in [11C] DTBZ binding caused 
by AMPH not to changes in presynaptic VMAT2 but an 
insufficient drug dose to significantly deplete striatal DA[43]. 
Therefore, more systematic preclinical studies are required to 
optimally guide the extraction of clinically useful information 
from [11C] DTBZ PET imaging of the human brain[49].
PET Studies of the Dopamine Transporter 
The DAT is a membrane-spanning protein that pumps DA 
from the extracellular space into the presynaptic neuronal 
cytosol, from which other transporters sequester DA into 
vesicles for storage and later release (Fig. 1). DA reuptake 
via the DAT is the primary mechanism by which DA is 
cleared from synapses and DATs have been used as 
markers of presynaptic DA terminals[50]. The DAT is also 
a target for addictive drugs such as cocaine and AMPH. 
Currently, there are several positron-emitting radionuclide-
labeled tracers for PET imaging of the DAT in vivo, such 
as [11C] cocaine, [11C] β-CIT, [18F] FCT, WIN 35,428, and 
[11C] d-threo-MP. And the neuroimaging studies have 
demonstrated that chronic use of addictive drugs has 
long-term impact on DAT levels and activity, resulting 
in dopaminergic dysfunction by mechanisms not well 
understood[51] (Table 3).

Cocaine was initially labeled with 11C to track the 

distribution and pharmacokinetics of this powerful stimulant 
and drug of abuse in the human brain and body. It was 
soon discovered that [11C] cocaine is also a sensitive 
radiotracer for DAT availability[52]. Because the major 
molecular target of cocaine is the DAT, the question of 
whether chronic cocaine use alters the DAT has been 
investigated[53]. Although postmortem studies have shown 
decreased DAT in cocaine addicts[54], one PET study using 
[11C] cocaine reported no significant differences in DAT 
binding between cocaine-dependent individuals who had 
withdrawn for >5 days and controls[53].

Besides cocaine per se, some of its congeners have 
also been labeled with positron-releasing radionuclides 
to study the function of the DAT in drug addiction in vivo. 
2β-carboxymethoxy-3β-(4-iodophenyl) tropane (β-CIT), 
one of these congeners, has been labeled with 11C for 
PET studies. In an autoradiographic study on human brain 
sections and a PET study of monkeys and humans, [11C] 
β-CIT was found to accumulate markedly in the striatum 
where DATs are mostly located[55]. In an in vivo PET study 
with [11C] β-CIT, decreased DAT has been found in the 
putamen in early Parkinson's disease[56], but so far it has 
not been used in the study of drug abuse.

In 2000, [18F]-(1)-N-(4-fluorobenzyl)-2b-propanoyl-3b-
(4-chlorophenyl) tropane ([18F] FCT), a structural congener 
of cocaine, was found to have a high affinity for the DAT 
and a relatively low affinity for the serotonin transporter, 
indicating that it is a suitable tracer for studying the DAT 
in vivo with PET[57]. In the PET study with [18F] FCT in 
the cocaine self-administration model with monkeys, the 
laterality of DAT function was changed even before enough 
cocaine was consumed to produce significant overall 
changes in receptor and transporter availability[58].

Table 2. PET imaging of vesicular monoamine transporter 2 in drug addiction

Ref. Radioligand Drug Subjects Controls Main fi ndings

[43] [11C] DTBZ AMPH 9 non-drug-using subjects with   Same subjects before drug use (↓)

   low-dose AMPH (0.4 mg/kg)

[46] [11C] DTBZ MA 16 MA users 18 normal controls (↓) 

[47] [11C] DTBZ MA 16 recently withdrawn MA users  14 normal controls (↑)

   (mean 19 days)

(↓) striatal radioligand uptake decreased or (↑) increased compared with healthy controls; MA, methamphetamine; AMPH, amphetamine.
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Other cocaine analogs, WIN 35,428 and CFT [2β- 
carbomethoxy-3 beta-(4-fluorophenyl) tropane], have 
been extensively characterized as selective inhibitors of 
DA uptake with high affi nity for the DAT[59]. Human studies 
have shown that the extent of [11C] WIN 35,428 binding can 
be used to differentiate normal people from those with DA 
system disorders[60, 61]. A PET imaging study with [11C] WIN 
35,428 demonstrated that heroin users have a signifi cantly 
lower DAT uptake than healthy controls[62]. [11C] WIN 35,428 
has also revealed a reduction of the DAT in MA abusers 
and in baboons after MA injection[63-66].

Methylphenidate (MP, Ritalin), a psychostimulant, 
is commonly used to treat attention deficit hyperactivity 
disorder and narcolepsy. The psychostimulant properties of 

MP are linked to its binding to a site on the DAT, resulting in 
inhibition of DA reuptake and enhanced levels of synaptic 
DA. The more active d-enantiomer (d-threo-MP) has been 
labeled with [11C] and animal studies have demonstrated 
the saturable, reversible, and specific binding of [11C] 
d-threo-MP to the DAT, suggesting that it is a useful PET 
tracer for imaging presynaptic dopaminergic neurons[67]. A 
PET imaging study using pretreatment with MP showed a 
marked decrease of [11C] d-threo-MP binding in the human 
brain[68]. However, PET imaging did not find a significant 
difference of [11C] d-threo-MP distribution between 
alcoholics and non-alcoholics, which means that prolonged 
alcohol abuse might have no significant impact on DAT 
availability[69]. 

Table 3. PET imaging of the dopamine transporter in drug addiction

Ref. Radioligand Drug Subjects Controls Main fi ndings

[53] [11C] cocaine Cocaine 12 detoxifi ed cocaine  20 normal controls (-)

   abusers (>5 days)

[58] [18F] FCT Cocaine 12 adult male cocaine-naive  same monkeys before drug use (-)

   rhesus macaques with drug  

   self-administration (9 weeks)

[62] [11C] WIN 35,428 Heroin 11 heroin users abstinent for 10 normal controls (↓) ; (↓) (comparison to the 

   6 months, and 10 on methadone  abstinent subjects); [11C] 

   maintenance for 6 months  WIN 35,428 uptake 

     correlated with subjective 

     anxiety in methadone 

     maintenance subjects

[63] [11C] WIN 35,428 MA 6 abstinent MA users 10 normal controls (↓) 

[64] [11C] WIN 35,428 MA baboons treated with one of  3 baboons treated with saline (↓) [11C] WIN 35,428 uptake 

   three doses of MA   correlated with MA dose

   [0.5 mg/kg (n = 2),  

   1 mg/kg (n = 2) and 

   2 mg/kg (n = 3)]

[65] [11C] WIN 35,428 MA 11 male MA users 9 normal controls (↓) [11C] WIN 35,428 uptake  

     associated with duration of 

     MA use and closely related 

     to severity of persistent 

     psychiatric symptoms

[69] [11C] d-threo-MP Alcohol  5 alcoholics  16 normal controls (-)

(↓) striatal radioligand uptake decreased or (-) did not differ signifi cantly from healthy controls; MA, methamphetamine.
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PET Studies of Postsynaptic DA Receptors 
The radiolabeled ligands for PET imaging of DA receptors 
in drug addiction and the main fi ndings are listed in Table 4. 

Spiroperidol (spiperone) is a potent D2 receptor 
antagonist[70]. In 1984, in vivo studies in rats and primates 
showed that 18F-labeled spiroperidol has high specific 
activity for D2 receptors[71]. Latterly, N-methylspiroperidol 
(NMSP), the amide N-methyl analog, has also been 
radiolabeled with 18F. In vivo PET imaging in the baboon 
brain showed that striatal uptake and retention is five-
fold higher for [18F] NMSP than for [18F] spiroperidol, which 
suggested that [18F] NMSP is an ideal choice for studies 
of the D2 receptor in humans[72]. In PET studies with 
[18F] NMSP, cocaine abusers show significantly lower D2 
receptor availability than normal controls, especially during 
early detoxifi cation[53, 73], and this may be present even 3–4 
months after detoxifi cation[74]. D2 receptor availability was 
also found to be associated with decreased metabolism 
in several regions of the frontal lobe, most markedly the 
orbito-frontal cortex and cingulate gyri[73]. In vivo PET 
imaging in baboons showed that AMPH pretreatment 
induces decreases in [18F] NMSP in the corpus striatum, 
suggesting that PET imaging with [18F] NMSP can also be 
used to monitor drug-induced elevations in endogenous DA 
levels[75].

Raclopride is a synthetic compound that acts as an 
antagonist on D2 receptors and 11C-labeled raclopride is 
the most commonly-used tracer in the PET imaging of 
addiction to cocaine[76], alcohol[69, 77, 78], MA[79], and heroin[80]. 
In cocaine abusers with intravenous administration of 
48 mg cocaine (a typical “street” dose), [11C] raclopride 
occupancy at D2 receptors was decreased significantly, 
suggesting that higher DA concentrations compete at the 
receptor site[76]. Alcoholics showed lower D2 receptor levels 
in the caudate and putamen during early detoxifi cation and 
in the caudate during late detoxification, which is in line 
with the idea that D2 mechanisms are involved in alcohol 
dependence[69, 77, 78]. Heroin-dependent individuals[80] and 
MA abusers[79] both showed signifi cantly lower D2 receptor 
availability than comparison subjects.

 [18F]FCP ([18F] 4-fluoroclebopride) is a fluorine-18 
labeled benzamide derivative that binds reversibly to 
D2 receptors[81]. In PET imaging with [18F] FCP, Nader 
and colleagues[82] found that the baseline D2 receptor 

availability is negatively correlated with the rate of cocaine 
self-administration.

[18F] fallypride, an analog of epidepride, is a selective 
and high-affi nity antagonist of D2/D3 receptors. In an [18F] 
fallypride PET imaging study, nicotine-dependent smokers 
displayed signifi cantly less availability of D2/D3 receptors 
within the bilateral putamen, functionally covering parts of 
the dorsal striatum, compared to never-smoking subjects[83]. 
[18F] desmethoxyfallypride ([18F] DMFP), another selective 
D2/D3 receptor antagonist, has also been developed and 
used to fi nd that a low availability of D2/3 receptors in the 
ventral striatum and adjacent putamen is associated with a 
high level of craving for alcohol [33].

For the D1 receptor, [11C] NNC 112, a new benzazepine 
[(+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-
2,3,4,5-tetra-hydro-lH-3-benzazepine], has been reported 
to be a useful PET radioligand for the quantitation of D1 
receptors in humans[84], and its D1 receptor selectivity has 
recently been re-evaluated[85]. With PET and the radiotracer 
[11C] NNC 112, Martinez et al. [86] found no difference 
between cocaine abusers and normal controls. However, 
within the cocaine abusers, low D1 receptor availability 
in the ventral striatum was associated with the choice to 
self-administer cocaine, suggesting that low D1 receptor 
availability may be associated with an increased risk of 
relapse. Another radioligand, [11C] SCH23390 [(R)-(+)-7-
chloro-8-hydroxy-3-methyl-1-phenyl -2,3,4,5-tetrahydro-
1H-3-benzazepine], the first selective D1-like receptor 
antagonist, is recognized as the standard ligand for PET 
studies of striatal D1 receptors[87]. A significant reduction 
in [11C] SCH23390 binding potential has been found in 
the striatum of smokers compared to nonsmokers, most 
prominently in the ventral striatum, suggesting a reduction 
in D1 receptor density in the ventral striatum of cigarette 
smokers[88, 89].

Conclusions

PET imaging studies have corroborated the role of DA in 
drug addiction. The increases in DA caused by addictive 
drugs and the subsequent fast and marked activation 
of postsynaptic DA receptors are relevant for drug 
reinforcement. The adaptive changes in the dopaminergic 
system after long-term drug abuse may lead to the 
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Table 4. PET imaging of postsynaptic DA receptors in drug addiction

Ref. target Radioligand Drug Subjects Controls Main fi ndings

[73] D2 [18F] NMSP Cocaine 10 cocaine abusers 10 normal controls (↓) (detoxifi ed for 1 week); 

      (-) (detoxifi ed for 1 month)

[74]  D2 [18F] NMSP Cocaine 20 male cocaine abusers 20  normal male controls (↓)

[75] D2 [18F] NMSP AMPH 3 adult female baboons   before drug use (↓)

    treated with AMPH (1.0 mg/kg)    

[76] D2 [11C] raclopride Cocaine 11 male cocaine abusers with  before drug use (↓)

    intravenous administration of 

    48 mg cocaine

[53] D2 [18F] NMSP Cocaine 10 cocaine abusers 9 normal controls (↓)

[69] D2 [11C] raclopride Alcohol 10 alcoholics 10 normal controls (↓)

[77] D2 [11C] raclopride Alcohol 9 male alcoholics abstinent  8 normal  male controls (↓)

    for 1-68 weeks

[78] D2 [11C] raclopride Alcohol 14 type 2 alcoholics tested   11 normal controls (↓); (-) (between early and late 

    within 6 weeks of detoxifi cation   detoxifi cation)

    and re-tested 1-4 months later 

    while alcohol-free

[79] D2 [11C] raclopride MA 15 MA abusers 20 normal controls  (↓) [11C] raclopride uptake positively  

      correlated with rate in orbitofrontal 

      cortex in abusers

[80] D2 [11C] raclopride Heroin 11 opiate-dependent individuals 11 normal controls  (↓)

[81] D2 [18F] FCP Cocaine 12 rhesus macaques with  Self control (↓) (by 15-20% within 1 week  

    cocaine self-administration  initiating self-administration); of (↓)  

      (by 20% during 1 year of drug 

      exposure)

[83] D2/D3 [18F] fallypride Nicotine 17 heavy smokers 21 age-matched  (-); [18F] fallypride uptake positively  

     normal controls correlated with nicotine craving in 

      the ventral striatum but negatively 

      correlated in the anterior cingulate 

      and inferior temporal cortex

[33] D2/D3 [18F] DMFP Alcohol 12 alcoholics 12 normal controls (↓) (negatively correlated with 

      alcohol craving)

[86] D1 [11C] NNC 112 Cocaine 25 cocaine abusers 23 normal controls (-) [11C] NNC 112 uptake in ventral  

      striatum negatively correlated with 

      cocaine relapse

[88] D1 [11C] SCH23390 Nicotine 11 smokers 18 normal controls (↓)

[89] D1 [11C] SCH23390 Nicotine 12 smokers 12 normal controls (↓) trend of increase of [11C] 

      SCH23390 uptake after smoking  

      abstinence

(↓) striatal radioligand uptake decreased and (-) not signifi cantly different from healthy controls; MA, methamphetamine; AMPH, amphetamine.
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persistent use of drugs and cause relapse. Neuroimaging 
studies have provided evidence of how the human brain 
changes as the individual becomes addicted. With the 
appropriate radiotracers, PET enables visualization of the 
presynaptic and postsynaptic sites in the dopaminergic 
system. Imaging these markers provides key insights into 
the pathophysiology of drug addiction, and understanding 
of the involvement of DA in drug abuse may also offer 
directions for the development of new strategies for 
pharmacological interventions for addiction. The therapeutic 
interventions that are driven by the imaging findings on 
DA can be divided into those that interfere with the acute 
effects of a drug and those that compensate for the chronic 
effects of long-term use linked to its dopaminergic effects[90]. 

In the future, the role of PET may become more 
important in drug-addiction diagnosis and guiding 
therapy. Enhancements in image resolution and specific 
molecular tags will permit accurate diagnoses, based on 
both structural and molecular changes in the brain. For 
widespread application, advances in molecular imaging 
should include the characterization of new radiotracers, 
application of modeling techniques, standardization 
and automation of image-processing techniques, and 
appropriate clinical settings in large multicenter trials. The 
growing fi eld of neuroimaging is helping nuclear medicine 
physicians to incorporate pathways into personalized 
patient care.

However, the use of PET to study the role of the 
dopaminergic system in drug addiction is still in its infancy. 
Although available PET studies have mainly focused on 
DA, its interactions with other neurotransmitters such as 
GABA, glutamate, and serotonin also play important roles 
in modulating the magnitude of DA responses to drugs. 
Currently, several imaging modalities complement each 
other, and image fusion has become common in diagnostics 
and treatment[91]. In recent years, the multimodality 
imaging technologies such as PET/CT and PET/MRI 
have shown promising results, indicating great potential 
for clinical and preclinical uses[92]. There is no doubt that 
future PET research on drug addiction will benefi t greatly 
from multimodal imaging approaches. Furthermore, the 
development of new PET tracers that are sensitive to the 
targets of DA and other neurotransmitter systems, along 
with the findings of multimodal imaging studies that are 
integrated into genetic and neurobiological research, will 

increase our understanding of the mechanisms underlying 
drug addiction. 
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Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear 
medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as 
probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These 
probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor 
ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the 
brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. 
After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer 
development bridging from basic science to biomedical application. Successful radiotracer design as described 
here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow 
molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-
engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of 
pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential 
drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
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·Review·

Introduction

Positron emission tomography (PET) is an in vivo 
molecular imaging tool widely used in nuclear medicine 
for early diagnosis and treatment follow-up of many 
brain diseases. Positron-emitting radionuclide-labeled 
substances allow the visualization, characterization, and 
measurement of biological processes at the molecular and 
cellular levels in humans and other living systems by highly 
sensitive coincidence-detection[1]. This is based on 511 keV 
photons (gamma radiation) originating from positron-
electron annihilation. PET differs in that aspect from other 
modalities such as single-photon emission computed 
tomography (SPECT), magnetic resonance imaging 

(MRI), optical imaging, and ultrasound. Because of their 
high sensitivity (~10-9 to 10-12 M) PET and SPECT offer 
advantages over the other methods. Therefore, in the past, 
they were the only modalities that allowed noninvasive 
imaging of biochemical receptor sites. Nowadays, the other 
imaging modalities compete in that aspect although precise 
absolute quantitation in terms of biochemical parameters 
has not been achieved yet. 

Recently, multimodal imaging approaches, specifi cally 
PET/CT and PET/MRI, have been suggested to bring a 
new perspective into the fields of clinical and preclinical 
imaging. Clinical cases have shown that the combination 
of anatomical structures, revealed by CT and MRI, and the 
functional information from PET into one image, with high 



Neurosci Bull     October 1, 2014, 30(5): 777–811778

fusion accuracy, provides an advanced diagnostic tool and 
research platform[2, 3].

PET and SPECT use biomolecules as probes, labeled 
with radionuclides of short half-lives, synthesized prior to 
the imaging studies. These probes are called radiotracers. 
According to the concept developed by George von 
Hevesy[4] a radiotracer is a chemical compound in which 
one or more atoms have been replaced by its radioisotope. 
By virtue of its radioactive decay, it can be used to follow 
the original compound as it acts in the same manner. 
Due to the extremely small concentrations required, the 
radiotracer does not disturb the systemic processes to be 
studied. This allows the tracing of chemical, biochemical, 
and physiological processes and investigation of their 
functions and capacities.

Although SPECT is the most common imaging tool in 
clinical nuclear medicine, this review is focused on PET. 
SPECT primarily uses radioiodine, e.g. 123I, or radiometals, 
e.g. 99mTc as the label. Iodine is rarely present and metals 
are usually absent from the protein-binding drugs that serve 
as lead structures. Therefore, the applicability of SPECT for 
neuroimaging is rather limited, because labeling with 123I or 
99mTc causes strong and unpredictable alterations of target 
affinities and blood-brain-barrier (BBB) permeability. The 
positron-emitting radionuclides 11C and 18F, introduced as an 
isotopic modification (11C for 12C; “isotopic labeling”) or an 
atomic substitute (18F for 1H, OH; “isosteric, isoelectronic, or 
bioisosteric labeling”), generate rather small affi nity changes, 
if any. 18F is considered the most suitable radionuclide for 
PET because of its fi ve-fold longer half-life (109.8 min) than 
11C, its high β+ yield (97%) and its lower positron energy 
maximum of 640 keV (IAEA, Nuclear Data Services, https://
www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html).

Despite the limitations, the principles and strategies 
for radiotracer development described below also apply to 
SPECT. Also, aspects of radiation safety, toxicology issues, 
quality control, licensing, and regulatory control, which need 
to be considered for the production of radiopharmaceuticals 
suitable for administration to humans, have been reviewed 
extensively elsewhere[5]. Meanwhile, a highly regulated system 
for radiopharmaceutical production has been established 
in most of the developed countries (http://ec.europa.eu/
health/documents/eudralex/vol-4/index_en.htm). This topic is 
therefore excluded from further consideration. 

Successful radiotracer design as described below 

does not necessarily lead to human application. Nowadays, 
special PET and SPECT devices are available for small-
animal imaging, allowing molecular neuroreceptor imaging 
studies in various models of disease including genetically-
engineered animals[6, 7]. They provide a powerful tool for in 
vivo pharmacology during the process of pre-clinical drug 
development to identify new drug targets, to investigate 
pathophysiology, to discover potential drug candidates, and 
to evaluate the pharmacokinetics and pharmacodynamics 
of drugs in vivo[8].

The general sequence of radiotracer development is 
shown in Fig. 1 and can be followed up in a short video 
available at http://www.beilstein.tv/tvpost/toxic-epibatidine-
was-structurally-modified-to-image-alzheimer%C2%B4s-
disease/. This demonstrates how chemical/pharmaceutical 
and biochemical/pharmacological steps interact to finally 
decide whether to break-off or continue the development 
process. PET radiotracers that have been developed for 
neuroreceptor imaging and have already been used in 
humans are listed in Table 1.

Target Selection and Identifi cation of Lead Structures

Careful selection of the target to be imaged in combination 

Fig. 1. Strategy for development of new PET radiotracers for 
neuroimaging. 
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Table 1. Neuroreceptor targetsa that have been used for successful PET radiotracer development

Neuroreceptor PET radiotracer Selected reference for human use
Acetylcholine receptor: muscarinic [11C]scopolamine Frey et al. 1992[9]

Acetylcholine receptor: muscarinic [N-11C-methyl]-benztropine Xie et al. 2004[10]

Acetylcholine receptor: muscarinic [11C](+)3-MPB Yamamoto et al. 2012[11]

Acetylcholine receptor: muscarinic M2 [18F]FP-TZTP Ichise et al. 2008[12]

Acetylcholine receptor: nicotinic α4β2 2-[18F]fl uoro-A-85380 Sabri et al. 2008[13]

Acetylcholine receptor: nicotinic α4β2 6-[18F]fl uoro-A-85380 Ding et al. 2004[14]

Acetylcholine receptor: nicotinic α4β2 [18F]AZAN Wong et al. 2013[15]

Acetylcholine receptor: nicotinic α4β2 (-)-[18F]fl ubatine Sabri et al. 2011[16]

Acetylcholine receptor: nicotinic α7 [11C]CHIBA-1001 Toyohara et al. 2009[17]

Adenosine receptor: A1 [18F]CPFPX Bauer et al. 2003[18]

Adenosine receptor: A1 [11C]MPDX Fukumitsu et al. 2008[19]

Adenosine receptor: A2A [11C]TMSX Mishina et al. 2011[20]

Adenosine receptor: A2A [¹¹C]SCH442416 Ramlackhansingh et al. 2011[21]

Cannabinoid receptor: CB1 [18F]MK-9470 Burns et al. 2007[22]

Cannabinoid receptor: CB1 [11C]MePPEP Terry et al. 2010[23]

Cannabinoid receptor: CB1 [18F]FMPEP-d Terry et al. 2010[23]

Cannabinoid receptor: CB1 [11C]OMAR Wong et al. 2010[24]

Cannabinoid receptor: CB2 [11C]NE40 Ahmad et al. 2013[25]

Dopamine receptor: D1 [11C]SCH 23390 Farde et al. 1987[26]

Dopamine receptor: D1 [11C]NNC687 Karlsson et al. 1993[27]

Dopamine receptor: D1 [11C]NNC756 Karlsson et al. 1993[27]

Dopamine receptor: D1 [11C]NNC112 Slifstein et al. 2008[28]

Dopamine receptor: D2-D3 [11C]raclopride Farde et al. 1986[29]

Dopamine receptor: D2-D3 [11C]NMSP Wong et al. 1986[30]

Dopamine receptor: D2-D3 [11C]NPA Narendran et al. 2009[31]

Dopamine receptor: D2-D3 [11C]MNPA Otsuka et al. 2009[32]

Dopamine receptor (extrastriatal): D2/D3 [11C]FLB457 Farde et al. 1997[33]

Dopamine receptor (extrastriatal): D2/D3 [18F]fallypride Mukherjee et al. 2002[34]

Dopamine receptor: D3>D2 [11C]-(+)-PHNO Ginovart et al. 2007[35]

Estrogen receptor [18F]FES Moresco et al. 1997[36]

Glutamate receptor: mGluR1 [11C]ITMM Toyohara et al. 2013[37]

Glutamate receptor: mGluR5 [11C]ABP688 Ametamey et al. 2007[38]

Glutamate receptor: mGluR5 [18F]SP203 Brown et al. 2008[39]

Glutamate receptor: mGluR5 [11C]AZD9272 Kagedal et al. 2012[40]

Glutamate receptor: mGluR5 [18F]FPEB Wong et al. 2013[41]

Glutamate NMDA receptor: PCP site [11C]ketamine Kumlien et al. 1999[42]

Glutamate NMDA receptor: PCP site [11C]CNS-5161 Hammers et al. 2004[43]

Glutamate NMDA receptor: PCP site [18F]fl uoromemantine Ametamey et al. 2002[44]

Glutamate NMDA receptor: PCP site [18F]GE-179 McGinnity et al. 2014[45]

Glutamate NMDA receptor: glycine-site  [11C]AcL703 Matsumoto et al. 2007[46]

Histamine receptor: H1 [11C]doxepin Yanai et al. 1991[47]

(To be continued)
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Histamine receptor: H3 [11C]GSK189254 Ashworth et al. 2010[48]

GABA-benzodiazepine receptor: α1 [11C]fl umazenil Persson et al. 1985[49]

GABA-benzodiazepine receptor: α1 [18F]fl uoroethyl-fl umazenil Leveque et al. 2003[50]

GABA-benzodiazepine receptor: α1 [18F]fl uorofl umazenil Lee et al. 2007[51]

GABA-benzodiazepine receptor: α1 [18F]fl umazenil Massaweh et al. 2009[52]

GABA-benzodiazepine receptor: α5 [11C]Ro15-4513 Lingford-Hughes e al. 2002[53]

Opioid receptor: μ [11C]carfentanil Frost et al. 1990[54]

Opioid receptor: δ [11C]methylnaltrindol Madar et al. 1997[55]

Opioid receptor: κ [11C]GR103545 Tomasi et al. 2010[56]

Opioid receptor: unselective [11C]diprenorphine Frost et al. 1990[54]

Opioid receptor: unselective [18F]FcyF Cohen et al. 2000[57]

Opioid receptor: unselective [18F]fl uorethyldiprenorphine Baumgärtner et al. 2006[58]

Neuropeptide Y receptor: Subtype 1 [18F]Y1-973 Hostetler et al. 2011[59]b

Serotonin receptor: 5-HT1A [11C]WAY-100635 Pike et al. 1995[60]

Serotonin receptor: 5-HT1A [carbonyl-11C]WAY-100635 Parsey et al. 2000[61]

Serotonin receptor: 5-HT1A [carbonyl-11C]DWAY Andree et al. 2002[62]

Serotonin receptor: 5-HT1A [11C]CPC-222 Houle et al. 1997[63]

Serotonin receptor: 5-HT1A [11C]CUMI-101 Milak et al. 2010[64]

Serotonin receptor: 5-HT1A [18F]MPPF Costes et al. 2002[65]

Serotonin receptor: 5-HT1A [18F]FCWAY Theodore et al. 2006[66]

Serotonin receptor: 5-HT1B [11C]P943 Gallezot et al. 2010[67]

Serotonin receptor: 5-HT1B [11C]AZ10419369 Varnäs et al. 2011[68]

Serotonin receptor: 5-HT1B [11C]P943 Murrough et al. 2011[69]

Serotonin receptor: 5-HT2A [11C]MDL100907 Hinz et al. 2007[70]

Serotonin receptor: 5-HT2A [18F]altanserin Rosier et al. 1996[71]

Serotonin receptor: 5-HT2A [18F]deuteroaltanserin Van Dyck et al. 2000[72]

Serotonin receptor: 5-HT2A [18F]setoperone Trichard et al. 1998[73]

Serotonin receptor: 5-HT2A [18F]Cimbi-36 Ettrup et al. 2014[74]

Serotonin receptor: 5-HT4 [11C]SB207145 Marner et al. 2009[75]

Serotonin receptor: 5-HT6 [11C]GSK215083 Parker et al. 2012[76]

Sigma receptor: σ1 [11C]SA4503 Mishina et al. 2005[77]

Sigma receptor: σ1 [18F]FPS Waterhouse et al. 2004[78]

Translocator protein (TSPO)b [11C]PK11195 Junck et al. 1989[79]

Translocator protein (TSPO) (R)-[11C]PK11195 Banati et al. 1999[80]

Translocator protein (TSPO) [11C]PBR28 Brown et al. 2007[81]

Translocator protein (TSPO) [11C]DPA-713 Endres et al. 2009[82]

Translocator protein (TSPO) [11C]DAA1106 Yasuno et al. 2012[83]

Translocator protein (TSPO) [11C]vinpocetine Gulyas et al. 2012[84]

Translocator protein (TSPO) [18F]F-PBR06 Fujimura et al. 2009[85]

Translocator protein (TSPO) [18F]DPA-714 Arlicot et al. 2012[86]

Translocator protein (TSPO) [18F]FEPPA Mizrahi et al. 2012[87]

Translocator protein (TSPO) [18F]PBR-111 Guo et al. 2013[88]

aNeurotransmitter transporters are not considered; bformerly known as peripheral benzodiazepine receptor.

(Continued)
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with proper ident i f icat ion of a lead structure and 
subsequently an appropriate lead compound is one of 
the most important steps in the process of radiotracer 
development. Considering the resources needed to obtain 
a radiopharmaceutical ready for human application, strong 
biomedical or even pathological relevance of the chosen 
target is needed. Major groups of brain diseases such 
as neurodegenerative diseases, affective disorders, and 
brain tumors are expected to be of multifactorial origin, i.e., 
interactions between multiple genes infl uenced by internal 
and external factors occur, and this may have pathological 
or protective consequences. 

Imaging with a single radiotracer offers the chance 
of picking out only one dedicated piece of the whole 
scenario of physiological interactions. Thus, it is important 
to select those key proteins as rational targets which are 
predominantly altered in pathophysiological states. Ideally, 
they are causally involved in the etiology of the disease, 
providing the possibility that their imaging may have impact 
on both diagnosis and therapeutic drug development. 

A schematic view of this complex situation, identifying 
important molecules involved in the three classes of 
diseases noted above, is shown in Fig. 2. Notably, many 
of them are identical though occurring in different contexts. 
Therefore, it is highly likely that radiotracers designed, for 
instance, for imaging a certain key protein in the etiology of 
Alzheimer´s disease (AD) may also be of major importance 
for other diseases, which further justifies the efforts 
expended on radiotracer development.

For example, sigma1 (σ1) receptors are chaperones 
involved in the suppression of oxidative stress, a feature 
that links them to numerous brain diseases[89]. Post-
mortem studies have shown loss of σ1 binding sites in 
the hippocampus of patients with AD[90] and in the cortex 
of patients with schizophrenia[91]. Overexpression of σ 

receptors has been found in many brain tumor cell lines 
and in human brain tumors[92]. The neuroprotective potential 
of σ1 receptor agonists has been shown in different models 
of neurodegeneration[89, 93] and is expected to be important 
for cancerous diseases as well[92, 94].

As another example, impaired cholinergic neurotrans-
mission is a key feature of AD and the related cognitive 
impairment is at least partially associated with loss of 
cortical nicotinic acetylcholine receptors (nAChRs)[6, 95]. 
There is evidence that both subtypes with the highest 

expression in the brain are involved: α4β2 and α7 nAChRs. 
Accordingly, these subtypes have been chosen for 
radiotracer development[6, 96, 97]. However, these nAChRs 
are not only key proteins in neurodegenerative diseases 
(Fig. 2A) but also in many other brain diseases such as 
drug addiction, schizophrenia (Fig. 2B), and possibly cancer 
(Fig. 2C). This offers the advantage that corresponding 
radiotracers may also be used to answer questions related 
to these diseases. 

The radiotracer (S)-[11C]nicotine, one of the very first 
positron-emitting receptor ligands, was initially developed 
to investigate the distribution of nicotine in vivo and later 
tested for PET imaging of nAChRs in the human brain[6, 98]. 
However, co-administration of unlabeled nicotine failed to 
displace much of the radioligand, indicating that the PET 
signal did not sensitively reveal specifi c binding to nAChRs. 
Cerebral (S)-[11C]nicotine uptake proved mainly to be 
determined by blood fl ow, rather than the local abundance 
of nAChRs in vivo[6]. This indicates the importance not only 
of target but also of lead structure identification. Clearly, 
nicotine failed for the purpose of nAChR imaging. The 
discovery of various nAChR subtypes during the last two 
decades and their investigation have revealed different 
distributions and functions in various brain regions[6, 99]. 
Accordingly, different lead structures are needed to image 
them separately. 

The selection process for development of 18F-labeled 
radiotracers resembles the strategy used by the 
pharmaceutical industry in drug discovery. Although 
some features of radiotracers and drugs are different, 
the principal need remains: specific target binding. As 
discussed below, some selection criteria, such as affi nity, 
selectivity, kinetic behavior, and metabolism may be even 
stronger for radiotracers than for common drugs. On the 
other side, characteristics like bioavailability, side-effects, 
and pharmacological efficacy are negligible. Regardless 
of the differences, the lead structures of pharmaceutical 
interest are usually the basis for radiopharmaceutical 
development.

Target Characterization and in vitro Screening of 

New Compounds

High-affinity binding is one of the most important prere-
quisites for radiotracers targeting neuroreceptors[100, 101]. As 
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a rule of thumb, a binding potential (BP = Bmax/KD) of >2 is 
required for a good PET radioligand[102]. This implies the 
need to search for higher target affi nity (1/KD) if the receptor 
density (Bmax) is low. For example, the receptor densities for 
α7 nAChRs in the human brain are between 2 and 16 fmol/mg
tissue[96]. Accordingly, a KD between 1 and 8 nmol/L is 
required to fulfil the minimal criteria. The best α7 nAChR 
PET radiotracers available so far have affi nities between 0.3 
and 10 nmol/L[6]. 

Other important prerequisites for PET radiotracers 

are target selectivity and low non-specific binding[100, 101]. 
The displacement of radiotracer binding by ligands specifi c 
for non-target sites indicates lack of selectivity. This is a 
general disadvantage, because the specifi c signal obtained 
in neuroimaging studies is reduced (i.e. constitutes only 
a fraction of the total signal) in the presence of binding to 
non-target sites[100]. nAChRs, for example, comprise many 
subtypes expressed by at least 16 different genes[6, 103]. 
Many of them share a high degree of sequence identity and 
similarity with other nAChRs and also with other ligand-

Fig. 2. Key molecules for development of new PET radiotracers for neuroimaging neurodegeneration (A), psychiatric disorders (B), and 
brain tumors (C). 
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gated ion channels[104]. Therefore, detailed investigation 
of non-target sites is important for the development of 
PET radiotracers for neuroimaging of nAChRs. In some 
cases, it is not the sequence-similarity of target proteins 
that is responsible for cross-reactivity but the chosen lead 
structure. A well-known example is vesamicol, which is 
the only known lead structure for targeting the vesicular 
acetylcholine transporter (VAChT). It has only a ten-
fold higher affinity for VAChT than for σ receptors in the 
brain[105]. Improving this selectivity is still a challenge in the 
development of PET radiotracers for the VAChT[106].

The receptor densities and affi nities of the respective 
ligands in target tissues are parameters that can be 
quantified in vivo by molecular imaging with PET. They 
are important during radiotracer development. To obtain 
such information, in vitro radioligand-binding assays 
can be used[100, 101]. The total binding measured in these 
assays is always a sum of target-specific binding, which 
has limited capacity and is saturable, and non-specific 
binding, which has a high capacity and is non-saturable at 
pharmacologically meaningful concentrations[100]. 

Given that the receptor density is determined by the 
target, higher BP values can only be achieved by higher 
ligand affi nity. The binding affi nity in vitro and in vivo may 
differ considerably because of the presence of different 
affi nity states and other confounding factors[107]. Therefore, 
in vitro binding assays are the methods of choice to 
experimentally determine the affinity of new ligands. In 
particular, homogenate-binding or cell-binding assays 
allow high-throughput screening if needed. Alternatively, 
autoradiography on brain slices may be used; this is much 

more time-consuming but allows additional investigation of 
the regional distribution of receptors in the brain[100, 108].

With regard to nAChRs, the α4β2 subunit distribution 
has been investigated by in vitro autoradiography using 
[3H]cytisine[109, 110] while the α7 nAChR has been characterized 
using [125I]α-bungarotoxin[111, 112] or [3H]methyllycaconitine[113]. 
For various reasons, these three ligands are not suitable 
as lead compounds for PET radiotracer development[6]. 
However, these highly selective compounds can be used to 
obtain information on the specifi c receptor binding of new 
drugs. For example, the highly-selective α7 nAChR ligand 
NS10743[114] (for structure see Fig. 7) is able to displace the 
binding of [125I]α-bungarotoxin in the mouse brain (Fig. 3). 

Concerning the α4β2 nAChR subtype, epibatidine 
has been used successfully as a lead compound since it 
has long been known for its high affinity for heteromeric 
nAChRs[115]. However, it has rather high toxicity arising from 
its potency and capacity to activate many different neuronal 
nAChR subtypes[116].

In order to improve the subtype selectivity, the fl uoro-
for-chloro-substituted homoepibatidine analogue, fl ubatine 
(previously called NCFHEB), has been synthesized[117] (Fig. 
4). Results from [3H]epibatidine binding assays performed 
with HEK293 cells expressing the human α4β2 nAChR 
(Fig. 5) show that both enantiomers of flubatine have 
affinities comparable to that of epibatidine and that the 
(+)-enantiomer has two-fold higher affinity than the other 
stereoisomer[117]. 

As expected from previous studies with fluoro- and 
norchloro-analogues of epibatidine[116], the newly-designed 
homoepibatidine analogues have 20- to 60-fold lower 

Fig. 3. NS10743, a lead compound for α7 nAChRs, displaces in vitro binding of the highly-selective [125I]α-bungarotoxin in mouse brain.
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affinities to ganglionic α3β4 nAChRs than to the α4β2 
subtype[117]. For fl ubatine, the increase in subtype selectivity 
seemingly results in decreased pharmacological side-
effects compared to epibatidine. Intraperitoneal injection 
of 25 μg/kg (+)-flubatine or (–)-flubatine into awake mice 
is without important pharmacological effects[118]. Extended 
single-dose toxicity studies in rodents have shown a NOEL 
(No Observed Effect Level) of 6.2 μg/kg for (–)-flubatine 

Fig. 5. Competition binding assays of [3H]epibatidine on mem-branes prepared from cultured HEK293 cells stably transfected with α4β2 
and HEK293 α3β4 cells. Increasing concentrations of epibatidine or fl ubatine were used for competition. Non-specifi c binding was 
determined in the presence of 300 μmol/L (–)-nicotine tartrate and subtracted from the total binding (adapted from Deuther-Conrad 
et al. Farmaco 2004[117]).

Fig. 4. Toxic epibatidine (left) and its less toxic derivative norchloro- 
fl uoro-homoepibatidine (fl ubatine, right).  

and 1.55 μg/kg for (+)-fl ubatine after i.v. injection[119]. These 
values are about ten-fold higher than those reported for 
N-methylepibatidine[120] and fl uoro-norchloroepibatidine[121]. 

Regarding α7 nAChRs, many drug companies are 
developing receptor agonists and/or positive allosteric 
modulators for the treatment of schizophrenia and 
dementia[97]. Recently, NS10743, developed by Neuro-
Search A/S (Ballerup, Denmark), has been characterized 
as a lead structure for PET radiotracer development. 
[3H]Epibatidine-binding studies performed with HEK293 
cells expressing the human α7, α3β4, or α4β2 nAChR have 
revealed Ki-values of NS10743 of 12 nmol/L, 84 nmol/L, and 
>10 μmol/L, respectively[114]. Together with autoradiographic 
evidence of specific receptor binding as shown in Fig. 3,  
these data encouraged the radiolabeling of NS10743 to 
obtain an α7 nAChR-selective PET radiotracer[114].

Occasionally, there is a lack of specific drugs that 
interact with certain brain proteins. For example, only a 
single lead compound AH5183, later called vesamicol[122, 123], 

has been identified for the VAChT so far. Accordingly, 
all the PET radioligands that have been developed for 
neuroimaging the VAChT are derivatives of this lead 
structure[106]. Major drawbacks of vesamicol are the 
relatively low affi nity (Ki >10 nmol/L) and lack of selectivity. 
It binds to σ receptors with only ten-fold lower affinity[105] 
as well as to a “vesamicol-binding-protein”[124]. Similar 
affinity and selectivity have been found for (–)-FEOBV[125], 
a radioligand first described in 1993[126] and recently 
chosen for human VAChT studies[127]. Autoradiographic 
investigations of the human brain have revealed that 
[18F]FEOBV binding is decreased by 33% in the prefrontal 
cortex, 25% in hippocampal CA3, and 20% in the CA1 
region of patients with AD[128]. Although this was interpreted 
as cholinergic depletion, reduced σ1 receptor binding 
cannot be excluded, because a 26% loss of this receptor 
has also been described in the CA1 region of patients with 
AD[90]. So far, no ideal PET radiotracer for the VAChT has 
been developed[106] and optimization of the binding affi nity 
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of vesamicol-type ligands has been hampered by the lack 
of respective quantitative structure-activity relationships. 
Therefore, molecular modeling approaches have been 
used to predict the binding affinity of vesamicol-type/like 
ligands for VAChT from their molecular structures[125, 129]. 

A completely different situation is found with regard 
to radiotracer development for σ1 receptor imaging. These 
receptors have an unusual multi-drug binding spectrum 
and the respective ligands cover diverse structural 
classes[89]. Therefore, selectivity not only for the other 
subtype (σ2 receptor) but also for a great variety of further 
potential binding sites needs to be considered. Choosing 
spiropiperidines as lead structures, which fulfill these 
criteria and display a lack of signifi cant binding to a great 
variety of different targets[130-132], has enabled successful 
PET radiotracer development[89]. However, structural 
modifi cation was needed to introduce fl uorine in a suitable 
labeling position. Accordingly, various series of derivatives 
have been synthetized to select those with the highest 
affinity, selectivity, and in vitro metabolic stability[133-138]. 
Very high selectivity towards the VAChT has been found, 
excluding cross-reactions with this target[139].

Physicochemical Characterization of Lead Compounds

Besides affi nity and selectivity, some basic physicochemical 
properties of the parent compound have to be considered 
before radiolabeling. Lipophilicity, measured for example 
as logP and/or logD in octanol/water partition experiments, 
and molecular weight are important determinants for the 
compound´s ability to cross the BBB[140, 141]. Small-molecule 
drugs may sufficiently cross the BBB via lipid-mediated 
free diffusion if they have a molecular weight <400 g/mol 
and form <8 hydrogen bonds[141]. However, the majority of 
small-molecule drugs and all large-molecule drugs lack 
these chemical properties[141]. Considering these limitations, 
increasing lipophilicity may enhance the BBB permeability, 
but it also tends to increase plasma protein binding, 
causing a decrease of drug availability. Consequently, a 
parabolic relationship exists between lipophilicity and BBB 
permeability[107]. For a series of benzamides targeting the 
dopamine D2 receptor, an optimal logP between 2 and 
3 has been determined[142]. Accordingly, there is a rather 
small window of appropriate combinations of lipophilicity, 
molecular weight, and affi nity. Nevertheless, a nearly infi nite 

number of substances can theoretically be synthesized 
from basic organic elements within the restraints described 
above.

Significant deviations from the above parabolic 
relationship have been found, which can be ascribed to the 
existence of multiple mechanisms of drug transport through 
the BBB[143]. There is clear evidence that the expression 
of active efflux pumps like the multidrug transporter 
P-glycoprotein (P-gP) at the BBB accounts for the poor 
permeability of certain drugs (see below). Undoubtedly, 
P-gP is an important barrier to the entry of hydrophobic 
drugs into the brain[144]. Thus, proper prediction needs to 
consider active transport phenomena. 

Furthermore, a variety of nutrient transporters exp-
ressed at the BBB are able to transport certain xenobiotics 
and drugs[141, 143]. Recently, it has been shown that the α4β2 
nAChR PET radiotracer [18F]flubatine (formerly called 
[18F]NCFHEB) interacts with carrier-mediated choline 
transport at the BBB[118].

Preparation of Labeling Precursors and Radio-

labeling

Considering the short half-lives of the radionuclides used 
for radiolabeling (e.g., 20.4 min for 11C and 109.8 min for 

18F) they need to be incorporated into appropriate precursor 
molecules quickly. Ideally, the precursor molecules should 
allow rapid labeling in a maximum of two synthetic steps. 
As a rule of thumb, the whole labeling procedure including 
purifi cation and formulation of the fi nal product, should not 
last longer than two to three half-lives (for 11C). Accordingly, 
labeling precursors are not necessarily chemically similar 
to the respective radiolabeled compound/non-radiolabeled 
reference compound. 

Furthermore the precursor should allow (1) high 
reproducibility of the reaction, (2) automation of the 
production process (labeling, purification, formulation), 
and (3) accomplishment of an absolute radiochemical 
yield (RCY) of the formulated product high enough 
to permit human application. Ideally, the latter should 
enable routine as well as commercial production of the 
radiopharmaceutical.

Fluorine forms very strong covalent C-F bonds 
that provide valuable chemical, physical, and biological 
properties to organic molecules that contain one or more 
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fluorine atoms attached to aromatic carbon. However, 
because of the reactivity and hazards of elemental fl uorine 
and hydrogen fluoride, the task of introducing fluorine 
into organic molecules has been a particular challenge 
to synthetic chemists and has led to the development of 
specialized fl uorination techniques and reagents[145, 146]. 

Generally, fluorine can be introduced into organic 
molecules by electrophilic fluorination reactions using 
elemental fluorine or by nucleophilic fluorination using 
inorganic and other ionic fluorides. Although various 
f luorinating agents have been reported in organic 
fluorination reactions, only two agents are suitable 
for direct radiofluorination reactions with 18F: [18F]F2 
and its derivatives (such as [18F]acetylhypofluorite for 
electrophilic fluorination and [18F]fluoride for nucleophilic 
substitutions[147-149]). For regioselective introduction of 
18F, activated precursor molecules like trialkylstannyl-
substituted arenes are needed. 

Electrophilic fluorination is quite fast and efficient, 
making it a highly desirable synthetic method to obtain 
metabolic radiopharmaceuticals such as the glucose 
derivative [18F]FDG (via the old-fashioned synthetic 
pathway using glycals) or the amino acid [18F]FDOPA. 
Unfortunately, the products suffer from low specifi c activity 
owing to the carrier-added non-radioactive fluorine[147, 148] 
and thus are excluded from use for neuroreceptor imaging. 

The only exception is the post-target-produced highly 
specific [18F]F2 of up to 55 GBq/μmol[150] and its use for 
[18F]CFT synthesis, a dopamine transporter ligand[151]. 
Therefore, no further attention is given to electrophilic 
radiofluorination in this review. Furthermore, special 
methods for 18F-labeling of peptides and proteins are not 
considered, because these molecules are not suitable for 
brain imaging due to their very low BBB transport rates[152].

Nucleophilic substitution primarily depends on the 
activation of the [18F]fl uoride ion ([18F]F-) – so-called “naked 
fl uoride” – starting from irradiated 18O-enriched target water. 
This is reached by the generation of ion pairs consisting 
of bulky counter-ions for the [18F]F- such as K+-chelating 
agents or tetraalkylammonium ions[153, 154].

In the presence of aprotic or very weakly-acidic protic 
solvents, the counter-ion/[18F]F- - ion pair is available as a 
highly reactive nucleophile. In combination with suitable 
precursors provided with properly reactive leaving groups, 
nucleophilic substitution reactions may occur.

Nucleophilic substitution depends on properly active 
leaving groups for the 18F-fluoride exchange reaction. Its 
selection depends on various chemical properties of the 
compounds to be labeled. For radiosynthesis of a desired 
18F-labeled compound via nucleophilic substitution, a 
distinction generally has to be made between aliphatic and 
aromatic procedures.

For aliphatic nucleophilic substitutions[155], in most 
cases, the anions of sulfonic acids such as trifl ate, tosylate, 
mesylate, or nosylate groups are the preferred leaving 
groups. An option to introduce 18F to aliphatic (or even 
deactivated aromatic) moieties of a molecule is the use of 
its halide derivatives. The approximate order of increasing 
suitability for aliphatic reactions is: I > Br > Cl > F, which 
is the reverse of that found in aromatic nucleophilic 
substitution reactions[156]. In the radiolabeling of various 
fl uoro-alkyl indiplon derivatives, the use of bromine as the 
leaving group has an RCY (38-43%) similar to the use 
of a tosylate leaving group[157-159]. Notably, depending on 
the length of the alkyl chain, O-tosyl-containing precursor 
molecules gradually decompose over months[159]. Using a 
halide leaving group, even isotopic 19F (stable fl uorine) for 
18F exchange with minor precursor amounts is an option[160]. 
Ring opening of cyclic reactive entities offers another 
method for the introduction of radiofl uorine[161].

F luoro-aromatic compounds are known to be 
extraordinarily stable. This is true for the C-F bond too. 
Accordingly, radiofluorinated derivatives are very suitable 
radiotracers. For their no-carrier-added radiosynthesis, 
aromatic nucleophil ic substitutions on deactivated 
(electron-deficient) aromatic ring systems (i.e. activated 
in terms of nucleophilic reactions) with suitable leaving 
groups are needed. This activation is caused by electron 
withdrawing groups, whereas trialkylammonium (-N(Me3)

+) 
or nitro groups or special combinations of both act as 
leaving groups[162]. For aromatic nucleophilic substitution 
reactions, the -N(Me3)

+ group is preferred because it 
usually allows more reproducible radiosynthesis with 
higher RCYs. Beside deactivated carbocyclic aromates, 
pyridine rings are a valuable tool to be radiofl uorinated as 
they are already deactivated moieties. Recently, seven 
different strategies for radiolabeling the α4β2 nAChR 
ligands (–)/(+)-[18F]flubatine were compared[163]. The 
original radiosynthesis using a bromo-pyridine precursor 
and an ethoxycarbonyl protecting group at the tropane 
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nitrogen requires a microwave reaction followed by chiral 
HPLC separation of the enantiomers and provides overall 
RCYs of only 2%, which is insufficient for routine clinical 
PET investigation[164]. Several variations of leaving groups 
coupled in the ortho-position to pyridine nitrogen (-Cl, -NO2, 
-N(Me3)

+/iodide, -N(Me3)
+/triflate) and protecting groups 

(-Boc, -Trityl, -Fmoc) have been investigated. The use of 
chlorine was unsuccessful, while the use of –NO2 revealed 
~75% lower labeling effi ciency than that of -N(Me3)

+/iodide 
or -N(Me3)

+/triflate. A combination of the N(Me3)
+/iodide 

precursor and a Boc-protecting group provided the best 
results with an RCY of 60 ± 5%[163]. The radiosynthesis 
was independent of the use of a microwave and was easily 
transferable to automated synthesis modules to prepare 
for human application. Recently, automated synthesis has 
been reported by two institutions with RCYs of 30%[165] and 
25%[166].

The above-mentioned electron withdrawing groups (-I 
effect, -M effect) bound to aromatic moieties are a definite 
need to enable a nucleophilic attack. In a recent study 
on radiolabeling of cannabinoid receptor type 2-selective 
compounds (Fig. 6), the summarized effect of bromine in 
the meta-position to the leaving group –NO2 was regarded 
to be not strong enough to achieve an RCY >3%[167]. An 
introduction of nitrogen into the aromatic ring facilitated 
the nucleophilic substitution (RCY >28%) but reduced the 
affinity by a factor of 30[167]. To retain the affinity (Ki = 4.3 
nmol/L), a –N(Me3)

+ precursor was synthesized and used for 
radiolabeling and provided RCYs between 30% and 35%[168].

Besides low labeling yields, the use of bromine 
precursors may have further disadvantages such as an 
unsatisfactory quantitative separation of the radiolabeled 
product and its precursor (Fig. 7). Initial attempts to use a 
bromine precursor for radiolabeling of NS10743, a highly 

selective α7 nAChR ligand, failed. 
For some molecules, the structure does not allow 

nucleophilic substitution or the radiotracers decompose 
under the accompanying harsh conditions. In these cases, 
labeling can be achieved by a multistep procedure using 
small generic groups that allow both derivatisation with 
fl uorine as well as convenient introduction of radiofl uorine. 
These groups are referred to as secondary labeling 
precursors or prosthetic groups[148, 169, 170]. A large number 
of these 18F-labeled intermediates have been prepared 
and investigated, such as amines, alcohols, aldehydes, 
ketones, carboxylic acids, esters, and halides[148]. In 
particular, [18F]fl uoroalkynes and [18F]fl uoroalkylazides are 
interesting prosthetic groups as they can be coupled to 
a variety of molecules using the Huisgen “click” reaction 
which proceeds in high RCYs in aqueous solution under 
mild conditions. Thus, it can be used for the radiolabeling 
of water-soluble biomolecules[148, 171-175]. Generally, careful 
selection of prosthetic groups is critical for radiotracer 
development as they often exert great infl uence on target 
binding and/or in vivo stability[169].

A further path to 18F-labeled radiotracers is starting the 
labeling of a pre-prepared substance (reactive precursor) in 
a fi rst step and its chemical transformation in a subsequent 
reaction into the final product. This is demonstrated by 
means of a ring closure reaction (McMurry coupling, Fig. 8). 

We have recently used 18F-labeled alkyltosylates for 
the radiolabeling of phenolic precursors via etherification 
to obtain high-affinity and selective radiotracers for 
the serotonin transporter[177] and the enzyme phos-
phodiesterase 10A[178], respectively, with RCYs between 
11% and 25%. High metabolic stability of the ether 
bond is expected because negligible defluorination was 
observed[178]. 

Fig. 6. Effect of leaving group (LG) on radiolabeling yield of a new cannabinoid receptor type 2-selective drug. RCY, radiochemical yield.
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Fig. 7. Radiosynthesis of the α7 nAChR ligand [18F]NS10743 using two different precursors. The bromo precursor NS9177 proved 
unsuitable for radiolabeling. The radio-HPLC sample is from the reaction mixture with the bromo precursor. RCY, radiochemical 
yield.

By contrast, [18F]fl uoroacetamides have proven to be 
metabolically unstable due to hydrolytic cleavage[169]. Thus, 
high-affinity and selective radiotracers for the VAChT[179] 
and the GABAA receptor[180], respectively, are not suitable 

for in vivo imaging because metabolites that cross the BBB 
are generated. The metabolic instability is caused by the 
action of hydrolytic enzymes, e.g. carboxylesterase[169]. In 
such cases, the use of [18F]fluoropropane sulfonamides 

Fig. 8. Introduction of [18F]fl uoride into a complex molecule in a fi rst step and subsequent McMurry coupling to the fi nal product, a PET-
tracer for imaging cyclooxygenase-2[176].
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can be recommended because of their stability against 
carboxylesterase-mediated hydrolysis[169].

Specifi c Binding of Radiotracers in vitro 

To determine the specific target binding of newly-
developed radiotracers, various in vitro binding assays 
can be used[100]. These provide specifi c features useful for 
target characterization and in vitro screening; an example 
of affinity determination of [18F]NS10743[114] is shown in 

Fig. 9. In a homologous competitive binding assay using 
SHSY5Y cells expressing the human α7 nAChR and 
increasing concentrations of [18F]NS10743 as radiotracer, 
an equilibrium dissociation constant KD of ~9 nmol/L was 
estimated. Non-specific binding was determined in the 
presence of 300 μmol/L (−)-nicotine tartrate and subtracted 
from the total binding. 

Alternatively, in vitro binding affinity can also be 
determined by autoradiography, where brain slices are 
incubated with increasing radiotracer concentrations. 
Although more time-consuming, this technology has the 
advantage that additional information on the regional 
distribution of the target within the brain is available. As an 
example, Fig. 10 shows the distribution of α4β2 nAChRs 
in rat brain as determined with the two enantiomers of 
[18F]flubatine. Brain slices were incubated with increasing 
radiotracer concentrations to obtain data on target density 
and radiotracer affinity. As expected, these clearly show 
the highest receptor densities in the thalamus, superior 
colliculus, and nucleus interpeduncularis[181]. Unexpectedly, 
different affi nities were estimated for the various regions. In 
principle, this may be caused (1) by a remaining part of the 
endogenous ligand (ACh) competing with the radiotracers, 
(2) different allosteric receptor regulation in the various 
regions, or (3) by additional binding to (an)other target(s).

In another experiment (Fig. 11), additional information 
was obtained on the selectivity of (–)-[18F]fl ubatine for α4β2 

Fig. 9. Saturation analysis of [18F]NS10743 binding on membranes 
prepared from cultured SHSY5Y cells expressing the 
human α7 nAChR. Non-specific binding was determined 
in the presence of 300 μmol/L (–)-nicotine tartrate and 
subtracted from total binding.

Fig. 10. In vitro autoradiographs of α4β2 nAChR distribution in rat brain using (+)-[18F]fl ubatine and (–)-[18F]fl ubatine as radioligands. 
Increasing concentrations of flubatine were used for homologous competition. Non-linear regression analysis was used to 
estimate the affi nities (1/KD) in various brain regions. Nc, nucleus.
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nAChRs. The radiotracer binding in pig brain was inhibited 
by co-incubation with various drugs of different selectivities 
for nAChRs. The nonselective inhibitor epibatidine[182] 
and the β2-subtype-selective inhibitors A-85380[183] and 
cytisine[182] clearly reduced the (–)-[18F]flubatine binding, 
whereas the α7-subtype-selective inhibitor MLA[184] did not.

Furthermore, autoradiographic experiments are 
well-suited to compare various radiotracers and target 
binding in different species. For example, the distribution 
of GABAA receptors in pig brain as measured with the 
gold-standard [3H]flunitrazepam and a new 18F-labeled 
indiplon[185] derivative[186] is similar to that in rat brain (Fig. 
12). Another example shows the use of [3H]citalopram, 
the most selective serotonin transporter radioligand[187], 
to obtain in vitro autoradiographs of serotonin transporter 
(SERT) distribution in the pig brain (Fig. 13). Cresyl violet 
staining of parallel slices allowed the precise delineation of 
numerous brain regions and correlation analysis between 
autoradiographs of the gold-standard ([3H]citalopram) 
and a new PET radiotracer ([18F]FMe-McN5652). A highly 

signifi cant correlation between the radioligands (r = 0.9, P 
< 0.001) was found[188].

Usually, in vitro autoradiography is a good predictor 
of the imaging properties of a new radiotracer. However, 
radiotracers with unacceptable in vitro data are still able to 
provide good images in vivo. An example is the dopamine 
transporter-selective SPECT radiotracer [99mTc]TRODAT-1. 
In vitro autoradiography with this radiotracer shows a high 
non-specifi c background with less conspicuous binding in 
the rat striatum, a dopamine-transporter-rich brain region[189]. 
Meanwhile, [99mTc]TRODAT-1 has been introduced into the 
clinic as a tool for the diagnosis of Parkinson’s disease[190]. 

Metabolism of Radiotracers in Animals

Investigation of radiotracer metabolism in vivo needs 
special consideration, especially for neuroimaging. 
Because of the exceptionally great functional diversity of 
the brain compared to other organs, there is a need to 
precisely differentiate between various brain regions with 

Fig. 11. In vitro autoradiographs of α4β2 nAChR distribution in pig brain using (–)-[18F]fl ubatine as radioligand. Epibatidine, A-85380, 
cytisine and MLA were used as competitors to assess the specifi city and selectivity of radiotracer binding to α4β2 nAChRs. 
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Fig. 12. In vitro autoradiographs of GABAA receptor distribution in pig and rat brain using [3H]fl unitrazepam and a new 18F-labeled indiplon 
derivative[186] as radioligands (adapted from Deuther-Conrad et al. Curr Radiopharm 2009[158]).

regard to specific radiotracer binding and target density. 
Therefore, it has to be ensured that the PET image is 
derived from the radiotracer only and not blurred by the 
presence of radiolabeled metabolites. Consequently, the 
potential presence of radiometabolites in the brain needs to 
be investigated and ideally excluded. Furthermore, the use 
of compartmental models for the quantitation of receptor 
binding parameters depends on an exact measurement 
of the radiotracer availability for brain uptake. Accordingly, 
the radioactivity measured in blood samples needs to be 
corrected by subtraction of the amount of radiometabolites. 

Standard chromatographic methods such as high-
performance liquid chromatography (HPLC), thin-layer 
chromatography (TLC) and solid-phase extraction (SPE) 
are used to separate the radiotracer and its metabolites. 
In principle, all methods are based on the different 
interactions of various analytes with the stationary and 
mobile phases. After separation has been achieved, the 

activity of the analytes is determined by special online 
activity detectors integrated into the HPLC system, by 
autoradiography of TLC plates, or by measurement of 
eluted substances in well-counters. While HPLC and TLC 
are standard procedures during radiotracer development, 
SPE offers advantages in the clinical setting because of 
its high throughput and low cost. However, SPE has to be 
validated by comparison with HPLC or TLC before use.

A common concern in the development of PET 
radiotracers for neuroimaging is the presence of lipophilic 
metabolites in blood, because they are likely to cross the 
BBB just because of their lipophilicity[107]. Such metabolites 
may either be active, i.e. having a target-affinity high 
enough for significant binding, or inactive. In the former 
case, quantification is highly confounded because the 
measured signal represents undetermined proportions of 
parent tracer and metabolite, each of which may have a 
different affinity for the target[107]. In the latter case, non-

Fig. 13. In vitro autoradiographs of serotonin transporter distribution in pig brain using [3H]citalopram and [18F]FMe-McN5652 as 
radioligands, compared to an adjacent cresyl violet-stained brain slice (adapted from Kretzschmar et al. Eur Neuropsy-
chopharmacol 2003[188]). 
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specifi c binding is increased, leading to a decreased signal-
to-noise ratio. 

For example, the 5-HT2A receptor PET radiotracer 
[18F]altanserin is metabolized by reduction of ketone to 
yield [18F]altanserinol, which is transported across the 
BBB[191]. In the brain, it contributes to non-specifi c binding. 
However, the signal obtained from specific receptor 
binding is regarded to be unchanged because the affi nity 
of altanserinol for serotonin receptors is negligible[191]. This 
offers the possibility of using [18F]altanserin together with 
a constant infusion paradigm for quantification of 5-HT2A 
receptor availability in the brain[191, 192]. Alternatively, the 
use of the simplified reference tissue model (see below) 
allows consideration of the presence of radiometabolites in 
brain, as long as their contribution to non-specifi c binding 
is homogenous throughout and there is a reference region 
without specifi c binding[193]. 

Confounding effects of brain metabolites on dopamine 
transporter (DAT) imaging have been observed for a 
variety of radiotracers such as [123I]β-CIT[194], [11C]β-CIT[195], 
[18F]FECNT[196], [11C]PE2I[197], and [11C]/[18F]LBT-999[198]. 

In the case of β-CIT, lipophilic metabolites have been 
detected[194, 195]. Accordingly, labeling of β-CIT with 11C 
by either N-methylation or O-methylation has resulted in 
radioligands with different kinetics in the monkey brain. 
Preparation of two of the putative labeled metabolites 
[N-methyl-11C]β-CIT-acid and [O-methyl-11C]nor-β-CIT, and 
investigation of their brain uptake, revealed that <0.4% 
of the injected [N-methyl-11C]β-CIT-acid entered the brain 
whereas 5%–6% of the more lipophilic [O-methyl-11C]
nor-β-CIT entered and accumulated in the striatum and 
thalamus. Notably, nor-β-CIT has been found to specifi cally 
bind to the serotonin transporter[199], providing an additional 
confounding effect. 

Regarding [11C]PE2I, a benzyl alcohol metabolite 
derived from biotransformation by cytochrome P450 
enzymes residing predominantly in the liver[200], has been 
shown to cross the BBB[197]. In the brain, it is supposed 
to be further metabolized by alcohol and aldehyde 
dehydrogenases. Also, for [11C]LBT-999 and [18F]LBT-
999, hydroxylated derivatives have been found. Their 
accumulation in the striatum indicates specific binding to 
the DAT[198]. 

For [18F]FECNT, N-dealkylation has been shown 
to provide a brain-penetrant radiometabolite of even 

higher in vitro DAT affinity than the parent compound 
itself, preventing the use of a reference tissue model for 
quantitation[196, 201].

Lipophilicity is not necessarily a prerequisite for 
brain uptake of radiometabolites. [18F]fluoroacetamides 
have been shown to be metabolically unstable due to 
hydrolytic cleavage of the amide bond. The resulting 
highly hydrophilic [18F]fluoroacetate is transported into 
the brain[202-204], at least partly mediated by carboxylic 
acid transporters at the BBB[205]. [18F]fluoroacetate was 
proposed as a major metabolite of radiotracers for imaging 
the VAChT, e.g. [18F]FAMV[179] and [18F]FAA[206], or GABAA 
receptors[180], preventing the use of these radiotracers for 
neuroimaging. Interestingly, it was found that fl uoroacetate 
is defluorinated by glutathione S-transferases[207] which 
are highly expressed in brain tissue[208]. To explain the high 
amounts of radioactivity in rat ventricles after injection of 
[18F]FAMV, it was proposed that the elimination of brain 
metabolites may occur by clearance via the cerebrospinal 
fl uid[179].

Besides knowledge regarding the potential of 
radiometabolites to cross the BBB, information on the 
precise amounts of radiometabolites in plasma is often 
needed for quantitation of receptor binding of PET 
radiotracers in vivo (see below). The faster the metabolism, 
the stronger the alterations of the input functions and the 
infl uence of potential bias. Determination of metabolites in 
rodents or larger animals such as pig or monkey provides 
suitable estimates for clinical PET studies. Because 
of the higher surface-to-volume ratio, the influence of 
metabolism on the PET quantitation of human data is usually 
overestimated when investigated in experimental animals. 
Thus, for the serotonin transporter PET radiotracers (+)-[11C]
McN5652 and [18F]FMe-McN5652, the metabolism in pigs[209] 
is about twice as fast as measured in humans[210, 211]. Another 
very good example is the α4β2 nAChR PET radiotracer 
(–)-[18F]flubatine. Rather strong differences between 
pigs and humans have been reported. While ~60% 
of metabolites were found in pig plasma at 2 h after 
injection[212], this value was only ~10%–15% in humans[213]. 
Because of this very low amount of radiolabeled metabolites, 
full kinetic modeling was possible even without metabolite 
correction of the input function[214], which is of great 
advantage for routine clinical use.

The high metabolic stability of flubatine has recently 
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been confi rmed in an in vitro study comparing mouse and 
human microsomal preparations (containing enriched 
cytochrome P450 enzymes[215, 216]), where a 5–6-times 
faster metabolism was found in mice. Interestingly, 
the (–)-enantiomer is significantly less stable than the 
(+)-enantiomer (unpublished data). Stereoselective 
metabolism of drugs by P450 enzymes is a common 
phenomenon and may also explain differences in the 
metabolism of other enantiomeric PET radiotracers, such 
as (+)-/(–)-[11C]McN5652[211] or the σ1 receptor-selective 
(R)-/(S)-[18F]fl uspidine[136].

Proof of Target-specifi c Binding in Animals

Usually one of the first steps to demonstrate target-
specific binding in vivo is the investigation of radiotracer 
biodistribution in mice or rats. Although in vitro studies 
allow the estimation of target affinities, the bioavailability 
of radiotracers is a confounding factor for target binding 
in vivo. The bioavailability of radiotracers is infl uenced by 
blood fl ow, plasma protein binding, membrane permeability, 
and metabolism. Furthermore, the optimized settings 
used for radioligand binding assays usually differ from the 
physiological conditions found in vivo where different pH 
and temperature as well as the presence of endogenous 
competitors may be confounding factors. The complex 
interaction of all these parameters can only be investigated 
in vivo and justifi es the approval of animal experiments by 
legislative authorities. 

Information on the time-dependent biodistribution of 
radiotracers can be obtained by ex vivo tissue sampling 
or small-animal imaging[7, 100]. The two methods are rather 
complementary than competitive, both offering advantages 
and disadvantages (see Table 2). More detailed information 
is available elsewhere[100]. 

In addition to the use of rodents for ex vivo tissue 
sampling or small-animal imaging, larger animals such as 
monkeys or pigs are used for PET imaging with human 
scanners. 

Independent of the type of in vivo study chosen, the 
strategy to obtain certain information about the radiotracer 
is similar. Studies have to show that the brain uptake is 
sufficiently high, specific, and selective to justify human 
application for neuroimaging. Furthermore, data obtained 
on whole-body radiotracer kinetics can also be used to 
estimate the absorbed radiation dose as a prerequisite for 
human application[217]. 

The magnitude of brain uptake is mainly determined 
by the size, lipophilicity, and H-bonding capacity of the 
radiotracer[141, 218], i.e. parameters accessible by in vitro 
investigations. The brain uptake may occasionally be 
confounded by affinity for efflux transporters at the BBB. 
A variety of in vitro systems representing the BBB have 
been described, but the optimal use of these data, in terms 
of extrapolation to human unbound brain concentration 
profiles, remains to be fully exploited[219]. Therefore, 
animal experiments are still indispensable to investigate 
this aspect. Notably, the expression of the various efflux 

Table 2. Advantages and limitations of ex vivo tissue sampling and small-animal imaging

Parameter Ex vivo tissue sampling Small-animal imaging

Anesthesia Just before death  Throughout the study

Applied activity (per mass) ~ Human dosage >> Human dosage

Radiation damage Unlikely  Possible

Estimation of absorbed radiation dose Possible Possible (preferred)

Multiple time point measurements Multiple subjects needed Single subjects

Longitudinal studies Not possible Possible

Animal models of disease Relatively high expenses  Possible

Tracer kinetic modeling Relatively high expenses Possible

Physiology Unaffected  Potentially affected

Blocking effects of drugs Unaffected by applied dosage Potentially affected by applied dosage 
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transporters at the BBB differs significantly between 
species[220, 221]. Among drug transporters, breast cancer 
resistance protein appears to be most abundant with an 
expression level ~2-fold greater in humans than in mice. 
By contrast, the expression level of P-gP in humans is 
~2.5-fold lower than the corresponding mdr1a gene in 
mice[221]. Consequently, low brain uptake in rodents does 
not necessarily forecast the uptake in other species like 
humans. For example, the brain uptake of the high-affi nity 
and selective α7 nAChR ligand [18F]NS14492 is ~10-times 
higher in pigs than in mice, suggesting suitability for human 
brain imaging[222]. Similar species differences between 
rats, guinea pigs, and monkeys have been reported for the 
5-HT2A receptor ligand [18F]altanserin, the NK1 receptor 
antagonist [11C]GR205171, and the classical P-gP substrate 
[11C]verapamil[223].

The specifi city and selectivity of brain uptake is another 
important issue to consider in animal experiments[7]. For 
targets with a heterogeneous distribution, the ratio of brain 
uptake between a region with high target expression and a 
region with negligible or low target expression represents a 
reasonable measure of specifi c binding. A typical example 
is the dopamine D2 receptor. The caudate/cerebellum ratio 
was used to verify specifi c binding of the fi rst (D2-receptor 
specific) PET radiotracers, 3-N-[11C]methylspiperone and 
[11C]raclopride, in human and monkey[224, 225]. Since these 
early studies, the cerebellum has often been used as suitable 
reference region for the development of PET radiotracers 
for other dopamine receptors[226], serotonin 5-HT1A and 
5-HT2 receptors[227, 228], muscarinic and nicotinic ACh 
receptors[229-231], histamine receptors[232], and the serotonin 
transporter[188, 233]. An example of ex vivo autoradiography 
of SERT distribution in rat brain where the radiotracer 

[18F]FMe-McN5652 (30 MBq) was injected intravenously 
is shown in Fig. 14B. The animal was sacrificed 90 min 
later and the brain subjected to autoradiography. Regions 
with the highest SERT expression such as frontal cortex, 
striatum, and substantia nigra[187, 234] clearly showed the 
highest radiotracer accumulation, providing evidence for 
radiotracer selectivity[188]. Furthermore, comparison with 
an in vitro autoradiograph of rat brain (Fig. 14A) using the 
same radiotracer clearly showed a high correlation of SERT 
binding between the approaches.

An example of how an ex vivo binding ratio has been 
used to identify the radiotracer with the highest σ1 receptor 
binding in mouse brain among a series with various lengths 
of the alkyl side chain is shown in Fig. 15. Notably, for 
the σ1 receptor, as for metabotropic glutamate receptor 1 
(mGluR1)[59] and the GABAA receptor[180], the cerebellum 
is among the regions with the highest expression and 
cannot be used as a reference region in this case. The ratio 
between the region with lowest radiotracer accumulation 
(olfactory bulb) and that with highest accumulation (facial 
nucleus) was chosen for the estimation of specifi c receptor 
binding. Consistent with the highest brain-to-plasma ratio 
at 60 min post-injection and the highest target affi nity, this 
ratio was highest for the ethyl derivative [18F]fl uspidine[89].

Besides the use of reference regions for the evaluation 
of specific receptor binding in brain, blocking studies are 
recommended. A high concentration of a drug that binds 
specifi cally to the receptor site is injected before or together 
with the radiotracer and thereby prevents its specifi c binding 
to the target[100]. From the difference between a control 
study and the blocking study, information on the specific 
binding can be obtained. Using a similar setup, the target 
selectivity of the radiotracer can be investigated. As shown 

Fig. 14. Comparison of in vitro (A) and ex vivo (B) autoradiographs of serotonin transporter distribution in rat brain using [18F]FMe-
McN5652 as radioligand (adapted from Kretzschmar et al. Eur Neuropsychopharmacol 2003[188]).
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Fig. 15. Comparison of ex vivo autoradiographs of σ1 receptor distribution in rat brain using (±)-[18F]fluspidine and derivatives with 
various lengths of the alkyl side-chain as radioligands (adapted from Brust et al. Curr Med Chem 2014[89]). 

Fig. 16. Comparison of ex vivo autoradiographs of serotonin transporter distribution in rat brain using [18F]FMe-McN5652 as radioligand. Specifi c 
transporter inhibitors were used to assess the selectivity of transporter binding (adapted from Marjamäki et al. Synapse 2003[235]). 

in Fig. 16, the selectivity of the new SERT radiotracer 
[18F]FMe-McN5652 was assessed by ex vivo autoradiography 
performed on rat brain at 120 min after radiotracer injection 
and 180 min after administration of nisoxetine, a specific 
norepinephrine uptake inhibitor, or GBR12909, a specific 

dopamine uptake inhibitor[235]. In contrast to the selective 
SERT inhibitor fl uoxetine, neither drug inhibited binding of 
[18F]FMe-McN5652 to the rat midbrain, a region with high 
SERT expression. 

In comparison to autoradiography, PET images of 
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Fig. 17. PET images of a pig brain (left; volume 110 mL) and an ex vivo autoradiograph of a mouse brain (right; volume 0.4 mL) are 
compared to demonstrate the difference in resolution between the two imaging modalities (adapted from Brust et al. J Nucl Med 
2014[237]).

animal brains suffer from low resolution. This can clearly be 
seen in Fig. 17 where an ex vivo autoradiograph of a mouse 
brain (volume 0.4 mL) is compared to a PET image of a pig 
brain (volume 110 mL). Despite this limitation, the specifi city 

of radiotracer binding may be determined in animal PET 
studies. The coronal PET images in Fig. 17 show that 
administration of the σ1 receptor ligand SA4503 prevents the 
specifi c target binding of (S)-[18F]fl uspidine in pig brain[236]. 

Estimation of Receptor-binding Parameters in 

Animals

One of the great advantages of PET is the possibility of 
precise quantitation of local tracer concentrations in tissue; 
this ultimately enables the estimation of receptor binding 
parameters in vivo. Preclinical PET studies in animals are 
suitable for this purpose[7, 8] and hence permit appropriate 
radiotracer evaluation. Initially, the PET scanner´s 
resolution was rather low (~10 mm)[238] allowing successful 
quantitation only in the brains of larger animals such as 
primates[239, 240], dogs[241-243], cats[244, 245], and pigs[246-248]. 
During the last decade, various dedicated PET cameras for 
imaging in small animals have been developed, providing a 
resolution of 1–2 mm[6, 249]. 

Moreover, the first PET/MRI systems have become 
available for both human and small-animal imaging, 
allowing more accurate identification of brain regions[250]. 
Thus, accurate quantitation is possible and similar to 
that achievable with autoradiography[7]. In addition, 
pharmacokinetic, mult iple-tracer, and longitudinal 
studies can be performed in single subjects constituting 
a great potential for basic neuroscience research[251], 
neuropharmacology[8, 252], and the investigation of animal 
models of neurological and neuropsychiatric disorders[7].

While in vitro autoradiography was the method of 
choice for receptor mapping for more than three decades, 

the suitabil ity of animal PET/MRI for that purpose 
has recently been proven. For example, Syvänen[253] 
determined the GABAA receptor density, Bmax, in rat 
brain using four doses (between 4 μg and 400 μg) of 
[11C]flumazenil. Five regions with high GABAA receptor 
expression were investigated and the highest Bmax was 
found in the hippocampus (44 ng/mL) and the lowest in the 
cerebellum (33 ng/mL). No signifi cant regional differences 
in the receptor affi nity, KD (5.9 ng/mL), were detected. Using 
the same setup, an experimental model of epilepsy was 
investigated and a signifi cant decrease of Bmax by 12% was 
reported, while KD remained unchanged[253]. 

Although convincing in animals, a similar protocol 
applied to humans has major drawbacks. Multiple 
radiotracer injections significantly increase the radiation 
burden. Furthermore, use of pharmacological doses 
requires much stronger safety regulations. Therefore, a 
common and generally-accepted approach to quantify 
radiotracer receptor binding in humans is estimation of 
the binding potential, BP = Bmax/KD

[107]. Assuming that 
KD remains unchanged, changes of BP are directly 
proportional to changes in Bmax, a postulate which holds in 
the majority of such studies.

The BP can be estimated by compartmental mod-
eling[254-259]. A compartment model is a linear mathematical 
model that describes the transfer of a radiotracer 
among various compartments which are regarded to be 



Peter Brust, et al.    Development of 18F-labeled radiotracers for neuroreceptor imaging with PET 797

homogenous at all times with respect to the radiotracer 
concentration. Compartmental models describe the tracer 
kinetics as a fi rst-order process which is in general, but not 
always, justified in view of the very low concentrations in 
which the tracer is present in the investigated organism. 

Also, one should keep in mind that the different 
compartments do not necessarily correspond to unique 
spaces (e.g. extracellular versus intracellular) but usually 
rather represent different chemical modifications in which 
the radioactive label resides (see above, the radiotracer 
and its metabolites). For this reason, all compartmental 
concentrations in PET are usually referred to the same 
common volume (total tissue space). This has to be 
considered when interpreting the numerical results in order 
to avoid misconceptions. In other words, compartmental 
models superficially relate tracer concentrations in the 
different compartments, but in fact represent (local) mass-
balance equations. Radiotracer exchange between the 
different compartments is described by rate constants 
(usual unit: 1/min) specifying the fractional change of 
concentration per unit time in the respective compartment 
due to the process modeled by that specifi c rate constant.

As long as the tracer kinetics can be considered 
linear (which is usually a valid assumption) a sufficiently 
comprehensive compartmental model (with a sufficient 
number of compartments) will be able to describe any 
given system. Increasing the number of compartments 
suffi ciently, one can even model diffusive processes (which 

inherently imply the presence of concentration gradients). 
For the evaluation of PET data, however, this is not a 
feasible strategy. It rather turns out that very simple one- 
or two-tissue compartmental models suffi ce to adequately 
describe the data at the given limits of spatial and temporal 
resolution. For a more in-depth description of the basics 
of compartmental modeling we refer the reader to the 
literature[258, 259].

Typical examples of compartmental models are 
shown in Fig. 18, where Ca refers to the arterial plasma 
concentration of the unmetabolized radiotracer, Mt to the 
total amount of radiotracer, Mf to the free fraction, and Mb 
to the bound fraction. Linear systems of ordinary differential 
equations describe the changes of radiotracer contents in 
these models. Based on these equations, the rate constants 
for the blood-brain and brain-blood transfer (K1 and k2’ or 
k2”), and the rate constants for the specifi c binding/release 
(k3’ and k4), can be estimated by nonlinear least-squares 
fi ts. Distribution volumes calculated from the rate constants 
provide parameters related to receptor density. For the 
one-tissue compartmental model, the respective parameter 
is the total distribution volume VT (equal to K1/k”2). For the 
two-tissue compartmental model the total distribution volume 
VT = VND + VS = (K1/k2’)(1 + k3’/k4), the specific distribution 
volume VS = (K1/k2’)(k3’/k4), and the binding potential BP = 
k3’/k4 provide measures of the specifi c binding. 

Fig. 19 shows an example, where a two-tissue 
compartment model was used to estimate BP of the SERT 

Fig. 18. Compartmental models used to describe receptor binding of radiotracers in brain.
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radiotracer [18F]FMe-McN5652 in anesthetized pigs under 
control conditions and after i.v. injection of the highly-
selective SERT inhibitor citalopram (5 mg/kg). Under 
control conditions, BP values clearly reflected the SERT 
distribution as demonstrated by correlation analysis with 
[3H]citalopram autoradiography with the highest values in 
the thalamus and the lowest in the cerebellum. Pre-injection 
of citalopram significantly inhibited [18F]FMe-McN5652 
accumulation, as demonstrated by the time-activity curves, 
and BP estimated from these curves[209, 260]. This clearly 
demonstrated the specifi city of the radiotracer uptake. The 
selectivity for the norepinephrine transporter (NET) was 
demonstrated by pre-injection of maprotilin, a selective 
NET inhibitor[209].

Accurate measurement of the arterial plasma time-
activity curve as well as consideration and correct 
determination of metabolites in plasma is important for 
receptor quantitation based on compartmental models 
using an arterial input function. This poses substantial 
problems in imaging of small animals and humans. 
Therefore, alternative quantification strategies, called 
“references tissue models’’ have been developed[261, 262]. 

These models rest on the observation that (apart from 
minor effects of different arrival times) the arterial input 
function is identical in different brain regions. Then, it is 
possible to use the tissue response to this input function 
in one region as an indirect measure of the input function 
if that region is devoid of the targeted receptor. This 
obviates the need for actual measurement of the arterial 
plasma time-activity curve and also makes metabolite 
analysis unnecessary. Furthermore, this strategy can be 
used even in the presence of brain metabolites. Although 
these techniques have several advantages compared to 
arterial blood sampling (especially non-invasiveness), they 
quite sensitively rely on several assumptions and should 
be used with great care. For example, the existence of 
any specific binding in the reference region results in an 
underestimation of specifi c binding in the target region[257].

PET also allows the visualization of specifi c receptor 
binding by estimation of the binding parameters in each 
voxel, i.e. each image point in the three-dimensional 
rectangular grid[263]. The higher the number of voxels, 
the higher the number of calculations to be executed. 
To be able to perform about a million estimations in a 

Fig. 19. Comparative PET and autoradiographic study of serotonin distribution in pig brain using [18F]FMe-McN5652 and [3H]citalopram 
as radioligands. Binding potential values estimated from time-activity curves (B) of a PET study in various brain regions 
(A) are compared to results from an in vitro autoradiographic study using [3H]citalopram (C) (adapted from Brust et al. 
Neuropsychopharmacology 2003[209] and Brust et al. Synapse 2003[212] ).
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reasonable time, graphical methods are available allowing 
linear rather than non-linear regression. For radiotracers 
with irreversible binding the Gjedde-Patlak graphical 
analysis[264-266] and for those with reversible binding the 
Logan graphical analysis[267] have become the methods of 
choice. For the two-tissue compartmental model, the slope 
of the regression line in the Logan plot represents the total 
distribution volume VT, defi ned by K1/k2(1+k3/k4) + fbv (fbv = 
fractional blood volume in the target region, k3/k4 = BP[267]). 

Fig. 20A shows a parametric map of VT of the α7 
nAChR radiotracer [18F]NS10743 resampled into the 
MR-based common stereotactic space for the brain of a 
juvenile pig[230]. Fig. 20B shows VT of [18F]NS10743 after 
administration of the selective α7 nAChR antagonist 
NS6740. This clearly demonstrates specific radiotracer 
binding in pig brain.

Newer developments include proposals to obtain 
parametric images even in cases without either an 
arterial input function or a reference region[268], direct 
reconstruct ion algori thms of l inear and nonl inear 
parametric images, and joint estimation of parametric 
images and input function[263]. Further validation of these 
concepts is still needed.

Proof-of-Concept in Humans

The final step in PET radiotracer development is proof-

of-concept in humans. A prerequisite to get permission 
for such studies is the transition of the biomarker from 
research-grade radiochemical to a radiopharmaceutical, 
for which higher standards of product quality must be 
met[269]. Many aspects of radiation safety, toxicology issues, 
quality control, licensing, and regulatory control need to be 
considered for the production of radiopharmaceuticals and 
these have been extensively reviewed elsewhere[5, 100, 270, 271]. 
The regulatory framework has become increasingly 
restrictive during the last two decades. Therefore, the 
time between fi rst successful radiosynthesis of a new PET 
radiotracer and its first human use is at least between 5 
and 10 years. For example, in the case of the α4β2 nAChR 
radiotracer (–)-[18F]flubatine, the time between the first 
report on radiosynthesis[164] and the fi rst report on human 
use[16] was 8 years. For [18F]FMe-McN5652 it was 10 
years[210, 272], and for [18F]FEOBV[126], a radiotracer for the 
VAChT, it has been almost 20 years[273]. At the beginning 
of neuroreceptor imaging with PET this transition time was 
much shorter, in the range of 1–2 years as exemplifi ed by 
[11C]raclopride[225, 274], 3-N-[11C]methylspiperone[224], and 
[11C]fl umazenil[49, 275].

However, even if a radiotracer is not further developed 
into a radiopharmaceutical for imaging in human subjects it 
may fi nd widespread use in preclinical studies with special 
animal PET devices[276] to investigate animal models of 
diseases[7] or new drugs[8, 252]. 

Fig. 20. Parametric maps of the distribution volumes (VT, mL/g) of [18F]NS10743 under baseline (A) and blocking (B) conditions in sagittal 
plane of pig brain. The VT values were calculated by the classic Logan method using the arterial input function for [18F]NS10743 
(adapted from Deuther-Conrad et al. Eur J Nucl Med Mol Imaging 2011[230]).
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Conclusion

The main focus of this review is the development and 
evaluation of radiolabeled ligands (radiotracers) in 
order to investigate brain functions in living organisms. 
Application of radiotracers provides images of transport, 
metabolic, and neurotransmission processes on the 
molecular level. PET is a method used in humans to 
acquire such information. It is the most sensitive and 
specific molecular in vivo imaging method available at 
present. Through the integration of chemical/radiochemical, 
pharmaceutical/radiopharmaceutical, biochemical and 
radiopharmacological basic research, computational 
chemistry, and with the aid of nuclear medicine diagnostics, 
a new approach in neuroscience has been made available. 
The foremost importance of this approach is the diagnosis 
and therapeutic monitoring of brain diseases.
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A migraine is a recurring neurological disorder characterized by unilateral, intense, and pulsatile headaches. 
In one-third of migraine patients, the attacks are preceded by a visual aura, such as a slowly-propagating 
scintillating scotoma. Migraine aura is thought to be a result of the neurovascular phenomenon of cortical 
spreading depression (SD), a self-propagating wave of depolarization that spreads across the cerebral cortex.  
Several animal experiments have demonstrated that cortical SD causes intracranial neurogenic infl ammation 
around the meningeal blood vessels, such as plasma protein extravasation and pro-inflammatory peptide 
release. Cortical SD has also been reported to activate both peripheral and central trigeminal nociceptive 
pathways. Although several issues remain to be resolved, recent evidence suggests that cortical SD could be 
the initial trigger of intracranial neurogenic inflammation, which then contributes to migraine headaches via 
subsequent activation of trigeminal afferents. 

Keywords: cortical spreading depression; migraine; neurogenic inflammation; PET; trigeminal nociceptive 
pathway

·Review·

Introduction

Cortical spreading depression (SD), described first by 
Leao[1], is a self-propagating wave of transient neuronal/
glial membrane depolarization that is accompanied by a 
transient negative shift of the direct current (DC) potential[2] 
and temporal elevation of cerebral blood flow (CBF)[3, 4] 
throughout the cerebral hemisphere at a rate of 2–5 mm/
min[1, 5, 6]. The rate of spreading correlates with the observed 
spread of the aura of a classical migraine[7], which is 
characterized by a spot of fl ickering light that appears  near 
the center of the visual field and then gradually expands 
outward[8-10]. Recently, cortical SD has been hypothesized 
to be the initial event involved in migraine headaches.  
Moskowitz et al. [11, 12] proposed that pro-inflammatory 
peptides, such as substance P and calcitonin gene-
related peptide (CGRP), released from trigeminocervical 
nerve terminals in response to some unknown stimulation, 

probably cortical SD, induces vasodilation and plasma 
protein extravasation. Such neurogenic inflammation is 
thought to trigger a headache via stimulation of trigeminal 
afferents. Consistent with this hypothesis, cortical SD 
induced intracranial neurogenic inflammation around the 
meningeal blood vessels[13-15], and subsequent activation 
of both peripheral[16] and central[17] trigeminal nociceptive 
pathways has been described. Here, we review the 
experimental evidence mainly from neurophysiological 
studies that has advanced the understanding of whether 
and how the neurovascular phenomenon of cortical 
SD causes intracranial neurogenic inflammation, and 
subsequently participates in tr iggering a migraine 
headache. 

Migraine Pathophysiology

A migraine is a recurring neurological disorder characterized 
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by unilateral, intense, and pulsatile headaches lasting 
4–72 h [18], and is often associated with symptoms including 
nausea, vomiting, and sensitivity to light, sound, or smell[19]. 
In one-third of migraine patients, the attack is preceded 
by transient neurological symptoms like sensory or motor 
deficits, collectively referred to as a migraine aura[9, 20, 21]. 
Most common is a visual aura, a scintillating scotoma, in 
which a spot of fl ickering light appears near the center of 
the visual fi eld and then gradually expands outward[8-10].  

Several theories have been proposed to explain the 
pathophysiology of migraine: the vascular, neural, and 
trigeminovascular theories. In the 1930s, Harold Wolff[22] 
and colleagues proposed the vascular theory, wherein the 
neurological symptoms of migraine aura are caused by 
cerebral vasoconstriction, and the migraine pain is evoked 
by vasodilatation of the extracranial terminal branches of 
the external carotid artery. They found that the intensity 
of migraine pain is closely related to the amplitude of 
pulsation in the occipital and superfi cial temporal branches 
of the external carotid arteries[22]. In the 1980s, Olesen and 
colleagues found the presence of spreading oligemia, a 
20%–30% reduction of cerebral blood flow that appears 
first in the posterior part of the brain and then gradually 
spreads into the parietal and temporal lobes at a rate of 
2–3 mm/min during an episode of migraine with aura[8, 23, 24]. 
The spread of oligemia does not match the territories of 
the major cerebral arteries, but follows the cortical surface, 
implying a neural, rather than a vascular cause[23]. A highly 
variable increase in the cerebral blood fl ow is often followed 
by oligemia[25, 26], but the periods of increased cerebral 
blood fl ow do not correlate temporally with the experience 
of migraine headache[8, 23, 27], suggesting that the intracranial 
vasodilation is likely an epiphenomenon, rather than a 
cause of the migraine headache.   

In 1941, Karl Spencer Lashley[10], a psychologist at 
Harvard University, described his own experience of a 
visual aura, where a scotoma started as a small area, then 
gradually enlarged, and spread toward the periphery of 
the visual fi eld, and the propagation rate was estimated to 
be 3 mm/min or less. Three years later, Aristides Leao[1] 
reported the phenomenon of cortical SD, characterized 
by a self-propagating wave of depolarization that begins 
in the neuronal/glial cells of local areas of the brain and 
subsequently spreads in all directions at a rate of ~3 mm/

min. The similarity of Lashley's migraine aura and Leao's 
cortical SD was first picked up by Milner in 1958[7], and 
further investigated by Olesen in the 1980s, as described 
above. Based on both Lashley's description of a spreading 
scotoma[10] and Leao's findings of cortical SD[1], the 
pathogenic theories changed from primary vascular to 
primary neural mechanisms.  

In the 1980s, Moskowitz and colleagues reconciled the 
primary vascular and primary neural views and proposed 
the trigeminovascular theory[11, 12]. They hypothesized 
that some unknown stimulation, probably the cortical 
SD, depolarizes the trigeminocervical nerve terminals 
innervating the meninges, and pro-inflammatory peptides 
such as substance P and CGRP are released from 
the primary meningeal afferents, which further induce 
vasodilation and plasma protein extravasation. Such 
neurogenic infl ammatory reactions were thought to trigger 
headache via stimulation of the trigeminal afferents. 
Supporting this theory, plasma extravasation was observed 
during electrical stimulation of the trigeminal ganglion in 
the rat[11], and pro-inflammatory peptides including CGRP 
and substance P were released in response to electrical 
stimulation of the trigeminal ganglion in humans and 
cats[28]. Moreover, the theory was supported by clinical 
studies where the CGRP levels were found to be increased 
in the jugular vein of patients during migraine attacks[29], 
and vasogenic leakage from the leptomeningeal vessels 
has also been shown in at least one case of migraine with 
aura[30], two cases of prolonged migraine aura and during 
spontaneous or familial hemiplegic migraine attacks[31, 32].

Leao's Cortical Spreading Depression

The mysterious phenomenon of cortical SD was first 
identified in the rabbit cerebral cortex by Aristides 
Leao, a young Brazilian neurophysiologist, during his 
Ph.D. fellowship in the Department of Physiology at 
Harvard University[1]. At that time, Leao was studying the 
electroencephalogram (EEG) of experimental epilepsy 
in the cerebral cortex of an anesthetized rabbit, but he 
was distracted by a contradictory and unexpected result 
that the EEG activity was silenced for a minute, and 
such suppression propagated slowly across the cerebral 
hemisphere. This phenomenon was then extensively 
studied around the world[33-36], and has been characterized 
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as a self-propagating wave of depolarization associated 
with a transient negative shift of the DC potential[2] and 
temporal elevation of the CBF[3, 4]. These changes in DC 
potential and CBF spread throughout the cortical gray 
matter at a rate of ~3 mm/min[1, 5, 6].

Cortical SD can be evoked by tetanic electrical stimuli, 
mechanical stimuli such as pressure on or puncture of the 
cortex, alkaline pH, low osmolarity, and chemical stimuli 
such as potassium ions or glutamate[36-38]. Recently, we 
demonstrated that transient tissue oxidation in a restricted 
local area of the rat cerebral cortex also induces cortical 
SD[3]. To restrict oxidation within a sub-millimeter region, 
we used a unique technique, photo-dynamic tissue 
oxidation (PDTO) technique, developed by Kataoka et al. 
for assessing the spatially- and temporally-controlled brain 
tissue oxidation from outside the brain within seconds or 
minutes[39]. PDTO was carried out by application of rose 
Bengal, a photo-sensitizing dye, to a discrete region of 
the brain, followed by photo-irradiation through the dura 
mater. We found a high-amplitude DC potential shift (~50 
mV) in the photo-oxidized area, and such a shift of the DC 

potential recovered gradually over the next 3 h (Fig. 1)[3]. 
A series of DC potential negative shifts with an amplitude 
of approximately –25 mV was observed in the surrounding 
area, indicating that a representative cortical SD was 
induced by prolonged and synchronized membrane 
depolarization in the photo-irradiated area[3].

The propagation of cortical SD is thought to involve 
the release and diffusion of some excitatory chemical 
mediators, most likely K+ and glutamate, into the interstitial 
fluid[40]. Mechanisms that modulate cortical excitability 
have been demonstrated to contribute to cortical SD 
propagation, such as the local distribution of astrocytes, 
which is known to stabilize the extracellular milieu[38, 41]. 
Astrocytes have been reported to remove K+ from the 
extracellular space by several mechanisms, including 
inwardly-rectifying K+ channels, the Na+/K+-ATPase and 
Na+-K+-Cl- co-transporters, and spatial K+ buffering via 
gap junctions[42, 43]. Indeed, astrocytes have been reported 
to prevent the occurrence of SD through spatial buffering 
of the extracellular K+[44]. Moreover, several studies have 
reported that the spread of SD stops where white matter 

Fig. 1. A: Schematic of the experimental method (brain viewed from above). The rose Bengal was injected into the frontal cortex (point 
a, represented by a cross), and two microelectrodes were placed in both the dye-injected site (point a) and in the parietal cortex 
(point b). The dye-injected site (cross) was then photo-irradiated. B: DC potential changes recorded from the dye-injected site (a) 
and the surrounding area (b). The bars indicate photo-irradiation for 10 min. Note the transient positive defl ections in the upper 
panel, which are thought to be induced by local current passing between the recording site and the neighboring tissue undergoing 
depolarization (adapted from Cui et al. Biochem Biophys Res Commun 2003[3]). 
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begins and at the edge of glial-fi brous scars left by previous 
injury or infarction[45, 46]. Consistent with these observations, 
we also demonstrated that the velocity of cortical SD 
gradually decreases from the dorsal to the ventral cortical 
areas of the insular cortex, in which the volume distribution 
of astrocyte is known to gradually increase.

Recently, we have also demonstrated that the brain 
serotonergic system, which is known to modulate the 
excitability of cortical neurons through activation of several 
receptor subtypes, in particular, 5-HT1A, 5-HT2A, and 
5-HT3 receptors[47-49], contributes to the propagation of 
cortical SD. Pyramidal neurons in the cerebral cortex 
express 5-HT1A and 5-HT2A receptors, which exert 
opposing effects on the excitability and firing activity of 
pyramidal neurons[47, 49]. Activation of 5-HT1A receptors 
hyperpolarizes, whereas activation of 5-HT2A receptors 
depolarizes pyramidal neurons[47-49]. On the other hand, 
5-HT2A receptors are expressed in large and 5-HT3 
receptors in small GABAergic interneurons[50]. The 
activation of the excitatory receptors 5-HT2A and 5-HT3 
in GABAergic interneurons directly excites GABAergic 
interneurons, and indirectly inhibits the fi ring of pyramidal 
neurons in the cortex and hippocampus[51, 52]. Although the 
activation of 5-HT2A receptors in pyramidal neurons results 
in the activation of neurons, a preferential inhibitory action 
of 5-HT has been reported in vivo[48]. Such a preferential 
inhibitory action of 5-HT on cortical neurons could be 
explained by the different binding affinities of 5-HT for 
5-HT1A and 5-HT2 receptors. Hoyer et al.[53] reported that 
5-HT has a much higher binding affinity for 5-HT1A than 
5-HT2 receptors in the cerebral cortex. We also found 
that the propagation velocity of cortical SD is increased, 
possibly by extending the width of the depolarization wave, 
in neonatal rats treated with 5,7-dihydroxytryptamine[54], 
in which the serotonergic innervation in the cerebral 
cortex is chronically decreased due to pharmacological 
degeneration of the dorsal raphe serotonergic neurons 
(Fig. 2). These results indicate that the excitability of the 
cerebral cortex might be increased by chronic dysfunction 
of serotonergic innervation in the cerebral cortex, and such 
a mechanism would explain the facilitation of migraine 
with a low serotonin disposition. Likewise, increased 
excitability of the cerebral cortex caused by gene mutation, 
such as missense mutation of CACNA1A (encoding the α1 

subunit of neuronal Cav2.1(P/Q-type) calcium channels), 
a representative gene mutation in familial hemiplegic 
migraine (FHM) families, induces migraine susceptibility by 
lowering the threshold of cortical SD generation[55].

Cortical SD Induces Neurogenic Infl ammation in 

Rat Cerebral Cortex

Cortical SD is thought to be a trigger of neurogenic 
inflammation around meningeal blood vessels, and then 
evokes headache pain via the activation of trigeminal 
afferents[11, 12, 56]. Bolay et al.[13] demonstrated that cortical 
SD causes vasodilation of the middle meningeal artery 
and subsequent plasma protein leakage mediated by the 
release of pro-infl ammatory peptides from trigeminal axon 
collaterals innervating the meninges. Further evidence[15] 
supports the idea that a long-lasting (up to 48 h) disruption 
of the blood-brain barrier can be induced by cortical SD, 
due to activation of the matrix metalloproteinase-9 (MMP-
9) cascade. The MMP-9 levels increase from 3 to 6 h 
after the induction of cortical SD in the ipsilateral cerebral 
hemisphere, reaching a maximum at 24 h and persisting for 
at least 48 h[15]. Plasma protein leakage and brain edema 
are also contemporaneous 3 h after cortical SD induction. 
These observations suggest that the plasma protein 
extravasation and pro-infl ammatory peptides release from 
primary meningeal afferents might be a pivotal step in the 
cortical SD-induced neurogenic infl ammatory process and 
subsequent headache. However, confl icts exist, as several 
drugs that selectively inhibit plasma protein extravasation in 
rodents have failed to reduce the pain severity in patients 
with migraine as evidenced by the failure in clinical trials of 
substance P and neurokinin-1 antagonists[57] and specific 
plasma protein extravasation blockers such as 4991w93[58] 
and cp122,288[59]. Such contradictory evidence indicates 
that an appropriate method is necessary to investigate 
whether and how the neuroinflammation is involved in 
migraine etiology and to verify the extrapolated data from 
animal studies for the human condition.

Recent advances in non-invasive molecular imaging 
techniques, such as positron emission tomography (PET), 
provide powerful tools for quantitative investigation of 
the tissue distribution and dynamic changes of functional 
molecules in vivo, because of their high sensitivity and 
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Fig. 2. Increased velocity of cortical SD in 5,7-dihydroxytryptamine (5,7-DHT)-treated rats. A: Schematic of the experimental method (brain 
viewed from above): two laser Doppler fl ow probes were placed on the same side as the dye-injection (cross) at different distances 
(point a, 4 mm; point b, 9 mm). A microelectrode was placed near the caudal probe (point b) for recording DC potential changes. B: 
PDTO-induced changes in cerebral blood fl ow (CBF, upper) and in the DC potential (lower). Bars indicate photo-irradiation for 10 
min. C: Spreading velocity in 5,7-DHT-treated (65 hyperperfusions in eight animals) and vehicle-treated rats (51 hyperperfusions in 
six animals). *P <0.05, unpaired t-test (adapted from Cui et al. J Neurosci Res 2013[54]).

spatiotemporal resolution. PET imaging with specific 
probes designed for binding to inflammatory processes, 
such as [11C]PK11195, [11C]DAA1106, [11C]DPA-713, and 
[11C]CLINME have been widely used for studying brain 
infl ammation[60-63]. The principal immune cells in the central 
nervous system, microglia, are activated in response 
to inflammatory processes in the brain[64]. The process 
of microglial activation is thought to be related to an 
increase in the number of microglia and the expression of 
numerous proteins such as the peripheral benzodiazepine 
receptor (PBR)[65]. The PBR is a mitochondrial outer 
membrane protein, and is expressed at a low level on 
resting microglia and astrocytes in the normal brain. Its 

expression is upregulated in activated microglia[66-68], 
and the upregulation is well correlated with the state of 
activation[69-71]. 11C-labeled PK11195 is a specific PET 
ligand for PBR to image activated microglia in the brain, 
and has been extensively used for quantitative evaluation 
of brain infl ammation by PET in a number of neurological 
disorders, such as stroke[72], multiple sclerosis[69], Alzheimer 
disease[73], Parkinson disease[74] and Huntington disease[75].  

Using [ 11C]PK11195-PET imaging in rats,  we 
demonstrated that uni lateral  cort ical  SD induces 
neurogenic inflammation in the ipsilateral cerebral 
hemisphere[14]. The highest [11C]PK11195 radioactivity was 
seen in the initial area of the cortical SD (KCl-microinjected 
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site), and moderate radioactivity was observed in the 
ipsilateral surrounding areas, but not in the corresponding 
contralateral areas. In sham control rats, however, a slight 
increase in [11C]PK11195 radioactivity was seen primarily 
in the NaCl-microinjected site. [11C]PK11195 radioactivity is 
barely observed within the brain under normal conditions in 
control rats, except for the lateral, third, and fourth ventricles 
(Fig. 3). Our immunohistochemical study also confirmed 
that the number of OX-42-immunopositive microglia is 
increased in the ipsilateral hemisphere compared with 
the corresponding area in the contralateral hemisphere 
in rats with unilateral cortical SD (Fig. 4). Hypertrophied 
(enlarged, darkened soma with shorter, thicker processes) 
or amoeboid (densely stained, enlarged soma with a few 

short processes) OX-42-immunopositive microglia are 
often seen in the ipsilateral hemisphere. However, such a 
difference between the two hemispheres is not observed in 
sham-operated rats. These results indicate that cortical SD 
is able to induce microglial activation, a well-known sign of 
neuroinfl ammation in the brain.

Cortical SD Activates the Trigeminal Nociceptive 

Pathway in the Rat Brain

Migraine headaches are thought to be triggered by brain 
inflammation that activates trigeminal nociceptors in 
meningeal blood vessels[76]. However, it is still controversial 
whether the neurogenic inflammation induced by cortical 

Fig. 3. A representative [11C]PK11195 PET image co-registered with the MRI template eight days after generation of unilateral (left 
hemisphere) cortical SD. The PET image was reconstructed with the MAP algorithm and summed from 5 to 60 min after radioligand 
injection. The arrow in the middle panel indicates the KCl-microinjected area. The white broken lines indicate the regions of 
interest (core, ipsilateral and contralateral). The mean values of binding potential for [11C]PK11195 in the core and ipsilateral side 
were 0.48 ± 0.18 and 0.26 ± 0.07, respectively. Binding potential was estimated by Logan-noninvasive graphical analysis using 
contralateral as the reference region (adapted from Cui et al. J Nucl Med 2009[14]).
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SD is able to activate the trigeminal nociceptive pathway. 
Recently, Moskowitz and colleagues demonstrated that 
c-Fos expression in the trigeminal nucleus caudalis 
(TNC), the first central site of the trigeminal nociceptive 
pathway, is significantly increased by cortical SD, and this 
increase is abolished by trigeminal rhizotomy[56]. Moreover, 
cortical SD-evoked single neuron activity in the trigeminal 
ganglion (peripheral pathway) and the TNC has also been 
demonstrated directly by electrophysiological studies[17]. Such 
activation was observed as a two-fold increase in ~50% of 
neurons in the trigeminal ganglion and TNC, and persisted 
for 45 min or longer. However, confl icting reports have shown 
that the cortical SD does not induce sustained neuronal 
activity recorded mainly in the deeper laminae of the more 
rostral trigeminal nucleus up to several hours after either a 
single or even a series of cortical SD inductions in the rat[77, 78]. 

We recently developed a small-animal neuroimaging 
method combining 2-[18F]fluoro-2-deoxy-D-glucose (FDG) 

PET imaging with statistical parametric mapping analysis 
to evaluate the regional activity in the entire rat brain. 
Using the FDG-PET imaging method, we found that 
cortical SD activates the trigeminal nociceptive pathway, 
including both second-order and high-order nuclei, such 
as the thalamus and somatosensory cortex, ~40 h after 
the induction of unilateral cortical SD (unpublished data). 
Consistently, several electrophysiological studies have 
reported that neurons in the high-order nuclei of the 
trigeminal nociceptive pathway are activated in response 
to inflammatory stimuli applied to the meninges[79, 80]. A 
juxtacellular recording study has further revealed that the 
neurons located in the trigeminal thalamic areas (ventral 
posteromedial thalamic nucleus/ posterior thalamic 
nucleus) are activated by inflammatory stimulation of the 
meninges, and functionally project to diverse cortical areas, 
such as the trigeminal primary somatosensory (trigeminal 
barrel-field region of the primary somatosensory cortex, 

Fig. 4. Photomicrographs of OX-42 immunoreactivity following cortical SD. The images show the OX-42 immunoreactivity 8 days after 2 h 
of recurrent SD in the left hemisphere (A and C) compared with the contralateral hemisphere (B and D). C and D, magnifi ed views 
of the OX-42 immunoreactivity. Hypertrophied or amoeboid OX-42-positive microglia were often seen in the left hemisphere. Scale 
bars, 500 μm in A and B, and 100 μm in C and D (adapted from Cui et al. J Nucl Med 2009[14]).
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S1BF), trunk region of the primary somatosensory cortex, 
secondary somatosensory cortex, insula, primary visual 
cortex and primary auditory cortex[81]. Taken together, these 
observations suggest that cortical SD is able to activate 
the trigeminal nociceptive pathway and might contribute to 
migraine headache.

Summary 

A migraine headache is a complex neurobiological 
disorder that has been hypothesized to be caused by 
intracranial neurogenic inflammation which activates 
trigeminal nociceptors in meningeal blood vessels. Since 
its discovery by Leao, cortical SD has been implicated 
in the pathophysiology of migraine due to the similar 
spreading velocity of cortical SD and the scintillating 
scotoma, a typical visual aura in migraine. Animal studies 
have demonstrated that cortical SD causes plasma protein 
extravasation around the meningeal blood vessels due to 
vasodilation of the middle meningeal artery or long-lasting 
disruption of the blood-brain barrier. Furthermore, direct 
and indirect evidence has shown that cortical SD activates 
both the peripheral (trigeminal ganglion) and the central 
pathways including the second-order and high-order nuclei 
of the trigeminal nociceptive pathways. These observations 
suggest that cortical SD is the initial trigger of prolonged 
neurogenic inflammation around the meningeal blood 
vessels, which probably evokes the headache sensation. 
Although the precise roles of cortical SD in migraine remain 
unclear, evidence from experimental models in rodents 
provides a valid platform for understanding the molecular 
mechanism of migraine and for promoting the development 
of new migraine therapies. 
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Neuroimaging of cerebral glucose metabolism and blood fl ow is ideally suited to assay widely-distributed brain 
circuits as a result of local molecular events and behavioral modulation in the central nervous system. With 
the progress in novel analytical methodology, this endeavor has succeeded in unraveling the mechanisms 
underlying a wide spectrum of neurodegenerative diseases. In particular, statistical brain mapping studies have 
made signifi cant strides in describing the pathophysiology of Parkinson’s disease (PD) and related disorders by 
providing signature biomarkers to determine the systemic abnormalities in brain function and evaluate disease 
progression, therapeutic responses, and clinical correlates in patients. In this article, we review the relevant 
clinical applications in patients in relation to healthy volunteers with a focus on the generation of unique spatial 
covariance patterns associated with the motor and cognitive symptoms underlying PD. These characteristic 
biomarkers can be potentially used not only to improve patient recruitment but also to predict outcomes in 
clinical trials.
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·Review·

Introduction

Funct ional  bra in imaging wi th posi t ron emission 
tomography (PET) and single-photon emission computed 
tomography (SPECT) has provided novel insights into the 
pathophysiology of Parkinson’s disease (PD) and related 
movement disorders. The integrity of the presynaptic 
nigrostriatal dopaminergic systems can be evaluated by 
measuring the dopamine storage capacity using [18F]
fluorodopa (FDOPA), or dopamine transporter (DAT) 
binding using radiotracers such as [123I]βCIT and [18F]FPCIT 
(see reviews [1, 2]). Postsynaptic dopamine receptor systems 
can be assayed with radioligands that bind specifically 
to D1 or D2 receptors. In addition, PET has been used to 
study regional neuronal activity by quantifying resting-
state regional cerebral glucose metabolism (rCMRglc) 
with [18F]fl uorodeoxyglucose (FDG)[3] and regional cerebral 

blood flow (rCBF) activation responses with [15O]H2O
[4]. 

Abnormal rCBF distributions in the resting state can also 
be measured using PET and SPECT perfusion tracers. 
In particular, imaging of cerebral metabolism and blood 
flow has contributed greatly to the understanding of the 
abnormal brain circuitry underlying the pathophysiology of 
PD. 

PET/SPECT can be particularly useful in assessing 
the consequences of nigrostriatal dopamine deficiency 
on the functional networks of the basal ganglia. Although 
the primary pathological abnormality in PD is located in 
the substantia nigra, the degeneration of dopaminergic 
projection neurons to the striatum leads to widespread 
changes in the functional activity of the basal ganglia[5]. 
Specifi cally, the loss of inhibitory dopaminergic input to the 
striatum increases the inhibitory output from the putamen to 
the external globus pallidus (GPe), decreases the inhibitory 
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output from the GPe to the subthalamic nucleus (STN), 
and causes functional over-activity of the STN and internal 
globus pallidus (GPi), resulting in reduced output from the 
ventrolateral thalamus to the cortex. This classic model 
has been modifi ed to emphasize the cognitive dysfunction 
associated with PD[6] and is linked to concurrent changes in 
regional glucose metabolism and blood fl ow.

We review the advances in functional brain imaging 
studies of PD in the resting state based on analyses of 
rCMRglc and rCBF in patients and healthy volunteers. As 
in most neurodegenerative conditions, these two variables 
are considered to be coupled in PD and related to synaptic 
activity at the regional level. We also summarize the use 
of novel analytical techniques in the clinical diagnosis 
and evaluation of PD. These include both univariate and 
multivariate statistical approaches such as statistical 
parametric mapping (SPM) and principal component 
analysis (PCA) for volume of interest (VOI) or voxel-wise 
analysis over the whole brain. In addition, we focus on the 
application of these imaging methods to the selection of 
suitable candidates for surgical trials and the assessment 
of their treatment outcome.  

Functional Brain Imaging: Univariate Analyses

PET/SPECT imaging of rCMRglc and rCBF has been 
used extensively to identify changes in regional brain 
function in patients with PD comparable to those revealed 
in experimental animal models[7, 8]. The bulk of this effort 
is based on the use of SPM to localize regionally specifi c 
differences and functional-clinical correlates in PD patients 
scanned when they are off dopaminergic medications. 
Functional brain images are spatially transformed into 
a standard anatomical space to allow mapping analysis 
on a voxel basis. To reduce inter-individual variability in 
anatomical and functional substrates, images are usually 
ratio-normalized to a global mean or other reference value 
that is assumed to be preserved in the diseased brain. 
Consequently, only relative measures of functional brain 
activity are used in most studies.
Cerebral Metabolism Studies
Because the local rate of glucose metabolism is a direct 
marker of synaptic activity, PET with FDG has been the 
most common approach to studying abnormal brain function 
in PD. By using FDG PET images from multiple cohorts 

of patients and healthy controls we and other researchers 
have reported a reproducible pattern of abnormal regional 
metabolism in PD (Fig. 1) characterized bilaterally by 
increases in the putamen, thalamus, cerebellum, pons, and 
sensorimotor cortex (SMC), and decreases in the lateral 
frontal and parieto-occipital areas[9-11]. This is in accordance 
with a dual-tracer PET study with both FDG and [15O]O2 
showing bilaterally increased energy metabolism in the 
putamen and pallidum in early unmedicated PD patients[12]. 
Regional metabolism in the cerebellum is also elevated 
in early-stage and advanced PD patients[13, 14], suggesting 
that cerebellar hypermetabolic activity in PD is closely 
linked to akinesia and rigidity but not to tremor. It has been 
further reported that clinical scores of motor symptoms are 
correlated positively with rCMRglc in the bilateral putamen 
and pallidum[15], and in the midbrain, cerebellum, and 
motor cortex[16]. These reports indicate a pathophysiologic 
association between subcortical hypermetabolism and 
motor dysfunction in PD.

Unique features of cortical hypometabolism in PD 
have also been frequently reported. An early study reported 
pronounced occipital hypometabolism in the more severely 
affected hemisphere in PD[17]. The asymmetry in this 
metabolic reduction correlated inversely with fi nger-tapping 
performance in a subset of patients with more unilateral 
motor impairment. While hypometabolism is limited in the 
frontal and occipital cortices of PD patients with no cognitive 
impairment[18], it becomes more widespread within cortical 
regions in advanced PD[14]. Further, the relationships of 
abnormal rCMRglc with clinical symptoms and impaired 
striatal DAT binding have been examined in de novo 
untreated PD patients[19]. Correlation analyses showed that 
the UPDRS motor ratings were negatively correlated with 
rCMRglc in the premotor cortex (PMC), while putaminal 
DAT binding was positively correlated with rCMRglc in 
the premotor, dorsolateral prefrontal, anterior prefrontal, 
and orbitofrontal cortices. This method also led to a set of 
disease-related brain templates for PD and atypical PD to 
aid single-case differential diagnosis[10, 11]. These results may 
represent the cortical functional correlates of nigrostriatal 
dysfunction in the motor basal ganglia-cortical circuitry in 
parkinsonism. 

FDG PET has also been used to delineate the 
metabolic functional correlates of PD with cognitive 
impairment. Regional metabolism is markedly reduced 
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in the inferior/superior parietal and occipital cortices in 
PD patients with autonomic failure[20], in agreement with 
the negative correlation reported between intellectual 
impairment in PD and rCMRglc in posterior association 
regions such as the bilateral parietal and occipital gyri[21]. 
Both studies provided early indications that cortical 
hypometabolism may be primarily associated with cognitive 
dysfunction in PD. It was also found that the relative 
metabolic activity in typically affected cortical regions was 
signifi cantly correlated with scores for cognition, but not with 
those for motor performance and behavior in a combined 
cohort of PD patients without and with dementia[22]. This 
measure gave a high sensitivity and specificity of 0.91 
and 1.00 for an ultimate clinical diagnosis of dementia. 
Indeed, we found that worsening executive dysfunction in 
non-demented PD patients is related bilaterally with lower 
rCMRglc in parieto-occipital association regions, and with 

higher rCMRglc in the cerebellum (Fig. 2). Extensive ar eas 
of hypometabolism are also evident in the posterior cortical 
regions, including the temporo-parieto-occipital, medial 
parietal, and inferior temporal cortices in PD patients with 
mild cognitive impairment[18]. These results support the 
notion that posterior cortical dysfunction is the primary 
imaging feature of cognitively-impaired PD patients at risk 
for developing dementia.
Cerebral Blood Flow Studies
Owing to the short half-life of the radiotracer, H2O PET has 
been primarily used in brain activation studies to examine 
physiological processes underlying motor execution and 
learning[23, 24]. Nevertheless, this method has also been 
used to map rCBF alterations in PD patients at rest. Both 
rCBF and rCMRglc data measured with PET yield similar 
patterns of subcortical hyperactivity and cortical hypoactivity 
in PD patients; these are highly comparable to those from 

Fig. 1. A: Brain regions with signifi cant metabolic abnormality identifi ed by SPM analysis of resting-state FDG PET scans in patients 
with Parkinson’s disease (PD) and age-matched normal volunteers. PD patients showed relative metabolic increases (red) 
in the putamen/globus pallidus (GP) and thalamus, in the cerebellum and pons, and in the sensorimotor cortex (SMC), along 
with metabolic decreases (blue) in the parieto-occipital association areas. B: Bar diagrams (mean ± standard error) illustrating 
increased metabolic activity in the subcortical area and decreased activity in the cortex using rCMRglc data (P <0.01) that 
compared the PD patients to the controls. (Produced by the authors using FDG PET images described by Ma et al. J Cereb Blood 
Flow Metab 2007[39]. The display shows t-maps that are signifi cant at P <0.001. The regional brain activity values were obtained 
post-hoc with a spherical VOI 8 mm in diameter centered at the peak of signifi cant SPM clusters.)
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resting-state rCBF studies using SPECT perfusion data. For 
example, one study compared parametric maps of globally 
normalized rCBF in PD patients and age-matched normal 
volunteers using SPECT with 99mTc-ethyl cysteinate dimer 
(ECD)[25]. In patients with early-stage PD, rCBF increased 
in the bilateral putamen and the right hippocampus relative 
to controls. In patients with late-stage PD, rCBF increased 

in the bilateral putamen, pallidum, hippocampus, and 
cerebellum, the left ventrolateral thalamus, and the right 
insula and inferior temporal cortex. Thus, signifi cant rCBF 
changes in PD are associated with the pathophysiology and 
progression in the functional architecture of thalamocortico-
basal ganglia circuits and related pathways. 

By contrast, rCBF declines in the supplementary motor 

Fig. 2. A: Brain regions with signifi cant behavioral correlations identifi ed by SPM regression analysis of resting-state FDG PET scans 
in non-demented patients with Parkinson’s disease (PD). Scores on the California verbal learning test (CVLT) were positively 
correlated with metabolic activity in the precuneus and bilateral parieto-occipital association areas (red), and negatively with 
metabolic activity in the right brainstem and bilateral cerebellum (blue). B: Scatter plots illustrating signifi cant linear relationships 
between the measure of cognitive dysfunction in PD with decreased brain activity in the parieto-occipital regions and increased 
brain activity in the cerebellum with rCMRglc data. Note that a lower CVLT score indicated a higher degree of cognitive dysfunction 
in individual patients. (Produced by the authors using FDG PET and clinical data described by Huang et al. NeuroImage 2007[50]. 
The display represents t-maps that are significant at P <0.01. The regional metabolic values were obtained post-hoc with a 
spherical VOI 8 mm in diameter centered at the peak of signifi cant SPM clusters.) 
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area (SMA) and the dorsolateral prefrontal cortex (DLPFC) in 
PD patients using SPECT with 99mTc-hexamethyl propylene 
amine oxime (HMPAO)[26]. In a subgroup of patients with 
Hoehn-Yahr III/IV, rCBF decreased in the SMA, and in the 
DLPFC and insular cortex. The degree of rCBF decline in 
the DLPFC or the insular cortex was correlated with UPDRS 
motor scores. rCBF was also significantly reduced in the 
bilateral posterior parietal and occipital cortices in non-
demented PD patients relative to normal individuals using 
SPECT with N-isopropyl-p-[123I]iodoamphetamine (IMP)[27]. 
There was a strong positive correlation between the scores 
in a visual-processing task and rCBF in the right visual 
association area in PD patients. This work demonstrates that 
posterior parietal and occipital hypoperfusion is a consistent 
feature in non-demented PD patients and the latter is likely 
to underlie impaired visual cognition. 

SPECT perfusion data have proven useful for 
characterizing the unique features of cortical hypoperfusion 
in PD with dementia. Previous studies in patients with 
Hoehn-Yahr III-IV PD showed signifi cant rCBF decreases 
in the left frontal/parietal association cortices with IMP[28] 
and in the precuneus and inferior parietal regions with 
HMPAO[29], consistent with the impaired visuospatial 
perception in demented PD. Furthermore, temporal and 
more extensive parietal hypoperfusion are often seen in 
demented patients[30]. The cortical hypoperfusion might be 
clinically useful in discriminating PD patients with dementia 
from those without cognitive impairment. 

In summary, imaging studies of brain metabolism 
and perfusion have revealed unique and comparable 
pathological features underlying varying degrees 
of motor and cognitive dysfunction in patients with 
PD. The characteristic patterns of abnormal regional 
cerebral metabolism and perfusion are to a large degree 
independent of global measures of brain activity in non-
demented patients with PD as described previously[3, 31]. The 
generally similar fi ndings from these two imaging measures 
of brain function indicate close coupling between cerebral 
blood fl ow and metabolism in PD under resting conditions. 
These results have established molecular-functional-clinical 
correlates of the impaired cortico-subcortical circuitry in PD.

Functional Brain Imaging: Multivariate Analyses

The measurements of local metabolic rates or blood flow 

changes may not fully account for the complex nature of 
brain networks involved in neurodegenerative processes 
and their modulation by therapy. These processes may be 
better represented by spatial covariance patterns among 
spatially distributed functional regions that can be altered 
by the presence of disease or behavioral activation. Many 
computing methods have been used in the analysis of 
rCMRglc and rCBF data to compare groups in the same 
resting state[32-35] and under brain activation conditions[36-38]. 
The resultant topographic patterns describe functional 
connectivity and are commonly referred to as disease-
specifi c brain networks.
Metabolic Network Analyses
We have developed a statistical modeling approach to 
detect and quantify regional functional interactions in 
neurodegenerative disorders[31, 39]. This method, known 
originally as the scaled subprofi le model (SSM), uses PCA 
to identify regional covariance patterns using images from 
a combined group of patients and controls or a single group 
of individuals (software freely available at our website http://
www.feinsteinneuroscience.org). These patterns refl ect the 
covariation of increased or decreased activity in regional 
brain function in patients relative to the normal population 
or in relation to the correlation with a behavioral variable. 

SSMPCA allows for the prospective quantification 
of covariance pattern expression in individual subjects. 
Subject scores computed from functional brain images 
can be correlated with clinical or physiological parameters 
on a single-case basis[3]. Of note, these scores have 
higher signal-to-noise ratios than decreasing levels of 
dopaminergic markers such as FDOPA or FPCIT with 
increasing disease severity. Thus, SSMPCA may offer 
greater sensitivity for detecting spatiotemporal changes 
in brain network activity during progression or following 
therapy. 

Many imaging studies have been performed to 
implement and validate network methods for the diagnosis 
and evaluation of patients with PD and related movement 
disorders[39, 40]. Using SSMPCA analysis of FDG PET data 
we consistently revealed a pattern of regional metabolic 
covariation characterized by lentiform, thalamic, cerebellar, 
pontine, and sensorimotor hypermetabolism, along with 
hypometabolism in the lateral PMC, SMA, and parieto-
occipital regions (Fig. 3). The subject scores for this PD-
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related covariance pattern (PDRP) are elevated in PD 
patients, and are correlated positively with clinical disease 
ratings and negatively with striatal FDOPA uptake or DAT 
binding[3, 41, 42]. This pattern has been confi rmed in multiple 
cohorts of PD patients[43-45] and parkinsonian primates[46] 
scanned with different tomographs. In addition, PDRP 
expression showed an excellent test-retest reproducibility 
[intraclass correlation coefficient (ICC) >0.94] between 
FDG PET imaging sessions conducted OFF and ON 
medications in independent groups of PD patients at 
early and advanced stages[39]. Moreover, disease-specific 
covariance patterns for multiple system atrophy (MSA), 
progressive supranuclear palsy and parkinsonian tremor 
have also been developed for more accurate differential 
diagnosis of PD from atypical parkinsonism on a single-
case basis[45, 47-49].

SSMPCA analysis of FDG PET data can also 

reveal the specific networks associated with cognitive 
dysfunction in PD. By using this method in non-demented 
PD patients, we identified a covariance pattern that is 
correlated with memory and executive functioning[50]. This 
PD-related cognitive pattern (PDCP) is characterized by 
hypermetabolism in the cerebellar vermis and dentate 
nuclei and hypometabolism in frontal and parietal 
association areas (Fig. 4). Similar results have been 
reported from VOI-based SSMPCA analysis[51] and another 
multivariate method based on partial least squares[34]. 
PDCP activity predicted memory or visuospatial function, 
and perceptual motor speed in a prospective validation 
sample of PD patients of similar disease duration and 
severity. In addition, PDCP scores showed excellent test–
retest reliability (ICC >0.89) in patients undergoing repeat 
FDG PET imaging OFF and ON medications. PDCP is 
orthogonal to PDRP as its expression is independent of 

Fig. 3. A: Parkinson’s disease-related pattern (PDRP) identifi ed by SSMPCA spatial covariance analysis of resting-state FDG PET scans 
in patients with Parkinson’s disease (PD) and age-matched normal volunteers. This pattern was characterized by relatively 
increased metabolic activity (yellow) in the putamen/globus pallidus (GP) and thalamus, in the cerebellum and pons, and in the 
SMC. These changes covaried with relatively decreased metabolic activity (blue) in the lateral premotor cortex (PMC) and in the 
parieto-occipital association regions. B: Scatter plots of individual values and mean (± standard deviation) for PDRP expression 
in healthy controls (open circles) and PD patients (fi lled circles). PDRP network scores were signifi cantly elevated in patients 
relative to controls. A higher PDRP score corresponded with more severe motor symptoms in individual patients. [Reproduced by 
the authors using FDG PET images described by Ma et al. J Cereb Blood Flow Metab 2007[39]. The display represents voxels that 
contributed signifi cantly to the network at P ≤0.001, and were demonstrated to be reliable (P <0.001) on bootstrap estimation.] 
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UPDRS motor scores in individual PD patients.
Importantly, the topography of the PD-related 

metabolic covariance pattern identified in these studies 
is in line with experimental models of parkinsonism[3, 46]. 
Specifically, this supports the notion of enhanced pallido-
thalamic inhibition as the main functional substrate of 
parkinsonian bradykinesia. The subject scores for PDRP 
correlate with objective disease severity ratings and with 
independent measures of nigrostriatal dopamine function. 
Furthermore, the PDRP scores and rCMRglc within key 
hypermetabolic regions obtained from preoperative FDG 
PET scans are related to neuronal firing rates in the GPi 
and STN measured during stereotaxic neurosurgery[52, 53]. 
On the contrary, the PDCP scores did not show such 
relationships despite their correlation with cognitive 
impairment in patients. This is further evidence that the 

PDRP is an indirect measure of an abnormal physiological 
signal resulting from hyperactivity in the basal ganglia-
thalamic-motor cortical loop.
Blood Flow Network Analyses
PD-related brain network patterns based on SSMPCA can 
be directly identifi ed and prospectively accessed by using 
rCBF images from PET or SPECT. VOI-based network 
analysis of ECD SPECT data from PD patients and age-
matched healthy controls revealed a pattern characterized 
by relative increases in putaminal, thalamic, and cerebellar 
perfusion along with decreases in the frontal operculum 
and in the medial temporal cortex[54]. The subject scores 
for this PDRP pattern were significantly increased in PD 
patients relative to healthy control and MSA groups. These 
features agree very well with those reported in the PDRP 
derived from FDG PET images. 

Fig. 4. A: Parkinson's disease-related cognitive pattern (PDCP) identifi ed by SSMPCA spatial covariance analysis of resting-state FDG 
PET scans in non-demented PD patients. This pattern was characterized by covarying metabolic reductions (blue) in the rostral 
supplementary motor area (pre-SMA) and precuneus, as well as in the dorsal premotor (PMC) and posterior parietal regions, 
and in the left prefrontal cortex. Relative metabolic increases (yellow) in the cerebellar vermis and dentate nuclei (DN) were also 
evident as part of this topography. B: Brain-behavioral correlations between PDCP network expression and neuropsychological 
performance in non-demented PD patients. There was a signifi cant linear relationship between PDCP network activity and scores 
in the California verbal learning test (CVLT). Note that a lower CVLT score and higher PDCP activity indicated a greater degree of 
cognitive dysfunction in individual patients. (Reproduced by the authors using FDG PET and clinical data described by Huang 
et al. NeuroImage 2007[50].) The display represents regions that contributed significantly to the network at P ≤0.01 and were 
demonstrated to be reliable (P <0.05) by bootstrap estimation.



Neurosci Bull     October 1, 2014, 30(5): 823–837830

Notably, the PET-derived PDRP scores computed from 
ECD SPECT scans more accurately separate PD patients 
from normal controls and MSA patients[54, 55]. Receiver 
operating characteristic analysis indicated that the PDRP 
measures yielded an overall diagnostic accuracy of 0.91, 
with a sensitivity of 0.97 and specifi city of 0.71 and 0.80 for 
distinguishing PD from the other two groups. Hence, the 
disease-related patterns identified with FDG PET can be 
reliably assessed in SPECT perfusion scans to discriminate 
between healthy controls and patients with PD and atypical 
parkinsonism.

The disease-related patterns seen in PDRP derived 
from FDG PET and ECD SPECT images are also similar 
to those revealed by another multivariate brain mapping 
method based on independent component analysis 
(ICA). A SPECT study compared differences in rCBF 
between PD patients and age-matched controls with 
SPM after decomposing the images into disease-related 
and unrelated components[33]. In the disease-related 
components, PD patients revealed significantly higher 
normalized rCBF in the putamen, pallidum, thalamus, 
brainstem, and cerebellum, and signifi cant hypoperfusion 
in the parieto-temporo-occipital cortex, DLPFC, insula, 
and cingulate gyrus. Importantly, motor UPDRS scores in 
patients correlated negatively with rCBF in the insula and 
cingulate gyrus. The abnormal regions revealed by both 
ICA and PCA are consistent with the current model of 
parkinsonism.

We have validated the PDRP or PDCP network as a 
reliable measure of parkinsonism or cognitive dysfunction 
by computing its activity prospectively in H2O and FDG PET 
scans from PD patients and healthy volunteers[56]. PDRP 
expression was signifi cantly elevated in PD patients, using 
either   H2O or FDG PET scans. A signifi cant correlation was 
present between PDRP/PDCP scores computed from H2O 
and FDG images in the same cohort of PD patients. This 
relationship has established the clinical utility of network 
quantification with rCBF data in the early differential 
diagnosis of PD. For example, PDRP/PDCP scores were 
computed in a prospective cohort of normal controls and 
patients with early- and late-stage PD who underwent 
H2O PET imaging. We found that PDRP scores performed 
better than those for PDCP in separating early PD from 
controls. This difference in PDRP and PDCP scores from 

cross-sectional data is in line with the observation from 
a longitudinal study of disease progression with FDG 
PET[42], indicating that the manifestation of motor symptoms 
precedes cognitive dysfunction in early PD. 

The reliability of PDRP/PDCP expression computed in 
rCBF scans has also been evaluated within subjects using 
a test–retest design in mild and advanced PD patients[56]. 
These patients were scanned twice within one H2O PET 
imaging session at baseline and during treatment with 
levodopa (LD) infusion or deep brain stimulation (DBS). 
PDRP/PDCP scores measured with rCBF data have 
very high reproducibility (ICC >0.92), comparable to that 
from rCMRglc data acquired between FDG PET sessions 
separated by up to 2 months. This high reproducibility is 
evident in both early-stage and advanced PD patients 
scanned at baseline and during treatment. 

PDRP/PDCP expression can also be assessed 
prospectively with rCBF data acquired from arterial spin 
labeling (ASL) perfusion MRI. We have shown that ASL MRI 
is comparable to FDG PET in quantifying PDRP network 
activity in individual patients and healthy controls[57]. Indeed, 
the PDRP scores in PD patients measured concurrently 
with both rCBF and rCMRglc images were equally elevated 
from the controls and significantly correlated with each 
other. With further technical refinement this imaging 
modality has been successful in deriving analogous spatial 
covariance patterns associated with motor and cognitive 
dysfunction in PD[58].

In summary, the motor and cognitive symptoms of 
PD have been linked to abnormal spatial covariance 
patterns involving different aspects of the basal ganglia-
thalamocortical pathways. These patterns closely resemble 
specific physiological and anatomical brain networks 
known to be operating in disease states, and are highly 
reproducible across independent patient populations and 
tomographs at separate institutions. Individual subject 
scores for the motor-related topography are significantly 
elevated in PD patients and correlate with bradykinesia and 
rigidity ratings. In addition, subject scores for the cognition-
related topography predict behavioral performance. 
Besides the use of FDG PET data, pattern derivation and 
prospective assessment can also be achieved with r CBF 
data obtained from PET and more routine SPECT methods 
as well as newly-developed MRI perfusion techniques.
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Functional Neuroimaging in the Evaluation of 

Therapeutic Interventions

Reliable in vivo markers of neuronal activity are necessary 
to assess the medical or surgical outcome in PD. Currently 
available clinical rating scales are inherently variable and 
relatively insensitive, and may not accurately reflect the 
extent of therapy-mediated changes in regional brain 
function. Conversely, quantitative functional imaging 
markers of cerebral metabolism and blood flow in the 
resting state may serve as suitable outcome measures 
for the treatment of PD. These measures may help select 
patients for clinical trials by providing more accurate 
diagnosis on an individual case basis and may afford 
a useful tool in predicting clinical outcomes for certain 
neurosurgical interventions.  

Effects of Dopaminergic Therapy on Brain 
Function
PET/SPECT has been used to quantify regional functional 
changes associated with successful drug therapy. We 
reported that LD infusion signifi cantly decreased rCMRglc 
in the putamen, thalamus, cerebellum, and primary 
motor cortex, along with a significant decline in PDRP 
expression[59] (Fig. 5). Changes in pallidal metabolism 
and PDRP activity were negatively correlated with clinical 
improvement in UPDRS motor ratings. These confirmed 
that lentiform hypermetabolism or hyperfusion in PD 
may be in part reversible by LD[60]. The response to 
dopaminergic therapy in PD patients may be mediated by 
the modulation of cortico-striato-pallido-thalamocortical 
pathways.

PET has played a key role in unraveling the metabolic 
and neurovascular effects of LD therapy for PD. Both 
H2O and FDG PET images have been used to quantify 
LD-mediated changes in the expression of motor- and 
cognition-related PD covariance patterns as well as in rCBF 
and rCMRglc in PD patients before and after intravenous 
LD infusion[61]. There was a signifi cant dissociation between 
rCBF and rCMRglc in the modulation of the PDRP by LD 
treatment, characterized by decreases in network activity 
in the rCMRglc images but concurrent increases in the 
rCBF images. This treatment also induced decreases in 
rCMRglc and increases in rCBF in the putamen/pallidum, 
dorsal midbrain/pons, STN, and ventral thalamus. These 

are the same regions that exhibit increased brain activity 
in PD with either rCMRglc or rCBF data obtained off 
medication as described above. These results indicate that 
flow–metabolism dissociation is a unique feature of LD 
treatment. The elevations in rCBF and in the corresponding 
PDRP network activity may be attributed to a direct action 
of dopaminergic drugs on the microvasculature in the close 
proximity of monoaminergic terminals. This LD-mediated 
disassociation between blood fl ow and metabolism calls for 
great caution when interpreting rCBF findings in patients 
who have taken dopaminergic medications or undergone 
insuffi cient washout before imaging. 

Stereotaxic Surgical Therapies
Neurosurgery can provide effective symptomatic relief 
in patients with advanced PD by performing localized 
interventions on several deep nuclei that serve as key relay 
stations within the basal-ganglia-cortical motor circuitry and 
related pathways. DBS at high frequency offers a reversible 
treatment for PD without the permanent side-effects caused 
by an ablative lesion. In addition, DBS parameters can be 
adjusted postoperatively for optimal clinical benefi ts on an 
individual basis. A number of subcortical targets have been 
stimulated to achieve long-term improvement in the motor 
and non-motor symptoms of PD[62-64], including mainly 
pallidal and subthalamic DBS to improve general motor 
features and ventral intermediate (Vim) thalamic DBS to 
suppress tremor.

Neuroimaging studies with rCMRglc and rCBF have 
shed important light on the therapeutic mechanisms 
underlying these procedures. Ipsilateral and contralateral 
changes in regional brain function can be detected in the 
PMC, SMC, SMA, and cerebellum using both FDG and H2O 
PET following unilateral DBS at the internal and external 
parts of the globus pallidus[9, 65].   Interestingly, unilateral 
Vim DBS leads to rCBF decreases in the ipsilateral SMC 
and the contralateral cerebellum, as well as concurrent 
increases in the ipsilateral ventral thalamus[66]. Changes 
in tremor acceleration and rCBF are correlated in the 
ipsilateral cortical regions; changes in tremor frequency 
and rCBF are correlated in the contralateral cerebellum and 
pons. These results suggest that DBS delivers symptomatic 
relief by modulating the activity of cerebello-thalamo-
cortical pathways. 

Stimulation at the STN is considered to be more 
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Fig. 5. Network modulation and clinical correlation with antiparkinsonian interventions in patients assessed with FDG PET. A: Bar 
graph (mean ± SE) illustrating relative changes in the expression of the PD-related metabolic covariance pattern (PDRP) during 
antiparkinsonian therapy with LD infusion (shaded bar) and ventral pallidotomy, pallidal and STN DBS, and subthalamotomy 
(filled bars). Reduction in PDRP activity was greater in lesion versus DBS at the same target or in STN versus GPi by either 
lesion or DBS. For unilateral surgical intervention, PDRP refl ected changes in network activity in the operated hemisphere. With 
LD infusion, the PDRP changes were averaged across hemispheres. CN, Control. B: Correlations between clinical improvement 
in UPDRS motor rating and treatment-mediated changes in PDRP activity. The clinical outcome in individual patients was 
signifi cantly correlated with the degree of PDRP suppression following levodopa administration in mild PD patients and STN DBS 
in advanced PD patients. (Reproduced by the authors using FDG PET and clinical data described by Feigin et al. Neurology 2001[59] 
and Asanuma et al. Brain 2006[67]. *P <0.01; **P <0.005 vs untreated condition)
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effective than at the GPi in improving PD symptoms by 
affecting more than one inhibitory output area of the 
basal ganglia, i.e. both the GPi and the substantia nigra 
pars reticulata. An FDG PET study showed that rCMRglc 
decreased in the left rostral cerebellum with STN-DBS, but 
increased in both lower thalami extending to the midbrain 
area and remotely in the right frontal, temporal, and parietal 
cortices[14]. These data demonstrate an activating effect of 
DBS on its target structures and suggest a central role of 
the STN in motor, association, limbic, and cerebellar-basal 
ganglia circuits.

FDG PET has proven to be useful for directly 
comparing the specific metabolic effects of different 
interventions. It has been reported that metabolism is 
reduced in the GPi and caudal midbrain but elevated in 
the posterior parietal region following STN stimulation and 
subthalamotomy[16]. While the metabolic decline in the GPi 
is greater with a lesion, the metabolic increase is greater 
with stimulation. PDRP expression is similarly reduced 
with both treatments. Moreover, we reported that both STN 
stimulation and LD therapy result in significant metabolic 
reductions in the putamen/pallidum, SMC, and cerebellar 
vermis, as well as elevations in the precuneus[67]. Reduction 
in the lentiform metabolism may refl ect deactivation of the 
inhibitory basal ganglia output nuclei following suppression 
of the synaptic activity of STN projections. Comparable 
declines in PDRP activity have also been observed with 
both interventions (Fig. 5), and they are correlated with 
clinical improvement. This is in excellent agreement with 
the fi ndings reported with FDG PET in subthalamotomy[68] 
and DBS at the GPi[9] and STN[69]. These results suggest 
that effective treatments for PD are facilitated by a common 
mechanism involving the modulation of pathological brain 
networks. 

It is of interest to note that PDCP expression assessed 
by rCMRglc and rCBF scans in the same patients was not 
changed by symptomatic therapy with either intravenous 
LD infusion or STN-DBS[61]. Hence, PDCP assessment did 
not reveal any fl ow-metabolism disassociation evident with 
LD administration in PDRP noted above. These findings 
support the hypothesis that PDCP network activity is a 
reproducible imaging biomarker of cognitive function in 
PD and this measure may prove useful in clinical trials 
targeting the non-motor symptoms of PD.

H2O PET has been used to measure resting rCBF 
responses to STN-DBS. Cerebral blood flow increases 
in the thalamus and midbrain, but declines bilaterally in 
premotor cortex[70]. Of note, significant correlations are 
present between improved rigidity and decreased rCBF in 
the SMA, between improved bradykinesia and increased 
rCBF in the thalamus, and between improved postural 
reflexes and decreased rCBF in the pedunculopontine 
nucleus (PPN). Increased rCBF in the thalamus and midbrain 
agrees with the rCMRglc results from FDG PET[14, 67]. These 
data indicate that STN stimulation appears to increase the 
fi ring of STN output neurons, which enhances inhibition of 
the thalamocortical projections, ultimately decreasing blood 
fl ow in cortical targets. Furthermore, blood fl ow increases 
bilaterally in the STN and in the left lentiform during 
bilateral STN DBS[71], but declines in the left SMA (BA 6), 
left ventrolateral thalamus, and right cerebellum. Changes 
in rCBF in the basal ganglia or the SMA and thalamus are 
both correlated with the improvement in motor function. 
STN DBS in resting patients may also result in deactivation 
of the thalamic anteroventral and ventrolateral nuclei and 
the SMA.

STN-DBS in PD has also been examined by measuring 
resting-state rCBF with SPECT. In patients with stable 
clinical improvement during a long-term follow-up study[72], 
STN-DBS at 5 months induced a reversible increase of 
rCBF in the pre-SMA, PMC, and DLPFC regions from the 
preoperative baseline. Blood fl ow increased further from 5 
to 42 months in these frontal areas, and also in the primary 
sensorimotor cortices, pallidum, ventral lateral thalamus, 
cerebellum, pons, and midbrain, involving the substantia 
nigra. The improvement in motor scores was correlated with 
the rCBF increase in the pre-SMA and PMC. Long-term 
STN-DBS leads to progressive improvement in neural activity 
in the frontal motor/association areas, along with increased 
activity in subcortical structures in the later phase. 

There are bound to be agreements and discrepancies 
across the many neuroimaging studies on the functional 
effects of STN-DBS. The major disagreement is likely 
to come from different neurosurgical protocols, imaging 
techniques, and analytical methods. The second difference 
may stem from varied and limited sample sizes, and the 
inhomogeneous clinical characteristics of PD patients 
included in the study. The third difference may be the 
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use of rCBF or rCMRglc as an outcome measure for the 
therapeutic trial. Although STN stimulation results in similar 
changes in regional brain activity and PDRP expression 
whether in rCMRglc or rCBF scans, a small difference may 
still arise from the potential residual effects of dopaminergic 
medications on rCBF values across studies.

H2O PET can also detect the rCBF activation patterns 
induced by STN-DBS under task conditions. One study 
disclosed that rCBF increases significantly in the SMA, 
cingulate cortex, and DLPFC with STN stimulation during 
a motor activation task[73]. This suggests that STN DBS 
plays a role in enhancing non-primary motor cortical areas, 
especially the DLPFC showing greater activation than in 
the GPi during effective stimulation. Bilateral STN DBS 
worsened the performance of a fast-paced cognitive task 
of random number generation in PD[74]. Cerebral blood 
fl ow was reduced in the left dorsal and inferior frontal gyri, 
DLPFC, and the posterior and right anterior cingulate, but 
increased in the right GPi during the task. STN stimulation 
activates its output neurons to the GPi and significantly 
changes pallidal coupling with prefrontal, cingulate, and 
temporal cortices during the performance of a cognitive 
experiment.

It has been proposed that the axial symptoms in PD 
can be effectively improved by stimulation at the PPN. 
Cerebral blood fl ow was measured by H2O PET at rest and 
during a self-paced motor task of the lower limbs in patients 
with advanced PD who were treated with unilateral PPN-
DBS[75]. Stimulation induced significantly increased rCBF 
in subcortical regions such as the thalamus, cerebellum, 
and midbrain as well as in different cortical areas involving 
the medial SMC extending into the caudal SMA (BA 
4/6). Some of these regions are similar to the H2O PET 
observations during STN-DBS. An FDG PET study also 
demonstrated that PPN DBS can improve non-motor 
function in the cognitive domain as indicated by relative 
prefrontal and cingulate hypermetabolism and cerebellar 
hypometabolism[76]. It remains to be seen in a large sample 
how PPN-DBS affects the clinical correlates of regional 
brain function and whether it can modulate PDRP activity 
as evident in other interventions. 

In summary, PET/SPECT imaging of rCMRglc and 
rCBF is a useful experimental method for assessing the 
modulation of structure/functional relationships during the 
successful treatment of PD. Treatment with LD or DBS 

surgery in patients with PD alters activity in the putamen, 
pallidum, thalamus, and cerebellum, and partly restores 
the physiological substrate in limbic and associative 
cortical regions of the basal ganglia. In addition, clinical 
improvement is correlated with the changes in regional 
brain activity as well as in the expression of a PD-related 
covariance pattern. These interventions are consistently 
associated with modulation of regional brain function and 
suppression of a specific functional network involving 
elements of the cortico-striato-pallido-thalamocortical and 
the cerebello-cortical motor loops.

Conclusion

PET/SPECT has been widely used to identify changes in 
regional cerebral glucose metabolism and blood fl ow in PD. 
The measurements of cerebral metabolism and perfusion 
provide unique information on the topography of widespread 
functional alterations in the brains of PD patients, which is 
not available from studies with presynaptic or postsynaptic 
dopaminergic radioligands. Much effort has been devoted 
to the development of novel analytical methods for the 
validation of brain networks in functional imaging data. 
Such spatial covariance patterns may afford clinically 
useful markers in the differential diagnosis of parkinsonism 
and in the evaluation of disease severity and therapeutic 
response. Many studies have established the specifi c roles 
of imaging in preoperative patient selection for clinical trials 
in parkinsonism. A major contribution in this line of research 
has been a complementary analytical approach us ing both 
voxel-wise brain mapping and network modeling strategies 
to determine the relationships between localized functional 
abnormality and the expression of widely distributed brain 
networks. Applications of these techniques may provide 
greater insights into the pathophysiology of PD and offer 
more accurate assessment of the inherent functional 
changes that occur with disease onset, progression, and 
successful therapy. 
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ABSTRACT  

To evaluate the effect of bevacizumab on cerebral 
ischemia, we used   2-deoxy-2-18F-fluoro-D-glucose 
(18F-FDG) small-animal positron emission tomography 
(PET) in   the middle cerebral artery occlusion (MCAO) 
rat model. After baseline neurologic function tests and 
PET studies, MCAO Sprague-Dawley rats received 
bevacizumab or normal saline (controls). Weekly PET 
imaging and neurologic function tests showed that the 
18F-FDG accumulation in the bevacizumab group was 
similar to that in the controls during the fi rst 2 weeks, but 
lower than in controls at weeks 3 and 4. However, no 
difference was found in neurological scores between the 
groups. The number of von Willebrand factor-positive 
cells in the bevacizumab group was lower than that in 
controls. The expression of vascular endothelial growth 
factor was higher than in controls at week 4. These 
results suggested that bevacizumab does not   infl uence 
functional recovery in this model of cerebral ischemia 
during a 4-week period, but inhibits vascular formation 
and metabolic recovery, which may be considered in 
cancer patients with a recent ischemic stroke.

Keywords: cerebral ischemia; bevacizumab; positron 
emission tomography; cancer

INTRODUCTION

        Cerebrovascular disease (CVD) and cancer are the top two 
causes of morbidity and mortality in   aging populations[1-3]. 
Studies have shown that CVD is typically associated with 
ischemic stroke[4]. Ischemic stroke   featuring functional 
disturbance and morphological damage of brain is caused 
by CVD, which affects the brain blood supply and leads to 
a cascade of metabolic alterations. Clinical presentation 
of   CVD in cancer patients is common: 14.6% of such 
patients have pathologic evidence of CVD, and 7.4% show 
clinical symptoms  [5]. Although current therapeutic strategies 
improve the survival rate and extend the lifetime of cancer 
patients, increased risk of ischemic stroke is frequently 
observed in the same individuals[6]. Therefore, exploring the 
therapeutic strategies for recent ischemic stroke in cancer 
patients is a serious challenge. 

Currently, anti-angiogenic therapy is widely used 
in the treatment of various solid cancers. Increasingly, 
angiogenesis-targeting therapies have been developed 
by manipulating the vascular endothelial growth factor 
(VEGF) signaling pathway. Bevacizumab (Avastin, 
Genentech/Roche, Basel, Switzerland), a recombinant 
humanized monoclonal antibody against VEGF-A, is the 
fi rst anti-angiogenic drug approved by the Food and Drug 
Administration (USA)[7] for metastatic colorectal cancer[8], 
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non-squamous non-small-cell lung cancer[8], glioblastoma[9], 
and metastatic renal cell carcinoma[10]. Many studies 
have demonstrated that  bevacizumab therapy is 
associated with an increased risk of gastrointestinal 
perforation, wound healing complications, hemorrhage, 
arterial thromboembolism, and reversible posterior 
leukoencephalopathy syndrome[11-14]. Therefore, patients 
with a history of bleeding, cerebrovascular accident, 
thrombotic disorders, and gastrointestinal perforation were 
excluded from participation in clinical trials[11].

Interestingly, our recent clinical observations have 
shown that significantly increased numbers of elderly 
cancer patients treated with bevacizumab have a recent 
ischemic stroke. One study reported that prolonged 
bevacizumab treatment increases the risk of ischemic 
stroke[12].   However, its safety in cancer patients with recent 
ischemic stroke is still unknown. In the current study, we 
evaluated the effect of bevacizumab on recent ischemic 
stroke using a molecular imaging approach. 

Positron emission tomography (PET) provides in vivo 
metabolic information based on imaging the distribution of 
positron-emitting radiopharmaceuticals[15-16]. PET can not 
only locate the area of infarction like MRI scanning, but also 
provide metabolic information, which has led to signifi cant 
insights into various neurologic disorders, including 
dementias[17], movement disorders[18], epilepsy[19-20], 
brain tumors[21], neurologic infectious, and inflammatory 
diseases[22-23]. Furthermore, PET imaging in neurologic 
disease can detect pathologic changes preceding those 
seen with structural imaging techniques and even clinical 
symptoms[24]. 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG), 
the most extensively used PET imaging tracer, can detect 
subtle changes of glucose metabolism after stroke[26]. In a 
previous study, we successfully used 18F-FDG small-animal 
PET to evaluate the metabolic recovery of the cerebral 
infarction in an ischemic stroke model[27]. In this study, 
we used 18F-FDG PET to assess the metabolic changes, 
along with related immunohistochemical and functional 
changes, in a rat model of cerebral ischemia treated with 
bevacizumab. 

MATERIALS AND METHODS

Animal and Experimental Design 
Eight adult male Sprague-Dawley rats weighing 240–270 g 

were randomly assigned into two equal groups: bevacizumab 
treatment and control groups. All animals underwent 
reperfusion at 90 min after middle cerebral artery occlusion 
(MCAO). Rats in the treatment group were administered 
bevacizumab (Avastin, Genentech/Roche Inc., South 
San Francisco, CA) via tail vein at 5 mg/kg on the day 
after MCAO. Similarly, all rats in the control group were 
administered normal saline (NS) in the same way. All rats 
underwent neurologic function testing followed by 18F-FDG 
PET scanning on   day 1 (before injection) and weeks 1, 2, 3, 
and 4 (after injection). Immunohistochemical staining was 
performed immediately after the last 18F-FDG PET scan. 
All experiments were performed with the approval of the 
Institutional Animal Care and Use Committee of Zhejiang 
University School of Medicine. 

Middle Cerebral Artery Occlusion Procedure 
MCAO was induced as previously described[27]. Briefly, 
animals were anesthetized intraperitoneally with 1.5% 
pentobarbital sodium (50 mg/kg). Body temperature was 
maintained at 37 ± 0.5 °C with a warm pad during the 
procedure. The right common, internal, and external carotid 
arteries were exposed. A 3-0 monofilament nylon suture 
with a rounded tip was inserted from the right common 
carotid into the internal carotid and then advanced 18-
20 mm intracranially from the common carotid bifurcation 
in order to block the origin of the middle cerebral artery. 
Approximately 90 min after MCAO, reperfusion was allowed 
by withdrawal of the suture. Then the muscle and skin were 
sutured with 4-0 nylon. Animals were given buprenorphine 
(0.05 mg/kg, subcutaneously) every 8 h[28] for pain palliation 
during the fi rst 24 h after operation. 

Evaluation of Neurological Defi cits
Animals were subjected to a weekly behavioral test for 4 
weeks, using the Garcia neurological grading method[29]. 
This evaluation is a composite of spontaneous activity 
(abnormal movement), climbing, forepaw stretching, 
symmetry in the movement of four limbs, proprioception, 
and response to vibrissae touch. The score is the sum of 
the six individual test scores and ranges from 3 to 18. A 
score of 3 represents the most severe behavioral deficits 
and 18 means normal behavior. Rats with scores ranging 
from 7 to 12 were used. Investigators were blinded to the 
animal group to avoid the bias effect.
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PET Scanning and Image Analysis
Rats were anesthet ized with isof lurane (2%) and 
administered ~18.5 MBq (500 mCi) of 18F-FDG via tail 
vein just before bevacizumab or NS injection and at 
weeks 1, 2, 3, and 4 later. PET images were acquired 
with a mi   croPET R4 scanner (Si  emens Medical Solutions, 
Munich, Germany) for 10 min static acquisition at 40 min 
after 18F-FDG injection. Anesthesia was maintained during 
data acquisition. The images were reconstructed with a 
modified back-projection algorithm. 18F-FDG uptake was 
calculated as the percentage of injected dose per gram 
of tissue, using th    e AMIDE software package (version 
9.2; Stanford University, Santa Clara County, CA). To 
assess the metabolic changes induced by MCAO, regions 
of interest (ROIs) 2 mm in diameter were identified in 
coronal images. The lesion-to-homologous contralateral 
normal region (L/N) ratios were calculated according to the 
following formula: L/N ratio = mean counts per pixel of right 
lesion ROI/mean counts per pixel of contralateral normal 
area. To assess the therapeutic responses, we calculated 
the percentage change of L/N ratios according to the 
following formula: % change of L/N ratio = (L/N ratio – 
baseline L/N ratio) / baseline L/N ratio. The L/N ratio on day 
1 was set as the baseline. The average radioactivity level 
within the infarct was obtained from the mean pixel values, 
normalized to that of non-ischemic cortex, and expressed 
as a percentage.

Immunohistochemical Staining
Immunohistochemical investigation was done to determine 
the potential effect of bevacizumab on angiogenesis. At 
the end of week 4, the rats were deeply anesthetized after 
the last PET scan and perfused tra  nscardially with 0.9% 
saline followed by 4% ice-chilled paraformaldehyde in PBS 
(pH 7.4). The brain was immediately removed, sliced, and 
immersed in the same fi xative for 24 h. After that, the 5–10 
mm slices were washed in dH2O for 30 min, dehydrated in 
ascending ethanols, cleared in xylene, and embedded in 
paraffi n wax. Serial sections were cut at 4 μm throughout 
the ischemic area, and stained usi  ng the EnVisionTM two-
step protocol with high-temperature antigen retrieval. The 
slides were incubated with 3% H2O2 for 10 min and rinsed 
3 times in PBS for 5 min. Sections were permeabilized 
with 0.04% Triton X-100, blocked with 10% normal goat 
serum in PBS for 1 h, and incubated overnight in a 

humidified chamber at 4°C with the primary antibodies 
rabbit polyclonal antibody against VEGF (1:400 dilution; 
EMD Millipore, Billerica, MA) and rabbit polyclonal antibody 
against von Willebrand factor (vWF) (1:200 dilution; 
DAK    O, Glostrup, Denmark). The sections were rinsed 3 
times with PBS for 10 min each and treated with HRP-
conjugated secondary antiserum (DAKO EnVisionTM kit) 
for 30 min at 37°C. Then the stained sections were washed 
thoroughly and developed by 0.05% diaminobenzidine 
with 0.03% H2O2 for 3–5 min until a brown reaction product 
was observed. The number of cells positively-stained 
for vWF in 5 microscope fields (469 μm × 351 μm) was 
counted. Hotspots on the section were selected at ×100 
magnification in order to evaluate the average integrated 
optical density (IOD) of VEGF. Individual measurements 
were then made at ×200 (BX60, Olympus, Japan). Images 
(5 fields/section, 1 section/animal) were digitized with a 
camera. The IOD values for VEGF were obtained using 
Imag    e-ProPlus 5.0 software (Medi  a Cybernetics, Silver 
Spring, MD). 

Statistical Analysis
Data are expressed as mean ± SEM. The independent 
sample-t test was used to evaluate functional recovery, 
the PET index, and immunohistochemically-positive cells. 
Statistical analyses were performed with SPSS software 
(version 15.0, SPSS Inc,  Armonk, NY). Values of P <0.05 
were considered statistically signifi cant.

RESULTS

Infl uence of Bevacizumab on Functional Recovery
No significant difference in neurological score was 
detected between the groups at each time point of the 
4-week experimental observation (Fig. 1), suggesting that 
beva  cizumab does not affect functional recovery. 

Changes in Glucose Metabolism 
The rats were studied using 18F-FDG PET in order to 
document whether bevacizumab influences glucose 
metabolism. The scans allowed the visualization (Fig. 
2) and quantification (Fig. 3) of glucose metabolism 
throughout the brain at each time point. Semi-quantitative 
measurement of 18F-FDG radioactivity in the ischemic area 
demonstrated no signifi cant differences in the percentage 



Ying Dong, et al.    PET demonstrates brain metabolic change after  using bevacizumab in a rat model of MCAO 841

change of the L/N ratio between the two groups on day 1 
(before bevacizumab or NS injection) and at weeks 1 and 
2 after MCAO. However, the percentage change in the 
bevacizumab-treated group was significantly lower than 
that in the NS group at week 3 (0.46 ± 1.15 vs 14.80 ± 2.33; 
P <0.05) and week 4 (6.48 ± 1.91 vs 14.64 ± 0.89; P <0.05) 
(Fig. 3), indicating that bevacizumab reduces glucose 
metabolism in the ischemic area.

Immunohistochemistry
The results showed that the number of vWF-positive cells 
in the   bevacizumab group was lower than that in the NS 

group (7.05 ± 0.43 vs 8.67 ± 0.32; P <0.01) (Fig. 4). The IOD 
of VEGF in the bevacizumab group was higher than that in 
the NS group (15.22 ± 0.80 vs 12.83 ± 0.76; P <0.05) (Fig. 4).

DISCUSSION

Both ischemic stroke and cancer are leading causes of 
morbidity and mortality among the aged worldwide. Stroke 
severely impacts cancer patients, while cancer increases 
the risk of stroke[30]. CVD occurs commonly in cancer 
patients, ~15% of whom experience a thromboembolic 
event during the   clinical course[5]. 

In the present study, we evaluated the effect of 
bevacizumab on neurogenic recovery after a recent stroke 

Fig. 1. Neurological scores before and after bevacizumab treatment. 

Fig. 3. Semiquantitative analysis of variance of glucose meta-
bolism in each group (shown as % change of L/N ratio at 
each time point). *P <0.05. 

Fig. 2. Serial PET images demonstrating metabolic recovery after MCAO in rats after bevacizumab compared to the control group. Images 
show the brain in coronal view. Scale indicates signal intensity.
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using serial 18F-FDG PET scans combined with neurologic 
function testing and immunohistochemical investigation. 
Our results demonstrated that bevacizumab had no effect 
on functional recovery after a recent ischemic stroke  ; 
however, it did suppress the recovery of cerebral glucose 
metabolism. Immunohistology confirmed a decrease in 
angiogenesis in the bevacizumab-treated group.

Our study showed no significant difference between 
the two groups in terms of glucose metabolic changes in 
the area of infarction during the fi rst 2 weeks after MCAO. 
However, in the later stage (weeks 3 and 4), significantly 
lower 18F-FDG accumulation was observed in the infarct 
in the bevacizumab-treated group than in the control 
group. These results indicated that bevacizumab does not 
signifi cantly inhibit metabolism immediately after MACO and 
in the early stage (weeks 1 and 2), but does significantly 
inhibit it in the later stage (weeks 3 and 4), especially 
at week 3.   Interestingly, at week 4, the bevacizumab-
treated group showed increased 18F-FDG accumulation 
compared to that in week 3, indicating that the inhibitory 
effect of bevacizumab declines over time. These results are 
consistent with the instructions for bevacizumab, namely,   it 
is safer to do surgery 4 weeks after treatment.

In behavioral tests, there was no signifi cant difference 
in neurological score between the two groups at any 
time point, suggesting that bevacizumab does not affect 
functional recovery. These results demonstrated that 
bevacizumab is relatively safe in the fi rst 4 weeks in a rat 
model of cerebral ischemia.

vWF, released upon perturbation of endothelial cells, 
is a predictive biomarker of vascular injury.   VEGF has 
the capacity to induce physiological and pathological 
angiogenesis, while  bevacizumab can decrease this 
capacity by preventing the interaction of VEGF with its 
receptors on the surface of endothelial cells[31]. In the 
current study, immunohistochemical analysis of the injured 
brain showed significantly lower expression of vWF but 
higher expression of VEGF in the treatment group than in 
the control group.     This result indicated that bevacizumab 
has a strong effect on decreasing the number of vessels, 
consistent with   a previous study[32]. However, other cancer 
studies[33-34]   differ from ours, in that bevacizumab was 
reported to reduce the high expression of VEGF. We 
consider that this might be due to the much lower level of 
VEGF expression in   the ischemic brain compared to that in 
a tumor. In a recent study on candesartan, a drug currently 
used to treat hypertension, VEGF expression was found to 
signifi cantly increase at 2 weeks after MCAO compared to 
baseline[35]. Ischemic neurons increase VEGF expression 
by activating astrocytes, and the increase usually occurs 
within the first few hours of ischemic stroke[36]. Since the 
endpoint of our study was 28 days after bevacizumab 
administration, its effect on VEGF was assumed to be 
decreased after its biological   half-life of ~5 days[37,38].   

In conclusion, the present results indicate that 
attention should be paid when using bevacizumab and 
careful management should be provided for cancer patients 

Fig. 4. vWF and VEGF immunohistochemistry. Left, photomicrographs (×200) of immunohistochemical staining for vWF and VEGF 
(brown cells) in the ischemic region in bevacizumab-treated and normal saline-injected animals (control). Middle, number of vWF-
positive cells after 4 weeks of bevacizumab treatment (*P <0.01). Right, integrated optical density (IOD) of VEGF after 4 weeks of 
bevacizumab treatment (*P <0.05).
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with recent ischemic stroke. Although the present study 
was done to evaluate the safety of bevacizumab in cancer 
patients with recent stroke using a cerebral ischemic rat 
model, there are several limitations in terms of sample size, 
dose, investigation time points, and duration of follow-up. 
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ABSTRACT  

Paradoxical reduction of cerebral blood flow (CBF) 
after administration of the vasodilator acetazolamide 
is the most severe stage of cerebrovascular reactivity 
failure and is often associated with an increased 
oxygen extraction fraction (OEF). In this study, 
we aimed to reveal the mechanism underlying 
this phenomenon by focusing on the ratio of CBF 
to cerebral blood volume (CBV) as a marker of 
regional cerebral perfusion pressure (CPP). In 37 
patients with unilateral internal carotid or middle 
cerebral arterial (MCA) steno-occlusive disease and 
8 normal controls, the baseline CBF (CBFb), CBV, 
OEF, cerebral oxygen metabolic rate (CMRO2), and 
CBF after acetazolamide loading in the anterior 
and posterior MCA territories were measured by 
15O positron emission tomography. Paradoxical 
CBF reduction was found in 28 of 74 regions (18 
of 37 patients) in the ipsilateral hemisphere. High 
CBFb (>47.6 mL/100 mL/min, n = 7) was associated 
with normal CBFb/CBV, increased CBV, decreased 
OEF, and normal CMRO2. Low CBFb (<31.8 mL/100 
mL/min, n = 9) was associated with decreased 
CBFb/CBV, increased CBV, increased OEF, and 
decreased CMRO2. These fi ndings demonstrated that 
paradoxical CBF reduction is not always associated 
with reduction of CPP, but partly includes high-
CBFb regions with normal CPP, which has not been 
described in previous studies. 

Keywords: acetazolamide; cerebral blood flow; 
paradoxical reduction; positron emission tomography; 
vasodilatation

INTRODUCTION

Paradoxical reduction of cerebral blood flow (CBF) after 
administration of vasodilators, termed the “intracerebral 
steal phenomenon”, was originally described in the core 
of an acute brain infarct after CO2 inhalation in a cat 
experimental model[1,2]. The vasodilator acetazolamide 
(ACZ) also reduces CBF in the core of the acute ischemic 
region after experimental occlusion of the middle cerebral 
artery (MCA). Expansion of the infarct volume is higher in 
cats given ACZ than in controls[3]. These studies indicate 
that administration of vasodilators for the recovery of CBF 
in acute brain ischemia is harmful. 

A paradoxical CBF reduction has also been docu-
mented in patients with steno-occlusive atherosclerotic 
carotid artery disease[4-6], and is associated with poor 
collateral circulation[7]. Okazawa et al. demonstrated 
that patients with paradoxical CBF reduction show a 
significantly increased oxygen extraction fraction (OEF), 
a state of misery perfusion[8,9]. These studies indicated 
that the paradoxical CBF reduction is a sign of severe 
hemodynamic failure due to a reduction of cerebral perfusion 
pressure (CPP) in patients with chronic ischemic disease.

Regional CPP is not measurable by non-invasive 
means in patients. However, the regional ratio of CBF to 
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cerebral blood volume (CBV) has been suggested to be an 
index of regional CPP[10,11]. Schumann et al. evaluated the 
CBF/CBV ratio during global CPP manipulation by varying 
mean arterial blood pressure (MABP) in the anesthetized 
baboon[12], and found that the CBF/CBV ratio is signifi cantly 
correlated with MABP. As the CPP is a function of MABP 
and intracranial pressure, regional CBF/CBV is considered 
to be an index of regional CPP in the cerebral parenchyma 
when intracranial pressure is not pathologically altered[12].

In the present study, we tested the hypothesis that the 
paradoxical CBF reduction after ACZ loading is associated 
with a reduction of regional CPP by evaluating the CBF/
CBV ratio in patients with internal carotid artery (ICA)/MCA 
steno-occlusive disease by means of 15O positron emission 
tomography (PET).

PARTICIPANTS AND METHODS

Participants
This retrospective study was conducted in 37 patients 
(29 men, 8 women; age, 64.9 ± 10.3 years) who were 
examined for evaluation of hemodynamic status at Osaka 
University Hospital from August 2007 to January 2011. 
The clinical information of the patients is summarized in 
Table 1. All patients had severe stenosis or occlusion of the 
ICA or MCA on one side. Digital subtraction angiography 
or magnetic resonance (MR) angiography revealed ICA 

occlusion in 11 patients, severe stenosis of the ICA in 
10, MCA occlusion in 6, and severe stenosis of the MCA 
in 10. The severity of the ICA stenosis was >80% by the 
North American Symptomatic Carotid Endarterectomy 
Trial criteria[13]. Ten patients had a minor stroke, 12 had a 
transient ischemic attack (TIA), and 15 were asymptomatic. 
All PET studies were performed at least one month after 
the last ischemic episode.

Eight healthy volunteers (4 men, 4 women; 50.5 ± 
4.2 years) were included as normal controls. The criteria 
for the controls were (1) absence of a history of disease, 
(2) absence of smoking and alcohol habits, and (3) no 
significant brain abnormalities by MR imaging and MR 
angiography.

This study was approved by the Ethics Committee of 
Osaka University Hospital. Written informed consent was 
given by all participants.

PET Measurements
PET images were obtained in 3-D mode using the SET-
3000 GCT/X scanner (Shimadzu Corp., Kyoto, Japan). 
The intrinsic spatial resolution was 3.5-mm full-width at half 
maximum (FWHM) in-plane and 4.2-mm FWHM axially. 
Transmission scanning with a 137Cs point source was 
performed for attenuation correction. The PET images were 
reconstructed by a filtered-back projection method after 
3D Gaussian smoothing with a 6-mm FWHM. Scattered 

Table 1. Characteristics of the 37 patients enrolled in the study

  Number

Characteristics Age (years) 64.9 ± 10.3

 Sex (male/female) 29 / 8

Angiography ICA occlusion/stenosis 11 / 10

 MCA occlusion/stenosis 6 / 10

Symptoms Minor stroke 10

 TIA 12

 Asymptomatic 15

 Interval between the last symptom and PET (months) 23.5 ± 34.2

Underlying disease Hypertension 25

 Diabetes mellitus 11

 Dyslipidemia 21

ICA, internal carotid artery; MCA, middle cerebral artery; PET, positron emission tomography; TIA, transient ischemic attack.
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radiation was corrected by the hybrid dual-energy window 
method combined with a convolution-subtraction method, 
and estimation of the true scatter-free component of 
the standard photopeak window was performed on a 
sonographic basis[14,15].

The baseline CBV, the baseline cerebral metabolic 
rate of oxygen (CMRO2), the OEF at baseline, the CBFb, 
and the CBF after ACZ loading (CBFacz) were measured 
fol lowing C15O and 15O2 gas inhalation, and H2

15O 
injection[15]. A cannula was inserted into the radial artery for 
arterial input. CBV measurement was performed with 4-min 
static scanning after 1 min of continuous inhalation of C15O 
gas (3.0 GBq/min) and a 3-min interval[16]. Arterial blood 
was collected 3 times during the scanning to measure the 
whole-blood radioactivity. OEF was measured by 3-min 
scanning starting simultaneously with 1.5-min 15O2 gas 
bolus inhalation (1.0 GBq/min). Continuous arterial blood 
sampling was performed using a β-detector system to 
determine the whole-arterial blood radioactivity. CMRO2 and 
OEF were calculated by an autoradiographic method[16-19]. 
The CBV data were used to correct for intravascular 
hemoglobin-bound 15O2

[20]. CBFb was measured by 3 min 
of scanning started simultaneously with intravenous bolus 
injection of H2

15O (370 MBq)[17,21]. Continuous arterial blood 
sampling was also performed with a β-detector system. 
Delay and dispersion occurring in the β-detector system 
were corrected by the methods described previously[22]. 
Quantitation of reconstructed PET images by the 3-D 
mode PET scanner has been validated in a previous 
report[15].

At the end of the study protocol, we examined the 
CBFacz to determine the cerebrovascular reactivity (CVR)[5]. 
ACZ (1 g; Diamox®, Sanwa kagaku kenkyusho Co., Ltd, 
Nagoya, Japan) was slowly injected intravenously for 2 
min, and measurement of CBFacz was started 15 min after 
the injection using the same protocol as for CBFb.

Arterial O2 and CO2 partial pressures (PaO2 and 
PaCO2), pH, hematocrit (Ht), and hemoglobin concentration 
(Hb) were measured in arterial blood samples. Systemic 
blood pressure and heart rate were monitored during the 
PET study. MABP was calculated as [diastolic BP + (systolic 
BP − diastolic BP) / 3].

Data Analysis
The CBFb images were transformed to the standard brain 

size and shape of a built-in PET template using SPM2 
software (Wellcome Trust Centre for Neuroimaging). 
Parametric maps of CBV, CMRO2, OEF, and CBFacz 
were created with the same parameters as those for 
CBFb normalization. The resultant images had the same 
anatomical format with an isotropic voxel size of 2 mm. Oval 
regions of interest (ROI: major axis, 45 mm) were placed 
on the MCA-anterior branch territory (MCA-an) and MCA-
posterior branch territory (MCA-po) on 3 sequential cross-
sections on both the ipsilateral and the contralateral sides 
of all parametric images (Fig. 1). Each ROI was confi rmed 
to include no minor infarct region on the co-registered MRI 
slices. Mean values of the 3 cross-sections in each region 
were used to evaluate the hemodynamic status. CVR was 
calculated as the percentage change in the CBF after ACZ 
administration using the equation: CVR = [(CBFacz − CBFb) / 
CBFb] × 100%. Paradoxical CBF reduction was defined 
as a negative value of the CVR. The CBFb/CBV ratio was 
calculated as an index of the CPP[10,12]. All regions on the 
affected side (n = 74) were divided into a paradoxical CBF 
reduction group (group A: CVR <0%) and non-paradoxical 
CBF reduction groups (group B: CVR = 0–15% and group C: 
CVR >15%). The CVR threshold of 15% between groups 
B and C was determined based on previous studies, which 
set thresholds from 10% to 20%[23-25]. The CBFb, CBV, OEF, 
CMRO2, and CBFb/CBV ratio were compared between the 
three groups and evaluated in comparison to the controls. 
The contralateral sides of each group were also compared. 

Furthermore,  ips i lateral  regions showing the 
paradoxical CBF reduction were tentatively classifi ed into 
three subgroups according to the CBFb value (high-CBFb: 
>20% of the mean value in the controls; moderate-CBFb: 

Fig. 1. Locations of regions of interest on three sequential cross-
sectional images of baseline cerebral blood flow (22, 24, 
and 26 mm above the transaxial section with the anterior 
commissure to the posterior commissure line).
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within ±20% of the controls; and low-CBFb: <−20% of the 
controls). The CBV, OEF, CMRO2, CBFb/CBV ratio, and 
CVR values were compared among the ipsilateral and 
contralateral sides of the three subgroups, and evaluated in 
comparison to the controls.

Statistical Analysis
Comparisons of the arterial blood gas and MABP data 

among the three groups (groups A, B, and C) and controls 

and among the three subgroups of group A were performed 

using analysis of variance (ANOVA) followed by Tukey’s 

HSD test. Comparisons of PET data among the three 

groups and among the three subgroups were conducted 

using the Steel-Dwass test. For each of the three groups 

or subgroups, comparisons of PET data to the controls 

were evaluated by the Mann-Whitney test. P <0.05 was 

considered to denote statistical signifi cance.

RESULTS
The relationships between the CVR and CBFb in the 
ipsilateral MCA-an and MCA-po are shown in Fig. 2. 
Among a total of 74 regions, 28 were classifi ed into group 
A, 21 into group B, and 25 into group C. In group A, 7, 12, 
and 9 regions were classifi ed into the high-, moderate-, and 
low-CBFb subgroups, respectively.

Comparisons among Groups A, B, and C
The mean values of PaCO2, MABP, Hb, and Ht are 
summarized in Table 2. No significant differences were 
found between each of the three groups and the controls. 
The MABP after ACZ in group C was increased compared 
to groups A and B (P = 0.018 and P = 0.012, respectively). 
Hb and Ht in group C were higher than those in group A 
(P = 0.022 and P = 0.031, respectively).

The mean values of CBFb, CBV, OEF, CMRO2, and 
CBFb/CBV ratio are shown in Table 3. The bilateral CBFb 
in groups B and C were lower than in controls (ipsilateral: 
P <0.001 and P <0.001, contralateral: P = 0.044 and P = 
0.024, respectively). The ipsilateral CBV in groups A and B 
were higher than in the controls (P = 0.011 and P = 0.009, 
respectively). The bilateral CMRO2 in groups A, B, and C 
were lower than in the controls (ipsilateral: P <0.001, P = 
0.002, and P <0.001; contralateral: P = 0.006, P = 0.003, 
and P = 0.002, respectively). The ipsilateral CBFb/CBV ratio 
in group A and the bilateral CBFb/CBV ratio in group B were 
signifi cantly lower than in controls (P <0.001, P <0.001, and 
P = 0.001, respectively).

Comparisons among High-, Moderate-, and Low-CBFb 
Subgroups
No significant differences in the physiological parameters 
were found among the three subgroups (Table 4). The 

Fig. 2. Relationship between cerebrovascular reactivity (CVR) and baseline cerebral blood fl ow (CBFb). The distribution of the paradoxical 
CBF reduction group was signifi cantly different from the non-paradoxical CBF reduction groups (P = 0.031, Mann-Whitney U test).
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ipsilateral CBV in the high-CBFb subgroup was higher 
than that in the moderate- and low-CBFb subgroups (P = 
0.030 and 0.034, respectively; Table 5), and the controls 
(P <0.001). The ipsilateral OEF in the high-CBFb subgroup 
was lower than that in the controls (P = 0.007), while the 
ipsilateral OEF in the low-CBFb subgroup was higher than 
that in the high-CBFb subgroup (P = 0.002), the moderate-
CBFb subgroup (P = 0.034), and the controls (P = 0.001) 

(Table 5). The ipsilateral CMRO2 in the low-CBFb subgroup 
was lower than that in the high-CBFb subgroup (P = 0.045), 
the moderate-CBFb subgroup (P = 0.034), and the controls 
(P <0.001) (Table 5). The ipsilateral CBFb/CBV ratio in the 
high-CBFb subgroup was comparable to the controls while 
those in the moderate- and low-CBFb subgroups were 
signifi cantly lower than in the controls (P = 0.007 and P < 
0.001) (Table 5). In addition, the contralateral CBFb in the 

Table 3. Hemodynamic parameters in the MCA-an and MCA-po regions (mean ± SD)

  Group A (CVR <0%) Group B (CVR 0–15%) Group C (CVR >15%) Control
  (n = 28)  (n = 21)  (n = 25)  (n = 32)
  Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral 

Baseline CBFb 39.0±12.2 42.3±11.6 33.9±11.2† 36.1±9.6‡ 33.3±5.8‡ 35.7±5.6† 39.7±6.4

 (mL/100 mL/min) 

 CBV 3.62±0.79 b,‡ 2.95±0.58 3.41±0.72‡ 3.06±0.50 2.90±0.88 b 2.96±0.62 2.91±0.46

 (mL/100 mL) 

 OEF 45.4±7.4 44.3±6.0 45.3±7.6 43.7±7.9 43.5±6.5 42.7±5.8 45.2±5.2

 (%) 

 CMRO2 2.52±0.56‡ 2.69±0.43‡ 2.52±0.64‡ 2.60±0.49‡ 2.51±0.27‡ 2.65±0.36‡ 3.07±0.52

 (mL/100 mL/min) 

 CBFb/CBV 11.0±3.3‡ 14.5±3.6 b 9.9±1.9 a,‡ 11.7±1.8 b,‡ 12.3±3.5 a 12.5±2.7 13.8±2.2

 ratio (/min) 

After ACZ CVR –8.0±5.2‡ 35.0±31.4a,‡ 6.2±4.6‡ 36.7±20.2‡ 49.3±41.3‡ 57.6±43.5a,‡ 107.3±52.9

 (%) 

ACZ, acetazolamide; an, anterior branch territory; CBFb, baseline cerebral blood flow; CBV, cerebral blood volume; CMRO2, cerebral oxygen 

metabolic rate; CVR, cerebrovascular reactivity; MCA, middle cerebral artery; OEF, oxygen extraction fraction; po, posterior branch territory. aP <0.05, 
bP <0.01 by multiple comparison among groups, Steel-Dwass test; †P <0.05, ‡P <0.01 versus control, Mann-Whitney test.

Table 2. Mean ± SD values of arterial blood gas parameters and blood pressure

 Group A (CVR <0%) Group B (CVR 0–15%) Group C (CVR >15%) Control P value*

PaCO2 at baseline (mmHg) 38.8±4.1 38.9±4.1 39.2±2.3 40.1±4.3 0.877

PaCO2 after ACZ (mmHg) 36.7±4.7 37.6±4.9 37.7±3.0 39.2±4.2 0.584

MABP at baseline (mmHg) 87.6±9.6 85.9±12.4 95.0±10.2 93.6±10.6 0.072

MABP after ACZ (mmHg) 88.6±11.0a 87.5±12.4A 101.8±12.5a,A 97.0±15.2 0.006

Hb (g/dl) 11.9±1.5a 12.8±1.5 13.4±1.4a 12.9±1.3 0.035

Ht (%) 36.7±4.6a 39.4±4.5 41.0±4.0a 39.4±3.8 0.047

ACZ, acetazolamide; CVR, cerebrovascular reactivity; Hb, hemoglobin; Hct, hematocrit; MABP, mean arterial blood pressure; PaCO2, arterial partial 

pressure of CO2. *ANOVA (analysis of variance), aP <0.05 between groups A and C, AP <0.05 between groups B and C, Tukey’s HSD test.
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high-CBFb subgroup was higher than that in the controls 
(P = 0.002). The contralateral CBV in the high-CBFb 
subgroup was also higher than that in the controls (P = 
0.027).

The relationships between the ipsilateral CBFb/CBV 

ratio and CBFb, CBFb/CBV ratio and CBV were similar 
among the three subgroups (Fig. 3). The low-CBFb 
subgroup was located in the inferior edge of groups B 
and C. The moderate-CBFb subgroup was located inside 
groups B, C, and controls. The high-CBFb subgroup was 

Table 4. Arterial blood gas parameters and blood pressure in the three subgroups with paradoxical cerebral blood fl ow reduction 
(mean ± SD)

 High-CBFb Moderate-CBFb Low-CBFb P value*

PaCO2 at baseline (mmHg) 40.8±3.6 38.6±4.6 36.5±4.3 0.270

PaCO2 after ACZ (mmHg) 39.3±4.1 36.1±5.0 34.1±5.6 0.242

MABP at baseline (mmHg) 89.4±8.7 87.9±8.8 87.3±10.9 0.931

MABP after ACZ (mmHg) 91.1±5.1 88.7±11.7 90.4±13.2 0.909

Hb (g/dl) 11.4±1.5 12.1±1.5 12.2±1.5 0.685

Ht (%) 35.8±5.0 37.2±4.6 37.4±4.5 0.827

ACZ, acetazolamide; CBFb, baseline cerebral blood fl ow; Hb, hemoglobin; Hct, hematocrit; MABP, mean arterial blood pressure; PaCO2, arterial 

partial pressure of CO2. Data were analyzed by ANOVA

Table 5. Hemodynamic parameters in the MCA-an and MCA-po regions of the three subgroups with paradoxical cerebral blood 
fl ow reduction (mean ± SD)

  High-CBFb (n = 7) Moderate-CBFb (n = 12) Low-CBFb (n = 9) 
  Ipsilateral Contralateral Ipsilateral Contralateral Ipsilateral Contralateral

Baseline CBFb 54.9±6.6‡ 55.2±11.9b,‡ 39.8±4.2 42.3±6.9B 25.7±4.9‡ 32.3±4.8b,B,‡

 (mL/100 mL/min) 

 CBV 4.41±0.78a,A,‡ 3.36±0.46† 3.46±0.59a,‡ 2.82±0.47 3.22±0.64A 2.79±0.67

 (mL/100 mL) 

 OEF 39.3±5.1b,‡ 40.7±5.1a,† 44.4±6.7A 44.1±5.9 51.7±4.8b,A,‡ 47.4±5.7a

 (%) 

 CMRO2 2.77±0.54a 2.83±0.51 2.69±0.50A 2.81±0.36 2.11±0.44a,A,‡ 2.43±0.38‡

 (mL/100 mL/min) 

 CBFb/CBV 13.0±3.8a 17.0±5.6 11.8±2.2A,‡ 15.1±1.6B 8.4±2.6a,A,‡ 11.8±1.3B,†

 ratio (/min) 

After ACZ CVR −6.2±2.7‡ 69.2±43.8b,a −8.3±5.0‡ 24.0±14.2b,‡ −9.1±6.8‡ 22.9±15.1a,‡

 (%) 

ACZ, acetazolamide; an, anterior branch territory; CBFb, baseline cerebral blood flow; CBV, cerebral blood volume; CMRO2, cerebral oxygen 

metabolic rate; CVR, cerebrovascular reactivity; MCA, middle cerebral artery; OEF, oxygen extraction fraction; po, posterior branch territory.  
aP <0.05, bP <0.01: comparison between high-CBFb subgroup and moderate- or low-CBFb subgroup in the same side; AP <0.05 and BP <0.01: 

comparison between low-CBFb subgroup and high- or moderate-CBFb subgroup in the same side, Tukey’s HSD test; †P <0.05, ‡P <0.01, compared 

with control, Mann-Whitney test.



Tadashi Watabe, et al.    Paradoxical reduction of CBF after acetazolamide loading: a study with 15O PET 851

located adjacent to the top of the controls. Figure 4 shows 
a representative patient with high CBFb in the regions with 
paradoxical CBF reduction.

DISCUSSION
The results of the present study demonstrated that the 
paradoxical CBF reduction after ACZ loading is not always 
associated with reduction of regional CPP but with various 
hemodynamic and metabolic states. On the one extreme 
was “misery perfusion” and stage II ischemia[26] where 
CBFb was decreased, CBFb/CBV was decreased, OEF 

was increased, and CMRO2 was decreased. On the other 
was increased CBFb, normal CBFb/CBV, increased CBV, 
decreased OEF, and normal CMRO2. The latter condition 
has not been reported in previous studies.

High Baseline CBF in Paradoxical CBF Reduction
In the high CBFb regions with paradoxical circulation, the 
increases in CBFb and CBV were proportional resulting 
in normal CBFb/CBV and thus normal CPP. Low OEF in 
these regions suggested an excessive CBFb increase for 
normal oxygen demand. Originally, increased perfusion 
without increased CMRO2 was found after acute ischemia 

Fig. 3. Relationship between baseline cerebral blood fl ow to cerebral blood volume (CBFb/CBV) ratio and CBFb (A), and between the CBFb/
CBV ratio and CBV (B). 
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and called the “luxury perfusion” syndrome[27]. This 
condition resulted in irreversible brain damage[28−30]. Our 
patients showed no clinical signs and MRI evidence of 
acute cerebral infarction. None of the patients had cerebral 
infarction after the examination. It is noteworthy that an 
excessive CBFb increase was also found in the contralateral 
hemisphere where the OEF was significantly decreased, 
the CBV was signifi cantly increased, and the CBFb/CBV did 
not signifi cantly change. Therefore, we speculated that the 
excessive CBFb and CBV increases in our patients differ 
from ischemia-related luxury perfusion.

A bilateral hemispheric CBF increase during unilateral 
ICA occlusion was also found by Torigai et al. [31]. They 
performed balloon occlusion tests in 4 patients with 
intracranial aneurysm and in 6 with head and neck tumors. 
Each hemispheric CBF increase was proportional between 

the occluded and non-occluded sides. Although their 
study induced acute unilateral ICA occlusion, there is a 
physiological mechanism to increase CBF bilaterally.

Mechanism of High Baseline CBF
One possible mechanism of the bilateral increase of CBFb 
in the high-CBFb subgroup is dilatation of the contralateral 
carotid artery and/or basilar artery, as well as of the 
cerebral microvessels. Faraci and Heistad suggested that 
the large intracranial and extracranial arteries are a major 
site of resistance to CBF and contribute to total cerebral 
vascular resistance[32]. If the contralateral ICA and/or basilar 
artery in addition to the arterioles were dilated with suffi cient 
collateral circulation through the circle of Willis in a patient 
with unilateral ICA occlusion, then the CPP may be 
constant and the CBFb may be increased. Furst et al. also 

Fig. 4. Representative images from a patient (female, 71 years) with paradoxical cerebral blood fl ow (CBF) reduction in high-baseline 
CBF (CBFb) regions. This patient was diagnosed with chronic severe stenosis of the left ICA. She presented with no ischemic 
symptoms prior to the positron emission tomography examination. Ipsilateral increase in the CBFb and cerebral blood volume 
(CBV), ipsilateral decrease in the CBF after acetazolamide loading (CBFacz), ipsilateral decrease in the oxygen extraction fraction 
(OEF), and maintained cerebral oxygen metabolic rate (CMRO2) were found in the left ICA territory.
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speculated that dilatation of the contralateral large arteries 
and of the microvessels in the ipsilateral hemisphere may 
induce bilateral elevation of the CBFb

[33]. In the present 
study, all patients classified into the high-CBFb subgroup 
suffered from unilateral ICA occlusion or severe stenosis 
with a patent circle of Willis (Table 6). We speculated that 
compensatory dilatation of the contralateral ICA and/or 
basilar artery induces a bilateral increase of the CBFb. It 
is known that sympathetic innervation of the carotid and 
cerebral vessels and their response to norepinephrine play 
an important role in maintaining cerebral autoregulation[34]. 
The contribution of large arteries to the control of cerebral 
circulation needs further study in patients with chronic 
carotid artery steno-occlusive disease.

Prognosis of Patients with High Baseline CBF
Because of the short observation period after PET 
examination, the prognosis of patients classified into 
each group and/or subgroup has not yet been precisely 
analyzed. Derdeyn et al. studied the relationship between 
the OEF and CBV in patients with unilateral carotid artery 
occlusion and found that an increase in the CBV with an 
increase of the OEF was associated with a higher risk of 
stroke[35]. However, none of the patients with increased 
CBV and low OEF developed stroke over a mean follow-
up period of 3.1 years. We suppose that a high CBFb in the 
paradoxical CBF reduction is not indicative of a high risk of 
ischemic stroke.

Cerebral Oxygen Metabolism in Paradoxical CBF 

Reduction
Cerebral oxygen metabolism was significantly and 
exclusively decreased in the low CBFb regions of the 
paradoxical CBF reduction, even extending to the 
contralateral hemisphere. The reduction of CMRO2 in 
the ipsilateral hemisphere was probably due to selective 
neuronal loss. In patients with unilateral cerebrovascular 
disease, selective neuronal necrosis, as represented by 
a reduction of 11C-flumazenil binding, has been found 
in the cortical areas in the ipsilateral hemisphere with 
reduced CBF and reduced CVR[36,37]. In these studies, 
no significant reduction of 11C-flumazenil binding was 
found in the contralateral hemisphere. In the contralateral 
hemisphere of the low CBFb subgroup, metabolic reduction 

was considered to be attributable to trans-hemispheric 
functional depression. Recovery of CMRO2 in the 
contralateral hemisphere after bypass surgery supports this 
view[38].

Staging of High Baseline CBF
Powers and Derdeyn et al. established a staging for 
cerebral hemodynamic crisis based on CBFb, CBV, and 
OEF[26,35]. In Stage 0, CBFb, CBV, and OEF are all normal. 
In Stage I, CPP is reduced and the cerebral vessels are 
dilated to maintain CBFb; the CBV is increased, while 
the OEF remains normal. In Stage II, the capacity for 
compensatory vasodilation is overwhelmed and the CBFb 
begins to fall. Nemoto et al. added Stage III chronic where 
OEF returns to normal levels due to impaired CMRO2 
and CVR is still compromised. In the present study, we 
showed that the abnormalities in the low-CBFb subgroup 
correspond to Stage II hemodynamic failure, and those 
in the moderate-CBFb subgroup correspond to Stage I. 
However, the abnormalities in the high-CBFb subgroup 
could not be clearly categorized into any of the established 
stages. According to the CBF/CBV in the present study, the 
reduction of CPP was most severe in the low CBFb regions 
of paradoxical CBF reduction (mean CBFb/CBV = 8.4) 
followed by Group B (0 <CVR <15%) (mean CBFb/CBV = 
9.9), moderate CBFb (mean CBFb/CBV = 11.8), Group C 
(CVR >15%, mean CBFb/CBV = 12.3), and high CBFb (mean 
CBFb/CBV = 12.5) in this order. An additional category for 
high baseline CBF we propose would be located between 
normal and stage I.

Limitations
There are several limitations of the present study. First, 
the number of patients was limited and the background 
characteristics of the patients were heterogeneous. Some 
were asymptomatic, while others suffered a minor stroke 
as evidenced by MR, or a TIA. The patients often had 
hypertension, diabetes mellitus, and dyslipidemia. Second, 
we determined the presence/absence of the paradoxical 
CBF reduction by CBF measurements conducted 15 min 
after ACZ injection. The ACZ effect is reported to reach a 
maximum at 10 to 20 min after administration[4]. According 
to Kuwabara et al., who reported the time-dependency of 
the effect of ACZ on the cerebral circulation, the paradoxical 
CBF reduction is most prominent 5 min after injection 
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compared to 20 min after injection[7]. The paradoxical 
CBF reduction might be detectable more frequently 
in the early phase (at 5 to 10 min). Third, although we 
speculated about the role of large arteries in controlling 
the cerebral circulation, we did not evaluate changes in the 
diameter of the common carotid artery or ICA after ACZ 
administration. Fourth, we are still following up the patients 
of the present study, and the prognosis is still uncertain. 
The contribution of a high CBFb to the clinical outcome 
and long-term changes remain unclear. However, regions 
with increased CBFb and normal CPP might indicate a 
protective mechanism against the CBF reduction caused 
by the changes in circulatory dynamics. We suggest that 
careful follow-up, rather than revascularization treatment, is 
desirable in patients with such regions.

In conclusion, we have demonstrated that the 
paradoxical CBF reduction in patients with chronic 
unilateral ICA/MCA steno-occlusive disease is not always 
associated with a reduction of CPP and misery perfusion, 
but partly includes high CBF regions with normal CPP and 
an excessive oxygen supply. The high CBF state found in 
the present study has not been included in the previously-
established staging of chronic brain ischemia in patients 
with steno-occlusive ICA/MCA disease. We consider 
that the high CBF in these regions might be partly due to 
vasodilatation of the contralateral carotid and large cerebral 
arteries.
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INTRODUCTION

Cerebral perfusion pressure (CPP) is one of the essential 
factors in maintaining the cerebral circulation. Powers and 
Derdeyn et al. proposed a staging method for cerebral 
hemodynamic crises based on the CPP, cerebral blood fl ow 
(CBF), cerebral blood volume (CBV), and oxygen extraction 
fraction (OEF)[1,2]. However, the regional CPP in the brain 
could not be non-invasively measured in humans.

Based on clinical observations, the local CBF/
CBV ratio can be used as an index of the local CPP[3,4]. 

Schumann et al. evaluated the CBF/CBV ratio during global 
CPP manipulation by varying the mean arterial blood pressure 
(MABP) in anesthetized baboons[5] and demonstrated that 
the CBF/CBV ratio is signifi cantly correlated with the MABP 
in the range where the cerebral metabolic rate of oxygen 
is maintained. As the CPP is defined as MABP minus 
intracranial pressure, the cortical CBF/CBV ratio could be 
an index of the local CPP in the brain.

In the present study, we created CBF/CBV ratio maps 
in normal volunteers by means of 15O PET, and examined 
the possible existence of differences in the CBF/CBV ratio 
maps among different brain regions under physiological 
conditions.

ABSTRACT  

Local cerebral perfusion pressure (CPP) is a primary 
factor controlling cerebral circulation and previous 
studies have indicated that the ratio of cerebral blood 
flow (CBF) to cerebral blood volume (CBV) can be 
used as an index of the local CPP. In this study, 
we investigated whether the CBF/CBV ratio differs 
among different brain structures under physiological 
conditions, by means of 15O positron emission 
tomography. Nine healthy volunteers (5 men and 4 
women; mean age, 47.0 ± 1.2 years) were studied by 
H2

15O bolus injection for CBF measurement and by 
C15O inhalation for CBV measurement. The CBF/CBV 
ratio maps were created by dividing the CBF images 
by the CBV images after anatomical normalization. 
Regions of interest were placed on the CBF/CBV 
maps and comparing the regions. The mean CBF/
CBV ratio was highest in the cerebellum (19.3 ± 5.2/
min), followed by the putamen (18.2 ± 3.9), pons 
(16.4 ± 4.6), thalamus (14.5 ± 3.3), cerebral cortices 
(13.2 ± 2.4), and centrum semiovale (11.5 ± 2.1). 
The cerebellum and putamen showed significantly 
higher CBF/CBV ratios than the cerebral cortices and 
centrum semiovale. We created maps of the CBF/
CBV ratio in normal volunteers and demonstrated 
higher CBF/CBV ratios in the cerebellum and 
putamen than in the cerebral cortices and deep 
cerebral white matter. The CBF/CBV may refl ect the 
local CPP and should be studied in hemodynamically 

compromised patients and in patients with risk factors 
for small-artery diseases of the brain.

Keywords: cerebral perfusion pressure; cerebral 
blood fl ow; cerebral blood volume; H2

15O; C15O
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PARTICIPANTS AND METHODS

Normal Volunteers
15O PET studies were performed in nine normal volunteers 
(4 men and 5 women; mean age ± SD = 50.9 ± 0.4 years). 
The criteria for defi ning “normality” were as follows: (1) no 
past history of neurological and psychiatric disorders, heart 
failure, liver and renal dysfunction, respiratory diseases, 
acute inflammatory disease, autoimmune diseases, or 
cancer, (2) no smoking or alcohol habit, (3) no signifi cant 
abnormality on MR imaging or MR angiography of the 
brain, and (4) no history of medication within the previous 
3 months. This study was conducted with the approval of 
the Ethics Committee of Osaka University Hospital. Written 
informed consent was given by all participants.

PET Measurements
The PET images were obtained in the 3-D mode using a 
SET-3000 GCT/X scanner (Shimadzu Corp., Kyoto, Japan), 
the performance of which has been described[6]. Briefly, 
the intrinsic spatial resolution was 3.5-mm full-width at half 
maximum (FWHM) in-plane and 4.2-mm FWHM axially. 
Transmission scanning with an external point source 
(137Cs) was performed for attenuation correction. The PET 
images were reconstructed by a filtered-back projection 
method after 3D Gaussian smoothing with a 6-mm FWHM. 
Scatter events were corrected by the hybrid dual-energy 
window method combined with a convolution-subtraction 
method[6]. Participants were studied under room light and 
minimal mechanical noise, with their eyes closed and ears 
unplugged. The head of each participant was immobilized 
by a belt to minimize any motion during the study and 
between the CBV and CBF measurements.

A cannula was inserted into the radial artery for 
measuring the arterial input function. For the CBV study, 
the participants continuously inhaled C15O gas (3.0 GBq/
min) for 1 min. Static 4-min scanning was started 3 min 
after the completion of C15O inhalation[7]. Arterial blood was 
collected 3 times during the scanning period to measure 
the whole-blood radioactivity. In the equation, the small-to-
large vessel hematocrit ratio was fi xed at 0.85[8].

The CBF study was performed more than 10 min after 
completion of the C15O study to minimize any residual 15O 
activity. For the CBF study, a bolus of 370 MBq H2

15O was 
injected intravenously, and simultaneously a 3-D list-mode 

data acquisition over a period of 180 s was started[9,10]. 
Continuous arterial blood sampling was performed using 
a β-detector system to determine the whole-arterial 
blood radioactivity. Delay and dispersion occurring in the 
β-detector system were corrected by methods described 
previously[11]. Quantitative measurement of the CBF and 
CBV by the 3-D mode PET scanner has been validated[6].

Partial arterial O2 pressure (PaO2), partial arterial CO2 
pressure (PaCO2), pH, hematocrit (Ht), and hemoglobin 
concentration (Hb) were monitored continuously during the 
study. The systemic blood pressure and heart rate were 
also monitored during the PET study. MABP was calculated 
as: [diastolic BP + (systolic BP − diastolic BP) / 3].

Data Analysis
The CBF images were transformed to the standard brain 
size and shape of a built-in PET template, using SPM8 
software (Wellcome Department of Imaging Neuroscience: 
http://www.fil.ion.ucl.ac.uk/spm/). Parametric maps of 
CBV were created using the same parameters as those 
for CBF normalization. The resultant images had the 
same anatomic format, with an isotropic voxel size of 2 
mm. The CBF/CBV images were created by dividing the 
normalized CBF images by the normalized CBV images 
after smoothing (FWHM = 8 mm). PET/MRI fusion images 
were created with a normalized template of T1-weighted 
MRI using Osirix software (32-bit, version 3.8.1). Regions 
of interest (ROIs) were drawn on the normalized CBF, CBV, 
and CBF/CBV images. Circular ROIs were placed on 3 
sequential cross-sections of the pons and thalamus (16 mm 
in diameter), and elliptical ROIs (16 × 32 mm) were placed 
on 3 sequential cross-sections in each of the cerebellum 
(cerebellar hemisphere), putamen, centrum semiovale, and 
cerebral cortices (frontal, temporal, occipital, and parietal). 
All the ROIs were manually set apart from the superior and 
inferior sagittal sinuses, straight sinus, transverse sinus, 
sigmoid sinus, cavernous sinus, basilar venous plexus, 
superior and inferior petrosal sinuses, and large cerebral 
veins, such as great vein of Galen, internal cerebral 
vein, and basal vein of Rosenthal. Regional differences 
in the CBF/CBV ratio were compared by the paired t 
test. Probability values <0.05 determined by Bonferroni’s 
correction for multiple comparisons were considered to 
denote statistical signifi cance.
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RESULTS

There were no significant differences in the physiological 
parameters between the CBV and CBF measurement 
periods (Table 1). The mean CBF, CBV and CBF/CBV ratio 
for each brain region are shown in Table 2. The cerebellum 
showed the highest CBF/CBV ratio, while the cerebral deep 
white matter (centrum semiovale) showed the lowest ratio. 
The mean CBF/CBV ratios in the cerebellum and putamen 
were higher than those in the cerebral cortices or centrum 
semiovale (P <0.006). The normalized sum images for 

Table 1. Arterial blood gas parameters and blood pressure in 
C15O and H2

15O studies 

 C15O study H2
15O study P value

pH  7.403 ± 0.021  7.401 ± 0.015 0.66

PaO2 (mmHg) 85.6 ± 8.3 83.2 ± 8.8 0.16

PaCO2 (mmHg) 39.8 ± 5.0 40.0 ± 4.1 0.71

MABP (mmHg)  95.0 ± 11.5 93.4 ± 9.9 0.17

Hb (g/dl) 12.5 ± 1.6  

Ht (%) 38.4 ± 4.7  

Mean ± SD; paired t-test.

Table 2. CBF, CBV, and CBF/CBV ratio for each brain region

 CBF CBV CBF/CBV

 (mL/100 mL/min) (mL/100 mL) (/min)
 
Cerebellum 44.3 ± 7.2 2.52 ± 0.40 19.3 ± 5.2

  (2.21 ± 0.35)* (22.0 ± 5.9)*

Putamen 46.3 ± 5.7 2.62 ± 0.41 18.2 ± 3.9

  (2.42 ± 0.38)* (19.7 ± 4.2)*

Pons 42.1 ± 6.0 2.74 ± 0.69 16.4 ± 4.6

Thalamus 45.2 ± 6.9 3.12 ± 0.51 14.5 ± 3.3b 

Frontal cortex 38.6 ± 6.6 2.70 ± 0.32 14.4 ± 2.4a,b

Temporal cortex 43.1 ± 5.7 3.23 ± 0.22 13.3 ± 2.5 a,b

Parietal cortex 35.2 ± 4.9 2.65 ± 0.25 13.2 ±1.9 a,b

Occipital cortex 39.3 ± 5.6 3.23 ± 0.52 12.1 ± 2.4 a,b,d,e 

Centrum semiovale 21.3 ± 2.7 1.78 ± 0.22 11.5 ± 2.1 a,b,c

*A small-to-large hematocrit ratio of 0.92 was used for the putamen and 0.97 for the cerebellum in the CBV calculation. P <0.05 versus acerebellum, 
bputamen, cpons, dthalamus, and efrontal cortex (adjusted for multiple comparisons); mean ± SD.

CBF, CBV, and CBF/CBV ratio, along with fusion images 
of CBF/CBV and MRI T1-weighted images are shown in 
Figure 1. Among the regions of the cerebral cortex, the 
frontal cortex showed the highest CBF/CBV ratio, followed 
by the temporal, parietal, and occipital cortex. The CBF/
CBV ratio in the frontal cortex was higher than that in the 
occipital cortex (P <0.006).

DISCUSSION

In the present study, we created anatomically normalized 
CBF/CBV ratio maps in normal volunteers based on 15O 
PET, and demonstrated that the CBF/CBV ratio was not 
uniformly distributed in the brain. The cerebellum, putamen, 
thalamus, and brainstem (pons) showed relatively higher 
CBF/CBV ratios than the cerebral cortex and deep white 
matter (centrum semiovale) under physiological conditions.

The CBF/CBV ratios determined here are consistent 
with the calculated values from previous 15O PET studies. 
The regional distribution of the mean transit time (MTT; 
inverse of the CBF/CBV ratio) in normal young volunteers 
has been investigated in previous studies. Ibaraki et 
al. studied the distribution of the MTT in seven healthy 
volunteers (aged 20 to 21 years) based on 15O-PET 
(H2

15O and C15O)[12]. Regional differences were observed, 
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the MTTs being shorter in the order thalamus, putamen, 
cerebellum, cerebral cortex, and centrum semiovale. 
Ito et al. (2003) reported that in young male volunteers 
(19–27 years of age), the MTT was significantly shorter 
in the cerebellum, thalamus, and putamen than in all the 
neocortical regions, and signifi cantly longer in the centrum 
semiovale than in almost all other regions[13]. Our results 
from middle-aged volunteers are consistent with the above 
fi ndings. The mean CBF/CBV ratio in the temporal cortex 
was 13.3 in the present study, 15.4 in the study reported 
by Ibaraki et al. and 16.7 in the report by Ito et al.[12,13]. 
The lower mean CBF/CBV ratio in this study is considered 
to result from an age-related decline in the CBF and no 
change in the CBV[14].

In the CBV measurement by C15O inhalation, the 
regional CBV was estimated under the assumption of 
a constant small-to-large vessel hematocrit ratio (0.85) 

among brain structures[8]. If the hemodilution in the small 
vessels were to differ among regions, correct estimation 
of the regional CBV and CBF/CBV ratio may be difficult. 
Okazawa et al. measured the regional red blood cell 
volume and plasma volume separately by means of C15O 
and 62Cu-human serum albmin-dithiosemicarbazone 
PET[15]. In their study, the small-to-large vessel hematocrit 
ratios in the cortical gray matter, white matter, and basal 
ganglia of normal volunteers were 0.85 ± 0.07, 0.86 ± 0.07 
and 0.92 ± 0.04, respectively. Yamauchi et al., by means of 
a similar combined PET study, reported that the cerebellar 
small-to-large hematocrit ratio was ~0.97[16]. When we 
applied a ratio of 0.92 for the putamen and 0.97 for the 
cerebellum instead of 0.85 in the CBV calculation, the CBF/
CBV ratio increased by 8% for the putamen and by 14% for 
the cerebellum, further enhancing the regional differences 
in the CBF/CBV ratio between the cerebellum/basal ganglia 

Fig. 1. Average PET images of (A) CBF, (B) CBV, and (C) CBF/CBV ratio with (D) PET/MRI fusion images of CBF/CBV ratio.
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and cerebral cortices/centrum semiovale. Cremer et al. 
reported relatively constant tissue hematocrit values (%) in 
rats: 31.01 ± 0.61 for the caudate/putamen, 28.66 ± 0.66 for 
the thalamus, 30.80 ± 0.55 for the cerebellum, and 30.34 ± 
0.49 (auditory cortex) to 32.05 ± 0.83 (visual cortex) for the 
cerebral cortices[17]. Based on these reports, we considered 
that the CBF/CBV ratios in the cerebellum and putamen 
were higher than those in the cerebral cortex and centrum 
semiovale.

Schumann et al .  have demonstrated a l inear 
correlation between the cortical CBF/CBV ratio and the 
MAP, and claimed that the cortical CBF/CBV ratio could 
be used as an index of the cortical CPP[5]. However, it was 
still unknown whether the CBF/CBV ratios in the basal 
ganglia and cerebellum respond to changes of the MABP 
as found in the cortical regions. In their study, the CBF/CBV 
ratio maps of baboons showed proportional changes in the 
cerebral cortex and putamen/thalamus during hypotension 
and hypertension. Based on these fi ndings, we speculated 
that the CBF/CBV ratio maps may reflect the local CPP 
not only in the cerebral cortices, but in the whole brain. We 
further speculate that the CPP in the cerebellum, putamen, 
thalamus, and brainstem may be higher than that in the 
cerebral cortices and deep white matter.

What are the clinical implications of the findings of 
the present study? Brain regions showing high CBF/
CBV ratios (putamen, thalamus, pons, and cerebellum) 
are vulnerable to small-artery diseases. Kinoshita et 
al. reported that in hypertensive stroke patients, brain 
microbleeds were found by MRI in the lentiform nucleus 
(47%), thalamus (42%), brainstem (34%), and cerebellum 
(25%)[18]. Lacunar infarction was associated with a similar 
fi nding of microbleeds. Kato et al. reported a high incidence 
of microbleeds in the subcortical white matter, thalamus, 
basal ganglia, brainstem (predominantly in the pons), and 
cerebellum[19]. Further analysis of CBF/CBV ratio maps 
and the local CPP values may reveal the probability of 
microangiopathy and the mechanisms of formation of 
microbleeds/lacunar infarcts in hypertensive patients. In 
patients with steno-occlusive arterial diseases, the CBF/
CBV ratio maps would reveal the extent and magnitude of 
the CPP decline, as proposed by Gibbs et al., Sette et al., 
and Schumann et al.[3-5].

In the clinical setting, it is much easier to measure 
the CBF and CBV by means of SPECT than by 15O PET. 

Several SPECT tracers are available for CBF and for CBV 
(99mTc-human serum albumin) imaging. By combining CBF 
measurements with CBV SPECT, CBF/CBV ratio maps can 
be prepared for each patient. In 15O PET studies, we can 
obtain quantitative images with higher spatial resolution 
than in SPECT. The CBF/CBV ratio of a small region can 
be accurately evaluated by 15O PET.

CONCLUSIONS

In this study we demonstrated, based on the CBF/CBV 
ratio maps of healthy volunteers, the normal distribution of 
the local CPP in the brain. The cerebellum and putamen, 
which are common sites of hypertensive intracerebral 
hemorrhage, showed higher CBF/CBV ratios than the 
cerebral cortices and deep white matter under normal 
physiological conditions. CBF/CBV maps should be studied 
in further detail in hemodynamically compromised patients 
and in patients with risk factors for small-artery diseases of 
the brain.
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·Research Highlight·

The preoptic area (POA) is located in the most anterior 
part of the hypothalamus and is bordered dorsally by the 
anterior commissure and anteroventrally by the nucleus 
of the diagonal band of Broca[1]. Accumulating evidence 
from developmental neurobiology suggests, however, that 
the POA may be a separate entity from hypothalamus, 
and may actually be part of the basal telencephalon[2, 3].  
Both the hypothalamus and POA are highly complex and 
heterogeneous areas, containing multiple nuclei, each 
of which has specific fundamental functions for survival.  
Among these, the POA contains nuclei involved in the 
regulation of blood osmolality and temperature (the median 
preoptic nucleus), sleep (the ventrolateral preoptic and 
suprachiasmatic nuclei), ovulation (gonadotropin-releasing 
hormone neurons scattered mainly in the ventral part of the 
POA), male sexual behavior (the medial preoptic nucleus), 
and parental behavior (the central part of the medial POA, 
cMPOA).  

Parental behavior in mammals is typically a uniparental 
maternal care system, while paternal and alloparental 
behaviors (parental responses toward infants that are 
not one’s biological offspring) are not common. However, 
paternal and alloparental behaviors do occur in those 
species where such behaviors have adaptive signifi cance[4, 5]. 

A critical role of the medial POA (MPOA) in maternal 
behavior was initially suggested by Fisher[6], and has been 
established in a series of studies by Numan[7, 8] in laboratory 
rats. Then it was confirmed in other rodents, such as 
hamsters[9], California mice[10], and laboratory mice[11], as 
well as for paternal and alloparental behaviors[10–13]. The 
MPOA is also involved in the parental behavior of sheep[14] 
and presumably most other mammals. Severing the lateral, 
in particular the dorsolateral, connections of the MPOA 

disrupts maternal behavior most strongly and specifi cally, 
compared to cutting the anterior, posterior, or dorsal 
connections[15, 16]. These findings are consistent with the 
fact that the major afferent and efferent connections of the 
rat medial preoptic nucleus, the largest and central nucleus 
of the MPOA, enter and leave laterally[17].

While postpartum maternal behavior is similar in 
laboratory rats and mice, alloparental behavior in virgin 
animals differs quite impressively. Virgin female rats initially 
avoid, and may even attack, young pups, and they require 
several days of continuous pup exposure (sensitization) 
before their behavior switches toward displaying parental 
responses[18]. Virgin male rats behave similarly[ 18]. In 
contrast, the majority of virgin female mice start retrieving 
pups and showing other parental responses within 30 to 
60 min after their fi rst exposure to pups[19]. In other words, 
nulliparous female laboratory mice, unlike most female 
mammals, do not require pregnancy hormones or extensive 
pup sensitization to induce immediate maternal care. In 
contrast to their female counterparts, virgin male laboratory 
mice behave more like virgin female and male rats, and are 
more avoidant or even infanticidal on their fi rst exposure to 
pups[20]. Signifi cantly, once these male mice become fathers 
by mating and cohabitation with their pregnant mates, they 
show extensive paternal care toward their offspring as well 
as non-offspring pups[21]. The underlying mechanism for 
this behavioral switch induced by social experience with 
the female mate is unknown, although it has been shown 
that surgical removal of the vomeronasal organ abolishes 
the infanticidal response and turns virgin male mice toward 
parental responsiveness[22]. Interestingly, vomeronasal 
organ removal also facilitates maternal behavior in virgin 
female rats[23], and decreases infanticide in male rats[24]. 
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It appears that dual neural mechanisms regulating 
behavioral responses toward infants exist in the brains of 
most male and female rodents: typical virgin females and 
males initially avoid pups, while postpartum females, and 
males of certain species that have mated and cohabitated 
with females, care for the young. In comparison to most 
mammals, the spontaneous maternal behavior of virgin 
female laboratory mice is atypical; indeed, feral female 
virgin mice are infanticidal[8] (see [4, 5] for a broader analysis 
of these issues).  

Recently, Wu and colleagues reported on the role 
of galanin neurons in the MPOA for parental behavior 
in both male and female mice[25]. They showed that (1) 
virgin male mice lacking the Trpc2 gene, which encodes 
a vomeronasal-organ-specific ion channel, show paternal 
behavior rather than infanticide; (2) Galanin, a neuropeptide 
widely expressed in the brain, spinal cord, and gut, is 
co-expressed with c-Fos induced in MPOA neurons by 
parental behavior (38.3% of MPOA c-Fos-positive neurons 
co-express galanin, and 24.8% of MPOA galanin-positive 
neurons co-express c-Fos in virgin females displaying 
parental behavior), consistent with a previous publication 
(47.7% and 29.6%, respectively, in the cMPOA)[11]; (3) 
ablation of the galanin neurons within the MPOA causes 
impairments in parental behavior and male mating 
behavior; and (4) optogenetic stimulation of MPOA galanin 
neurons attenuates infanticide and inter-male aggression 
in virgin males, and facilitates pup grooming (sniffi ng and 
licking) as well as general locomotion at the expense of 
crouching behavior. The strength of this study is the specifi c 
manipulation of galanin neurons using a galanin-cre mouse 
line in combination with sophisticated virus-vector-mediated 
gene-transfer techniques. Such approaches will become 
indispensable tools for elucidation of the neuronal circuits 
of the mammalian parent-infant relationship.

The functional role of galanin is largely unknown, 
however; it has been implicated in diverse biological 
processes including lactation via prolactin secretion, 
neural development, feeding, mood regulation, and 
osmoregulation (see [26] for review). Moreover, galanin 
expression is widely distributed in the MPOA. As such, it 
is reasonable to assume that the manipulation of MPOA 
galanin neurons affects not only pup-directed behaviors 
but also other behaviors and physiological functions. 
More anatomically-specific targeting of experimental 

manipulations within subregions of the MPOA in future 
studies should provide more information on the neuronal 
basis of pup-directed behaviors in relation to other 
social behaviors, in particular the behavioral switch from 
infanticide to paternal care in male mice that is induced by 
social interactions with females. Perhaps one population of 
MPOA neurons is involved in suppressing an avoidance/
infanticide circuit, while another population is involved in 
stimulating a parental circuit[4, 27]. Significantly, the facts 
that Wu et al.[25] found that stimulation of MPOA galanin 
neurons in virgin males reduces infanticide without 
stimulating parental behaviors, while ablation of these 
neurons in fathers and postpartum females suppresses 
parental behavior without inducing infanticide, support the 
view that there are two functionally distinct MPOA neuronal 
populations. Obviously, much more research needs to be 
done to determine, for example, which functional aspects of 
parental behavior are regulated by MPOA galanin neurons, 
and whether the critical MPOA-galanin neurons are local-
circuit neurons, output projection neurons, or both. 
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ABSTRACT  

Extrasynaptic GABAA receptors (GABAARs)-mediated 
tonic inhibition is reported to involve in the patho-
genesis of epilepsy. In this study, we used cyclo-
thiazide (CTZ)-induced in vitro brain slice seizure 
model to explore the effect of selective activation 
of  extrasynapt ic  GABAARs by 4,5,6,7- tet ra-
hydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the 
CTZ-induced epileptiform activity in hippocampal 
neurons. Perfusion with CTZ dose-dependently 
induced multiple epileptiform peaks of evoked 
population spikes (PSs) in CA1 pyramidal neurons, and 
treatment with THIP (5 μmol/L) significantly reduced 
the multiple PS peaks induced by CTZ stimulation. 
Western blot showed that the δ-subunit of the GABAAR, 
an extrasynaptic specific GABAAR subunit, was also 
significantly down-regulated in the cell membrane 2 
h after CTZ treatment. Our results suggest that the 
CTZ-induced epileptiform activity in hippocampal CA1 
neurons is suppressed by the activation of extrasynaptic 
GABAARs, and further support the hypothesis that tonic 
inhibition mediated by extrasynaptic GABAARs plays a 
prominent role in seizure generation.

Keywords: GABAARs; tonic inhibition; epilepsy; 
population spike; cyclothiazide; hippocampal CA1 neurons

INTRODUCTION

Epilepsy is a common neurological disorder, and various 

factors such as brain trauma, infection, and genetic 
factors contribute to its pathogenesis[1]. This disorder 
entails abnormal behavior caused by sudden, overriding, 
and synchronized electrical activity of certain neuronal 
groups in the central nervous system. Although the exact 
mechanisms that lead to this abnormal firing are not yet 
fully understood, a functional imbalance of GABAergic 
inhibition and glutamatergic excitation is considered to be 
one of the fundamental etiologies. 

Hitherto, many antiepileptic drugs have targeted 
GABAA receptors (GABAARs)[2-4]. Current studies show that 
GABAARs are present in, but not confi ned to the synapse; 
they are also abundant at extrasynaptic sites, although 
these receptors contain different subunits[5, 6]. Synaptic 
GABAARs have relatively a low affi nity for GABA, and are 
principally activated by neurotransmitters released into 
the perisynaptic space, mainly mediating fast synaptic 
inhibition. Conversely, extrasynaptic GABAARs have a 
high affi nity for GABA and are persistently activated by low 
concentrations, resulting from the extrasynaptic leakage 
of the neurotransmitter, and mediate ‘tonic’ inhibition. The 
δ-subunit-containing GABAAR is the major extrasynaptic 
form, particularly localized in the hippocampal area and the 
cerebellum[7, 8]. Extrasynaptic GABAARs are not sensitive 
to most of the benzodiazepines; however, they are highly 
sensitive to 4,5,6,7-tetra-hydroisoxazolo[5,4-c] pyridine-3-
ol (THIP)[5, 9]. The role of synaptic GABAR-mediated phasic 
inhibition in epileptogenesis has been well investigated[10, 11], 
yet recent research efforts have also revealed that 
extrasynaptic GABAAR-mediated tonic inhibition plays 
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an equivalent or even more critical role in the regulation 
of epilepsy[12, 13]. Moreover, clinical studies have shown 
that there is a significant down-regulation of δ-subunit-
containing GABAARs in brain samples from patients with 
temporal lobe epilepsy[14], and that mutation of the δ-subunit 
is one of the pathogenic mechanisms of epilepsy[15]. 
Our recent study demonstrated that enhancing tonic 
inhibition by overexpressing either the α5- or the δ-subunit-
containing extrasynaptic GABAARs substantially inhibits the 
formation of epileptiform activity in hippocampal cultures. 
Furthermore, the injection of the selective extrasynaptic 
GABAAR agonist THIP inhibits both epileptiform burst 
activity in anesthetized rats and seizure behavior in freely-
moving rats[12, 13].

In this work, we further investigated whether δ-subunit-
containing GABAARs were deficient during cyclothiazide 
(CTZ)-induced epileptogenesis in hippocampal brain slices, 
and whether activation of the extrasynaptic GABAARs could 
reverse the CTZ-induced epileptiform activity. 

MATERIALS AND METHODS

Experimental Animals and Hippocampal Slice Preparation 
Brain slices were prepared from P21–28 male Sprague-
Dawley rats provided by the Shanghai Institutes for 
Biological Sciences Experimental Animal Center. The rats 
were housed in a regulated environment (22 ± 1°C) with a 
12 h light–dark cycle, and food and water were available 
ad libitum. All experiments were carried out in accordance 
with the local animal protection law, and approved by 
the Experimental Animal Ethics Committee of Fudan 
University. 

Rats were anesthetized by intraperitoneal injection 
of 1.25% pentobarbital sodium at 0.1 mL per 100 g body 
weight. After full anesthesia, the rats were decapitated 
and the brain was removed and cooled in iced artificial 
cerebrospinal fl uid (ACSF; in mmol/L: NaCl 124, KCl 3.3, 
KH2PO4 1.2, NaHCO3 26, CaCl2 2.5, MgSO4 2.4, glucose 
10) for 1 min, then the hippocampus was exposed on ice. 
After that, the brain was fi xed on a vibrating cryotome and 
bathed in iced ACSF throughout the slicing process. The 
thickness of the slices used in both fi eld potential recording 
and western blot was 350 μm. The slices were transferred 
to ACSF at room temperature, and later to a 33°C water 

bath for 30 min, in order to restore neuronal function before 
they were allowed to recover in room temperature ACSF 
for 1 h. At the end of this process, the slices were ready 
for pharmacological treatment and electrophysiological 
recording.

Evoked Population Spike Recording in Hippocampal 
Slices 
Freshly-prepared hippocampal slices were superfused with 
normal ACSF using a Peri-star double-channel perfusion 
system (World Precision Instruments, Sarasota, FL), 
and the perfusate was continuously bubbled with 95% 
O2 and 5% CO2. The recording pipettes were pulled from 
borosilicate glass on a P97 microelectrode puller (Sutter 
Instruments, Novato, CA). The pipette was fi lled with normal 
ACSF and the impedance was 4–8 MΩ. Bipolar tungsten 
electrodes were used for stimulation. The recording 
electrodes were placed in the CA1 pyramidal layer, while 
the tungsten electrodes were placed across the Schaffer 
collaterals. The stimulation strength was set to evoke 60% 
of the maximal response, and the frequency was set to one 
per 30 s. The signal was amplified and filtered using the 
NeuroLog system (Digitimer Ltd, Hartford, UK), and was 
acquired using the CED1401 data acquisition system and 
Spike 2 software (CED Electronics, Cambridge, UK). After 
30 min of baseline recording, either DMSO (0.1%) or one 
of the convulsants [(CTZ, kainic acid (KA), bicuculline (BIC), 
or Mg2+-free solution (0-Mg2+)] was added to the ACSF, 
and the recording was continued for another 2 h. In some 
experiments, after 2 h recording with CTZ (200 μmol/L) 
(Tocris, Northpoint, Bristol, UK), the perfusate was replaced 
with either DMSO (0.1%) or THIP (5 μmol/L) (Sigma Aldrich 
Chemical Co., Poole, Dorset, UK) for another hour. 

Whole-cell Patch-clamp Recording 
Whole-cell recordings were performed in voltage-clamp 
mode using a MultiClamp 700B amplifier (Molecular 
Devise, Sunnyvale, CA). Patch pipettes were pulled from 
borosilicate glass and fire-polished (2–6 MΩ). Before the 
pipettes were immersed in solution, positive pressure 
was applied to prevent tip blockage. When approaching 
target cells, the pressure was withdrawn to form a high-
impedance seal (>1 GΩ) between the membrane and the 
pipette. Meanwhile, the membrane potential was held 
at around −70 mV to facilitate the seal. After the seal 
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stabilized, appropriate negative pressure was applied to 
break the cell for whole-cell recording. Data were acquired 
using pClamp 10 software, sampled at 2–10 kHz, and 
fi ltered at 1 kHz. Off-line analysis was done with Clampfi t 
10 software. Based on previous work, a large depolarization 
resembling a paroxysmal depolarization shift was defi ned 
as ≥10 mV depolarization, and ≥300 ms duration. And an 
epileptiform burst in a single neuron was defi ned by at least 
fi ve consecutive action potentials superimposed on a large 
depolarization shift[16].

Immunoblotting
Slices were dissected to preserve only the hippocampus 
under a dissecting microscope on ice, and then quickly 
homogenized in pre-cooled lysis buffer (#K268-50, 
Biovision, Milpitas, CA). The plasma membrane protein 
fraction was prepared from the homogenate following the 
standard procedure using a membrane protein extraction 
kit (#K268-50, Biovision). The membrane fraction was 
dissolved in 0.5 % Triton X-100 in PBS, and incubated at 
45°C with SDS sample buffer for 45 min for inactivation. 
Membrane proteins were separated on SDS-PAGE, 
electrophoretically transferred to polyvinylidene fluoride 
membranes (Millipore, Billerica, MA), then incubated with 
primary antibodies raised against the GABAAR δ-subunit 
(#AB9752, 1:800; Millipore) or β-actin (#4967, 1:1 000; 
Cell Signaling Technology, Danvers, MA) in 5% skimmed 
milk-TBS-T (20 mmol/L Tris, pH 7.6, 137 mmol/L NaCl, 
0.05% Tween 20) overnight at 4°C, followed by incubation 
with peroxidase-conjugated Affinipure goat anti-rabbit 
(#111-035-003, 1:20 000; Jackson, Noida, India) or rabbit 
anti-goat (#305-035-003, 1:20 000; Jackson) secondary 
antibody in TBS-T buffer. Bands were visualized using 
an ECL detection system (Pierce, Rockford, IL). The 
immunoreactivity of an individual band was measured by 
Imagepro plus and normalized to β-actin.

Data Analysis 
Group data are expressed as mean ± SEM. Across 
different groups of data, statistically signifi cant differences 
between means were determined using one-way ANOVA 
with Tukey’s HSD post hoc analysis. Comparison within a 
group was carried out using a paired or unpaired t test. All 
analyses were performed using the statistics software Stata 
7. The signifi cance level was set at P <0.05.

RESULTS

CTZ-induced Epileptiform Activity in CA1 Pyramidal 
Neurons of Hippocampal Slices 
Previous studies have shown that CTZ induces progressive 
epileptiform activity including multiple evoked peaks 
followed by spontaneous epileptiform spike activity, 
and eventually highly-synchronized burst activity, in rat 
hippocampal CA1 neurons[16, 17]. In this study, we fi rst tried 
to establish a hippocampal slice model of seizures induced 
by CTZ. Under control condition, a single population spike 
(PS), without any spontaneous activity, was evoked in 
CA1 pyramidal neurons after stimulation of the Schaffer 
collaterals (Fig. 1Aa). However, slices treated with CTZ (50 
or 200 μmol/L, dissolved in 1% DMSO) dose-dependently 
induced multiple epileptiform PS peaks in CA1 pyramidal 
neurons, similar to those reported in anesthetized rats in 
vivo[16] (Fig. 1Ab, Ac). The latency to the appearance of the 
second PS peak in the 50 μmol/L CTZ group was 68.1 ± 
4.0 min (n = 9), which was signifi cantly longer than that of 
the 200 μmol/L CTZ group (18.3 ± 1.5 min, n = 6; P <0.001) 
(Fig. 1B, Table 1). In addition, CTZ at 200 μmol/L induced 
multiple PS peaks (3 or more) (Fig. 1Ac), while 50 μmol/L 
CTZ failed to induce three or more peaks during our 2-h 
recording paradigm (Fig. 1Ab). These results indicated that 
CTZ induces concentration-dependent epileptiform activity 
in hippocampal slices.

Comparison of the Latency to Evoke Epileptiform Multiple 
PS Peaks among Different in vitro Epilepsy Models 
Previous studies have reported that KA, BIC, and 0-Mg2+ 
induce epileptiform activity in hippocampal slices, and all are 
commonly used in the study of epilepsy[18-20]. We performed 
a study to compare these models with CTZ. Hippocampal 
slices continuously superfused with ACSF containing KA 
(0.5 μmol/L), BIC (2 μmol/L), or 0-Mg2+ all rapidly displayed 
double or even multiple PS peaks (Fig. 2 C–E), while this 
process was much slower with CTZ (50/200 μmol/L). The 
CTZ model also induced relatively fewer peaks overall 
compared with the other three models (Fig. 2A, B). The 
latencies of the double peaks in these four models were: 
CTZ (50 μmol/L), 68.1 ± 4.0 min, n = 9; CTZ (200 μmol/
L), 18.3 ± 1.5 min, n = 6; KA (0.5 μmol/L), 3.6 ± 0.4 min, 
n = 6; BIC (2 μmol/L), 2.5 ± 0.2 min, n = 5; 0-Mg2+, 7.4 ± 
0.9 min, n = 5 (Fig. 2F). These results showed that the 
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onset of abnormal epileptiform PSs induced by CTZ was 
signifi cantly slower (P <0.001, Fig. 2F) than that seen with 
the classical experimental convulsants. The slow onset of 
action of CTZ is comparable to that reported in cultured 
hippocampal neurons[16].

CTZ-induced Epileptiform Firing in Single Hippocampal 
CA1 Neurons 
A previous study showed that the additional PS peaks 

Fig. 1. Progressive change of hippocampal CA1 evoked potentials induced by CTZ in a brain slice. A: CTZ-induced time- and 
concentration-dependent progressive change of the evoked population spikes (PSs) in a hippocampal CA1 slice. Aa: PS was 
not significantly changed when superfused with DMSO as control (n = 4); Ab–Ac: PS peak number gradually increased after 
continuous superfusion with either 50 μmol/L (n = 9) (b) or 200 μmol/L (n = 6) (c) CTZ. B: Bar graph showing the latency to evoke 
double and triple peaks at different CTZ concentrations. Additional peaks are indicated by the arrows; “●” indicates the stimulus 
artifact.

Table 1. Summary of double or triple PS peak latency induced 
by different concentrations of CTZ

Group Double Peaks (min) Triple Peaks (min)

DMSO >120 (n = 4) >120 (n = 4)

CTZ (50 μmol/L)  68.1 ± 4.0 (n = 9) >120 (n = 9)

CTZ (200 μmol/L) 18.3 ±1.5*** (n = 6) 76.7 ± 11.3 (n = 6)

***P < 0.001 compared with the 50 μmol/L CTZ group.
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are likely due to the non-synchronized composition of 
the enhanced electrical activity from different neuronal 
layers[21]. Enhanced neuronal activity for epileptiform burst 
fi ring[16], which is at the core of epileptogenesis and network 
spread[22-24], has been reported in cultured hippocampal 
neurons after treatment with CTZ. Therefore, we further 
explored changes in the fi ring pattern at the level of single 
hippocampal CA1 neurons in CTZ-treated hippocampal 
slices using the patch-clamp technique. Spontaneous 
action potentials were only occasionally recorded from 
CA1 pyramidal neurons when the membrane potential was 
current-clamped at −70 mV (Fig. 3, left). However, neuronal 
activity was enhanced after the application of CTZ (50 μmol/L) 
(Fig. 3, middle), which eventually induced epileptiform 

burst activity (Fig. 3, right), analogous to that reported 
in cultured hippocampal neurons[16]. The percentage of 
neurons that displayed epileptiform burst firing in slices 
treated with 50 μmol/L CTZ for 2 h was 55.6% (n = 9). The 
above results point towards the possibility of a correlation 
between epileptiform burst firing in single neurons and 
synchronization in the neuronal network after CTZ 
perfusion.

Incubation with CTZ Downregulates Neuronal Cell 
Membrane Expression of Extrasynaptic GABAA Receptors 
in Hippocampal Slices 
Extrasynaptic GABAARs have been suggested to exert a 

regulatory function during epileptogenesis and could be 

Fig. 2. Comparison of the epileptiform evoked PS 
activity induced by different convulsants 
in hippocampal CA1 sl ices.  Traces 
showing the evoked PS progressively 
changed in the CA1 pyramidal neuron 
layer before (left) and during (middle and 
right) treatment with different convulsants 
[50 μmol/L CTZ (A), 200 μmol/L CTZ (B), 0.5 
μmol/L KA (C), 2 μmol/L BIC (D), and 0-Mg2+ 
ACSF (E)]. The extra peaks are indicated 
by arrows; “●” indicates the stimulus 
artifact. (F) Bar graph of the latencies of 
the second evoked PS peak with different 
convulsants. The number of animals used 
in each group is indicated in the bar (***P 
<0.001 compared with the 50 μmol/L CTZ 
group, ##P <0.01, ###P <0.001 compared 
with the 200 μmol/L CTZ group).
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novel antiepileptic drug targets[13]. Hence, we went on to 
examine the variation in expression of the δ subunit, one of 
the major extrasynaptic GABAAR subunits, on the neuronal 
cell membrane after treatment of hippocampal slices with 
CTZ. Freshly-prepared slices were incubated in ACSF 
containing 50 μmol/L CTZ or 1‰ DMSO (solvent control) 
for 2 h, after which membrane protein was extracted for 
western blot analysis. Two hours after treatment with CTZ 
(50 μmol/L), the relative level of the GABAAR δ subunit 
was markedly decreased to 55.0 ± 4.3% (Fig. 4) of the 
DMSO control level. This result demonstrated that the 
extrasynaptic expression of GABAARs is reduced in CTZ-
induced epileptogenesis in hippocampal slices.

THIP Suppresses the Epileptiform PSs Induced by CTZ 
in Hippocampal Slices 
Our previous study showed that the sustained tonic 
inhibition mediated by extrasynaptic GABAARs has a 
significant effect on epileptiform activity[13]. Therefore, we 
further tested whether enhancing tonic GABA inhibition 
by THIP, an agonist specific for the GABAAR δ-subunit, 
could suppress the epileptiform activity in hippocampal 
slices. Perfusion with 200 μmol/L CTZ induced multiple PS 
peaks in all slices as shown above. After 2 h of continuous 
superfusion, the induced multiple PS peaks had reached 
a stable stage with an average of 2.3 ± 0.2 (n = 9) extra 

Fig. 3. CTZ-induced robust epileptiform burst activity in a CA1 pyramidal neuron in a rat hippocampal slice. Traces from current-clamp 
recordings (membrane potential held at −70 mV) in a CA1 pyramidal neuron showing that CTZ (50 μmol/L) transformed the fi ring 
pattern from single action potentials (left), to grouped (middle), and fi nally burst-like activity (right) .

Fig. 4. CTZ treatment suppressed expression of the GABAAR 
δ-subunit in the hippocampal cell membrane. A: Western 
blots showing the GABAAR δ-subunit (upper) and β-actin 
(lower) in DMSO- and CTZ-treated (2 h) hippocampal slices. 
B: Bar diagrams showing the group data of the change of 
the GABAAR δ-subunit after CTZ treatment. The number of 
animals in each group are indicated in the bar (***P <0.001 
compared with the DMSO group). 
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peaks (excluding the first PS) (Fig. 5Ab, Ac  ). Then slices 
were randomly washed with ACSF either containing 5 
μmol/L THIP (n = 6) or 1‰ DMSO (n = 3) as solvent control 
(Fig. 5Aa). The results showed that superfusion with THIP 
suppressed the epileptiform extra PS peaks in a time-
dependent manner from an average of   2.2 ± 0.3 to 1.3 ± 0.2 
at 30 min (P <0.01) and 1.2 ± 0.2 at 60 min (P <0.05), while 
those superfused with DMSO showed no signifi cant effect 
on the PS peaks (Fig. 5B). Further analyses showed that, 
compared with the time-matched DMSO control group, the 
extra number of peaks was reduced at 40 min (1.3 ± 0.2 
versus 2.2 ± 0.2, P <0.05), and at 60 min (1.2 ± 0.2 versus 
2.2 ± 0.3, P <0.05) after CTZ was washed out with THIP 

(Fig. 5B). The reduction ratio of the extra PS peak number 
in the THIP group was greater than that in the DMSO group 
(P <0.001, Fig. 5C). These results showed that, although 
δ-GABAARs were down-regulated, the extrasynaptic 
GABAAR agonist THIP was still capable of suppressing the 
CTZ-induced epileptiform activity in hippocampal slices.

DISCUSSION

In this study, we established a novel brain-slice epilepsy 
model that used the previously-characterized convulsant 
CTZ[16]. Using this model, our results demonstrated that 
extrasynaptic GABAARs were downregulated by ~50% 

Fig. 5. Stimulation of extrasynaptic GABAA receptors with THIP suppressed CTZ-induced epileptiform population spike (PS) peaks in 
hippocampal CA1 region. Aa: Line to show the protocol (arrow indicates the superfusate change from CTZ to either DMSO or 
THIP). Ab–Ac: Raw traces showing the change in the extra number of PS peaks (arrows) after the superfusate was changed to 
either DMSO (Ab) or THIP (Ac). B: Bar diagram showing that THIP (5 μmol/L, n = 6) suppressed the CTZ (200 μmol/L, 2 h)-induced 
multiple PS peaks compared with the DMSO control (n = 3) (P <0.001, two-way ANOVA). C: Graph showing the reduction ratio 
of the extra PS peaks in the THIP (fi lled circles) and DMSO (unfi lled circles) groups (*P <0.05, **P <0.01 compared with 2-h CTZ 
control, paired t-test; #P <0.05, ##P <0.01 compared with time-matched DMSO control, unpaired t-test).
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during early CTZ-induced epileptogenesis, and selective 
stimulation of the remaining extrasynaptic GABAARs by 
THIP was still capable of suppressing the epileptiform 
activity established by CTZ. 

Recently, several studies have shown that CTZ is a 
potent convulsant capable of inducing epileptiform activity 
both in vivo and in cultured hippocampal neurons[16, 17, 25], 
as well as evoking seizure behavior in freely-moving 
animals[26]. In the current study, we further extended this 
epilepsy model to hippocampal slices. CTZ has long been 
known as a blocker of AMPA receptor desensitization 
and was also recently found to be a GABAAR inhibitor[27]. 
Although the previous in vitro  studies on cultured 
hippocampal neurons have shown that neurons treated with 
CTZ have a long-lasting alteration in neuronal fi ring pattern, 
including the induction of epileptiform burst activity[16], 
the change in network activity after CTZ treatment was 
still not clear. The brain slice is a simple and convenient 
method that has been widely used in anticonvulsant 
drug development, and in experimental studies on the 
neuroprotective roles of these drugs during epilepsy[28-30]. 
Thus, the brain-slice model is of special value in the study 
of epilepsy. Using the hippocampal slice preparation, 
we showed that not only were individual hippocampal 
pyramidal neurons induced to generate epileptiform burst 
fi ring but also, at the local network level, epileptiform activity 
was triggered in the form of multiple evoked PS peaks. 
We also demonstrated that CTZ is a potent convulsant in 
hippocampal slices, and provided another useful in vitro 
model for studying the mechanisms underlying seizures 
along with the development of potential anticonvulsant 
drugs. While the in vivo model requires injection of CTZ into 
the cerebral ventricles due to its inability to cross the blood-
brain-barrier, the brain-slice model of epilepsy induced by 
CTZ is not only easy to establish, but also retains relatively 
intact neuronal networks. In addition, our previous in vitro 
work has demonstrated that, unlike other convulsants (e.g. 
kainate), CTZ does not appear to be neurotoxic[16], and our 
recent study on a CTZ-induced chronic rat seizure model 
(data not shown) also indicated that intracerebroventricular 
application of CTZ, which gives rise to recurrent seizure 
behavior, has a mild effect on neuronal apoptosis. Thus, 
the CTZ seizure model has special advantages in the study 
of epilepsy.

Our previous studies both in anesthetized animals 

and in cultured neurons indicated that the process of CTZ-
induced epilepsy is relatively moderate with a rather long 
latency to the induction of the acute phases of seizure[16]. 
We further characterized this property by comparing the 
latency to the onset of epileptiform activity in hippocampal 
slices with the commonly-used convulsants KA, BIC, and 
0-Mg2+. We showed that the onset latency to evoke the 
extra PS peaks in CA1 was significantly longer than any 
of those convulsants, even after the CTZ concentration 
had been increased to 200 μmol/L. This discrepancy in 
latency provides a much longer window period, up to 1 h 
in the 50 μmol/L CTZ group, as compared to only few 
minutes with either KA, BIC, or 0-Mg2+, to explore the initial 
seizure induction mechanism. Thus, we have extended 
the use of the novel convulsant CTZ to this model for 
epilepsy research. Previous research on anesthetized rats 
showed that CTZ-induced epilepsy in hippocampal CA1 
neurons has a characteristic 3-stage pattern consisting of 
multiple evoked PS peaks, followed by the appearance of 
spontaneous high-amplitude spikes that later synchronize 
to generate high-frequency bursting activity. In the current 
study on hippocampal slices, we noted that CTZ induced 
multiple evoked PS peaks, yet no spontaneous epileptiform 
activity was observed, in contrast with the high-K+ model in 
hippocampal slices reported by Liu and colleagues[31]. The 
reason for this disparity may lie in the different experimental 
conditions; the limited recording time (recording for 2 h after 
CTZ treatment), and a lower recording temperature (room 
temperature (25°C) rather than body temperature (~37°C) 
in vivo). Researchers have pointed out that temperature 
greatly influences the occurrence of spontaneous activity 
in vitro in the brain slice. It has also been noted that the 
probability of detecting burst-like activity is reduced at a 
certain range of low temperatures[32, 33]. Thus, the limited 
spontaneous epileptiform activity observed in our slice 
recording is comprehensible. Future studies with longer 
recording times and higher recording temperatures are 
required for comparison. However, under our conditions, 
the pattern of CTZ-induced multiple PS peaks in the 
slice model was similar to that reported in field potential 
recordings from anesthetized rats[16, 17]. The evoked 
PSs were composed of evoked action potentials from 
multiple neurons, and are considered to be an important 
electrophysiological index in the study of excitation/
inhibition relationships in the CNS. During the early phase 
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of treatment with the CTZ convulsant, the PS peaks 
changed remarkably over time; their amplitude and number 
gradually increased. The PS peaks, which represent the 
non-synchronized neuronal activity from different layers, 
changed from a single peak under control conditions to 
double or even multiple peaks, which parallel the onset of 
epilepsy and arrive at a seizure-prone state[21, 34, 35].  Thus, 
in this study, we used the PS peak number as a marker for 
studying the epileptiform activity in hippocampal slices.

Epilepsy itself also has an impact on the inhibition 
mediated by GABAARs; long-term epilepsy may alter the 
expression of GABAAR subunits[36]. It is well known that a 
functional defi cit of synaptic GABAergic inhibition plays an 
important role in the pathogenesis of epilepsy[37-40]. Recent 
studies have also revealed the possible role of ‘tonic’ 
GABA inhibition in the modulation of epileptic seizures[41-43]. 
Tonic inhibition has been reported in hippocampal dentate 
gyrus (DG) granule cells[43], CA1 pyramidal neurons[44], 
and hippocampal interneurons[45]; however, in these 
three areas, the receptors mediating tonic inhibition are 
of different composition. Most extrasynaptic GABAARs in 
CA1 pyramidal neurons contain α5 and γ subunits, while 
in DG cells they mainly contain α4 and δ subunits. In 
interneurons, δ-GABAARs are the main mediator of tonic 
inhibition[8, 44, 45]. Our western blot results showed that the 
δ-subunit-containing GABAARs on the cell membrane were 
significantly down-regulated by up to 50% during CTZ 
stimulation in hippocampal slices. This downregulation 
may be due to activation of the BDNF-TrkB signaling 
pathway, as our previous study showed that CTZ, as well 
as other classic convulsants, induces epileptiform activity 
via enhanced TrkB receptor-mediated BDNF function[17, 46]. 
In addition, BDNF is a known modulator of the surface 
expression of δ subunits[36]. This suggests that the function 
of the extrasynaptic GABAARs was largely impaired and 
is consistent with previous studies. In animal models 
of temporal lobe epilepsy, there have been reports of a 
significant reduction of GABAAR α5 and δ subunit levels 
in the hippocampal area[11, 14, 47]. Moreover, δ-subunit 
mutations have been mapped in epilepsy patients[15, 48]. 
Furthermore, increased δ-subunit levels during the diestrus 
stage of the ovarian cycle have been associated with 
less seizure activity in KA-induced epilepsy models[49]. 
All these pieces of evidence suggest that tonic inhibition, 
mediated by extrasynaptic GABAARs, play an essential 

role in the process of epileptogenesis. Indeed, our recent 
study demonstrated that enhancing tonic inhibition by 
increasing the expression of either α5- or δ-subunit-
containing GABAARs effectively suppresses epileptiform 
activity in cultured hippocampal neurons[13]. In vivo studies 
have further demonstrated that both seizure behavior and 
epileptiform activity are attenuated by enhancing tonic 
inhibition in hippocampal neurons[13]. Based on previous 
studies and our own research, we therefore hypothesize 
that enhancing ‘tonic’ GABA inhibition inhibits epileptiform 
activity, while reducing tonic inhibition increases the 
susceptibility to epileptic seizures[49, 50].

THIP is a GABAAR agonist that can interact with the 
receptor at sites different from those usually occupied by 
benzodiazepines, non-benzodiazepines, and barbiturates. 
Our recent study showed that THIP at a relatively 
low concentration selectively activates extrasynaptic 
GABAARs[13]. In light of this finding, we used THIP to test 
whether selective activation of the extrasynaptic GABAARs 
could reverse the CTZ-induced epileptiform activity. 
Indeed, we found that, despite the down-regulation of 
the membrane δ-subunit of GABAARs, THIP effectively 
suppressed the CTZ-induced multiple PS peaks. One 
simple explanation could be that THIP, by acting on 
the remaining extrasynaptic GABAARs, enhances tonic 
inhibition in the whole hippocampal neuronal network 
and inhibits epileptiform activity. In addition, our previous 
study disclosed a strong inhibitory effect of THIP on the 
pronounced neuronal activity induced by both CTZ and 
KA[13]. This effect could be due to the increased neuronal 
activity induced by the convulsants, releasing a substantial 
amount of GABA[51], which in turn acts concomitantly with 
THIP to enhance tonic inhibition and suppress neuronal 
activity. Furthermore, it is also possible that the tonic 
current may be an outward rectifying current at depolarized 
membrane potentials[52], making the effect of THIP more 
potent when neurons are hyperexcited. Thus, our fi ndings 
related to the inhibitory effect of THIP on epileptiform 
activity in hippocampal slices further support views on the 
signifi cance of extrasynaptic GABAARs in epileptogenesis.

In conclusion, we developed a novel CTZ-induced 
brain slice seizure model, and using this model, we 
further demonstrated that the activation of extrasynaptic 
GABAARs with THIP effectively suppressed the progress 
of epileptogenesis. These results support the notion that 
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extrasynaptic GABAARs may be valuable drug targets for 
novel antiepileptic drug therapy. 
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ABSTRACT  

Orexin neurons within the lateral hypothalamus play 
a crucial role in the promotion and maintenance of 
arousal. Studies have strongly suggested that orexin 
neurons are an important target in endogenous 
adenosine-regulated sleep homeostasis. Orexin 
A induces a robust increase in the firing activity of 
orexin neurons, while adenosine has an inhibitory 
effect. Whether the excitatory action of orexins 
in the lateral hypothalamus actually promotes 
wakefulness and reverses the sleep-producing 
effect of adenosine in vivo is less clear. In this study, 
electroencephalographic and electromyographic 
recordings were used to investigate the effects of 
orexin A and adenosine on sleep and wakefulness 
in rats. We found that microinjection of orexin A into 
the lateral hypothalamus increased wakefulness 
with a concomitant reduction of sleep during the 
first 3 h of post-injection recording, and this was 
completely blocked by a selective antagonist for 
orexin receptor 1, SB 334867. The enhancement of 
wakefulness also occurred after application of the 
excitatory neurotransmitter glutamate in the fi rst 3 h 
post-injection. However, in the presence of the NMDA 
receptor antagonist APV, orexin A did not induce 
any change of sleep and wakefulness in the first 3 h. 
Further, exogenous application of adenosine into 
the lateral hypothalamus induced a marked increase 
of sleep in the fi rst 3-h post-injection. No signifi cant 
change in sleep and wakefulness was detected 
after adenosine application followed by orexin A 
administration into the same brain area. These 

findings suggest that the sleep-promoting action 
of adenosine can be reversed by orexin A applied 
to the lateral hypothalamus, perhaps by exciting 
glutamatergic input to orexin neurons via the action 
of orexin receptor 1.

Keywords: sleep; wakefulness; orexin; adenosine; 
lateral hypothalamus

INTRODUCTION

The neuropeptides orexin A and orexin B, produced by 
hypothalamic neurons, play a crucial role in the promotion 
and maintenance of wakefulness[1-4].  This arousal-
promoting effect of orexins may be realized by excitatory 
actions on multiple subcortical arousal systems and the 
cerebral cortex[5-8]. Two G protein-coupled receptors (orexin 
receptor 1 and 2) are involved in maintaining a long, 
consolidated awake period[5, 9, 10]. Loss of orexin neurons 
impairs wakefulness[11], whereas their stimulation facilitates 
wakefulness[3]. Thus, modulation of orexin neurons is critical 
in the regulation of sleep and wakefulness[12-14]. In vitro 
electrophysiological studies have demonstrated that orexin 
A directly excites local glutamatergic neurons in the lateral 
hypothalamus, inducing a substantial depolarization and a 
robust increase in the fi ring of orexin neurons[15, 16]. Whether 
the excitatory actions of orexins on orexin neurons in the 
hypothalamus actually promote and maintain wakefulness 
in vivo is still unknown. 

In addition, abundant evidence has suggested that 
orexin neurons are a potential target in the regulation of 
sleep homeostasis by endogenous adenosine. In vivo, 
local perfusion of an adenosine receptor agonist into the 
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lateral hypothalamus elicits sleep[17, 18], while microinjection 
of adenosine receptor-specific antagonists in the same 
area increases wakefulness[17-19]. Our previous study with 
patch clamp recordings in acute slices showed that under 
sustained or strong excitatory transmission, endogenous 
adenosine is released into the lateral hypothalamus 
and reduces the excitatory glutamatergic input to orexin 
neurons[16]. We therefore speculated that adenosine, a 
product of cellular energy metabolism, accumulates in the 
lateral hypothalamus during wakefulness and eventually 
promotes sleep by exerting an inhibitory effect on orexin 
neurons. Whether orexin A reverses the sleep-promoting 
effect of adenosine in this brain area has been less 
investigated. 

The aim of the present study was to explore the 
possible actions of exogenous orexin A applied to the 
lateral hypothalamus on the sleep-wakefulness cycle 
and the increase of sleep induced by adenosine using 
electroencephalographic (EEG) and electromyographic 
(EMG) recordings in vivo.

MATERIALS AND METHODS

Animals 
A total of 51 adult male Sprague-Dawley rats weighing 
250–300 g were housed in a temperature-controlled room 
(22°C) and maintained on a 12-h light/12-h dark cycle with 
food and water available ad libitum. The animal use and all 
experimental protocols were approved by the Third Military 
Medical University Animal Care Committee. 

Reagents
Reagents unless specified otherwise were from Sigma 
(St. Louis, MO). Orexin A, glutamate, adenosine, and D-2-
amino-5-phosphonovaleric acid (APV) were dissolved in 
artificial cerebral spinal fluid (ACSF) containing (in mmol/
L): 126 NaCl, 5 KCl, 1.25 NaH2PO4, 2 MgSO4, 26 NaHCO3, 
2 CaCl2, and 10 glucose, pH 7.3–7.4. SB 334867 (Tocris 
Bioscience, Bristol, UK), 8-cyclopentyl-1,3-dipropylxanthine 
(DPCPX) and 3,7-dimethyl-1-propargylxanthine (DMPX) 
were dissolved in ACSF containing 10% dimethylsulfoxide 
(DMSO).

Surgery
Under deep pentobarbital anesthesia (50 mg/kg, i.p.), 

rats were implanted with cortical EEG and EMG recording 
electrodes as described previously[20, 21]. Briefly, two 
stainless-steel electrodes for EEG recording were 
screwed through the skull onto the dura over the frontal 
cortex (anterior: −3 mm; lateral: 3.5 mm) and the parietal 
cortex (anterior: −4 mm; lateral: −3 mm)[22]. Two insulated 
stainless-steel, Teflon-coated wires for monitoring EMG 
signals were placed bilaterally into the trapezius muscles. 
In addition, at the stereotaxic coordinates anterior, −3.3 
mm; lateral, 1.5 mm; dorsoventral, 8.5 mm, a guide 
cannula (O.D. 0.67 mm; RWD Life Technology Co., Ltd., 
Shenzhen, China) for unilateral microinjection was inserted 
vertically from the skull surface and blocked with stylets. 
The tip of this guide cannula was 2 mm above the lateral 
hypothalamus. Each rat was allowed at least 7 days for 
recovery from surgery, and was habituated individually to 
the experimental conditions for 3–4 days, where it was 
connected to the EEG/EMG recording system by a fl exible 
cable. 

Microinjection Procedure
All microinjections were unilateral and performed between 
09:30 and 10:00 as described previously[19]. Then the rats 
were reconnected and recorded from 10:00. Behavioral 
states were recorded continuously for 4 days, except during 
microinjections. At the time of infusion, the rats were gently 
restrained in a towel and an injection cannula was inserted 
into the guide cannula for microinjection of a volume of 
0.2 μL, at a rate of 0.1 μL/min. A constant injection rate 
was maintained using a syringe pump (CMA 402, CMA/
Microdialysis, Solna, Sweden). The injection cannula was 
kept in place for 1–2 min to allow diffusion from the cannula 
tip.
Procedure 1: Effect of orexin A administration on 
spontaneous sleep and wakefulness  Seven rats were 
used in this experiment. The experimental protocol is 
outlined in Table 1. On day 1, EEG and EMG signals 
without any injection were recorded as baseline. On 
the second day, either ACSF or orexin A (40 pmol) was 
microinjected into the lateral hypothalamus[19]. After 
recovery on day 3, these animals were given either ACSF 
or 40 pmol orexin A (whichever had not been injected on 
the second day) injected into the lateral hypothalamus on 
day 4. One week after completion of this session, another 
session using 10 pmol orexin A was initiated. Rats were 
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randomly assigned to receive ACSF or orexin A. 
Procedure 2: Effect of orexin receptor 1 antagonist 
application on spontaneous sleep and wakefulness  
A total of twelve rats were used. On day 2, the rats (n = 
6) randomly received unilateral microinjection of ACSF 
containing 10% dimethylsulfoxide (DMSO) or SB 334867 
(0.5 μg) followed by ACSF application at the same site 
5–10 min later (Table 1). After one-day recovery, the 
animals were microinjected with ACSF following DMSO 
or SB 334857 (0.5 μg) (whichever was not applied on the 
second day) on day 4. Another group of animals (n = 6) 
received DMSO or SB 334867 (0.5 μg) (whichever was not 
applied on the second day) followed by orexin A (10 pmol) 
application on day 2 or 4 randomly. 
Procedure 3: Effect of glutamate administration on 
spontaneous sleep and wakefulness  Two delivery 

models and six rats were used in this experiment. 
Three rats received ACSF on days 1 and 4, and were 
microinjected with 40 ng glutamate on day 2 and 80 ng 
glutamate on day 3. The other three rats were given 80 ng 
and 40 ng glutamate on days 1 and 3, respectively. 
Procedure 4: Effect of the glutamatergic receptor 
antagonist APV on orexin A-induced alteration of 
sleep and wakefulness  Two groups of rats were used 
in this experiment (n = 12). On day 2, six rats were 
randomly microinjected with either ACSF or D-2-amino-
5-phosphonovaleric acid (APV) (10 nmol) followed by 
injection of ACSF 5–10 min later. On day 4, these rats were 
microinjected with ACSF following APV (10 nmol) or ACSF 
(whichever was not applied on the second day). The other 
six rats received 10 pmol orexin A following ACSF or APV 
(10 nmol) microinjection on days 2 and 4 (Table 1).
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Procedure 5: Effect of adenosine on sleep and 
wakefulness  A total of seven rats were used in this 
experiment. Three rats were randomly selected to be 
microinjected with 1 nmol and 10 nmol adenosine on days 
2 and 3, and the other four were given 10 nmol adenosine 
on day 1 and 1 nmol adenosine on day 3. One week after 
completion of the experiments, all seven animals received 
microinjection of 20 nmol adenosine into the lateral 
hypothalamus on days 2 and 4, and ACSF administration 
on days 1 and 3 (Table 1). 
Procedure 6: Effect of orexin A on adenosine-induced 
changes of sleep and wakefulness   Seven rats were 
used in this experiment (Table 1). After basal recording 
without any treatment on day 1, the rats received unilateral 
microinjection of adenosine (10 nmol) followed by ACSF or 
orexin A (10 pmol) 5–10 min later on day 2 or 4. 

Acquisition and Analysis of Sleep-wakefulness Data
Amplifi ed and fi ltered (EEG, 0.5-30 Hz; EMG, 20-200 Hz) 
on a multichannel data acquisition and processing system 
(Grass Model 15LT poly graph, model 15A54 amplifiers), 
the cortical EEG and EMG signals were acquired and 
digitized at a sampling rate of 128 Hz for on-line viewing 
(data acquisition program SLEEPSIGN). Continuous data 
files were saved on a PC for off-line analysis. EEG and 
EMG recordings were scored by 10-s epochs for sleep-
wakefulness state as either wakefulness, non-rapid eye 
movement (NREM), or rapid eye movement (REM) sleep 
by SLEEPSIGN software, according to the methods 
described previously[23-25]. 

Histological Localization of Microinjection Site
After completion of the experiments, all rats were killed 
under deep pentobarbital anesthesia and perfused with 
cold heparinized 0.9% saline followed by perfusion of 
4% paraformaldehyde. The brain was isolated, blocked, 
and processed for orexin A immunohistochemistry[20], to 
illustrate the locations of orexin neurons relative to the track 
of the drug injector cannula. 

Statistical Analysis 
All data are presented as mean ± SEM. Data analyses were 
conducted with Statistical Product and Service Solutions 
(SPSS) version 13 software. The time of wakefulness, 
REM sleep, and NREM sleep after application of drugs was 

normalized to the baseline without any treatment. Statistical 
analysis was carried out using one-way repeated-measures 
analysis of variance with the Kolmogorov-Smirnov test 
for normal distribution followed by post-hoc multiple 
comparisons with Newman-Keuls tests where appropriate. 
P <0.05 was considered statistically signifi cant. 

RESULTS

Identifi cation of the Site of Drug Delivery
Three continuous coronal schematics of rat brain 
through lateral hypothalamus including orexin neurons 
demonstrated that all microinjection sites were localized in 
the perifornical lateral hypothalamus and adjoining areas 
between AP −3.1 and −3.6 mm (Fig. 1A)[22], consistent with 
previous reports[17]. Based on the location of microinjection 
sites, the areas of perfused drugs were confirmed to 
include the orexin neurons in the lateral hypothalamus. 

Arousal-promoting Effect of Orexin A in the Lateral 
Hypothalamus 
Compared to the ACSF treatment, application of 40 pmol 
orexin A markedly increased the time of wakefulness during 
the fi rst 3 h of recording post-injection (Newman-Keuls, P < 
0.01), accompanied by reduced REM (Newman-Keuls test, 
P <0.05) and NREM sleep (Newman-Keuls, P <0.01) (Fig. 
1B). Similar changes were found for 10 pmol orexin A in the 
time spent in wakefulness (Newman-Keuls test, P <0.01) 
and sleep (Newman-Keuls test, REM: P <0.05; NREM: 
P <0.01) during the first 3 h of post-injection recordings. 
However, no signifi cant difference was detected in the time 
spent in wakefulness or sleep between 40 pmol and 10 
pmol orexin A (Newman-Keuls test). 

Orexin A Promotes Arousal through Activation of 
Orexin Receptor 1
A preliminary study has demonstrated that a selective 
antagonist for orexin receptor 1, SB 334867, reverses 
the arousal-promoting action of orexin A in anesthetized 
animals[26]. In this study, we further tested the effect of 
SB 334867 on spontaneous sleep and wakefulness in 
conscious rats. Orexin A (10 pmol) increased the time 
spent in wakefulness and reduced REM and NREM 
sleep correspondingly (Newman-Keuls test, P <0.01), 
while pretreatment with SB 334867 (0.5 μg) blocked 
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these effects (Newman-Keuls test, P >0.05). In addition, 
compared to vehicle (DMSO) followed by ACSF injection, 
administration of SB 334867 (0.5 μg) with ACSF into the 
lateral hypothalamus had no effect on the three behavioral 
states during the first 3-h session (Newman-Keuls test, 
P >0.05) (Fig. 2).

Involvement of Glutamatergic Synaptic Transmission 
in Orexin A-induced Promotion of Wakefulness 
In vitro electrophysiological experiments have demonstrated 
that the excitatory action of orexin A on orexin neurons 
in the lateral hypothalamus is achieved by increasing the 
excitatory glutamatergic synaptic input to these neurons[15, 16]. 
Thus, we further explored the role of the glutamatergic 

system in the orexin A-induced arousal-promoting effect in 
vivo. Compared to ACSF treatment, administration of 80 ng 
but not 40 ng glutamate elevated the time in wakefulness in 
the first 3 h post-injection (Newman-Keuls test, 80 ng:
P <0.05; 40 ng: P >0.05) (Fig. 3A). Concomitantly, compared 
with the recordings of ACSF treatment in the same rats, 
application of 80 ng but not 40 ng glutamate decreased the 
time of NREM sleep (Newman-Keuls test, P <0.01). And a 
signifi cant difference between 80 ng and 40 ng glutamate 
was detected in the time spent in wakefulness and NREM 
sleep (Newman-Keuls test, P <0.05) but not in REM sleep. 

Compared to the two administrations (at a 5–10 min 
interval) of ACSF, administration of the NMDA receptor 
antagonist APV (10 nmol) followed by ACSF significantly 

Fig. 1. Microinjection sites and the actions of orexin A on the sleep-wakefulness profi le. A: Reconstruction of coronal sections through 
the perifornical and lateral hypothalamus showing the outlines and locations of the microinjection probes used for the unilateral 
delivery of drugs. Inset is a photomicrograph of a horizontal section showing the track of the microinjection probe localized in 
the orexin neuronal fi eld (yellow staining). 3V, third ventricle; f: fornix; LH: lateral hypothalamus; mt, mammillothalamic tract. B: 
Normalized time spent in wakefulness, NREM, and REM sleep for the fi rst 3 h after microinjection of ACSF, 40 pmol and 10 pmol 
orexin A. One-way ANOVA, wakefulness: F(2,18) = 8.50, P <0.01; REM sleep: F(2,18) = 4.16, P <0.05; NREM sleep: F(2,18) = 10.12, P <0.01. 
*P <0.05, **P <0.01, Newman-Keuls test.
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Fig. 2. Effect of orexin receptor 1 antagonist SB 334867 on sleep 
and wakefulness. Pooled data showing the normalized time 
in behavioral states during the fi rst 3 h after application of 
0.5 μg SB 334867 and 10 pmol orexin A. One-way ANOVA, 
wakefulness: F(3,20) = 19.88, P <0.01; REM sleep: F(3,20) = 
10.17, P <0.01; NREM sleep: F(3,20) = 26.79, P <0.01. **P <0.01, 
Newman-Keuls test.

decreased the time in wakefulness in rats during the 
first 3 h post-injection (Newman-Keuls test, P <0.01), 
accompanied by increased time spent in REM and NREM 
sleep (Newman-Keuls test, P <0.01) (Fig. 3B). In contrast, 
compared to the two administrations of ACSF, application 
of ACSF + orexin A (10 pmol) induced an elevation of 
wakefulness accompanied by a significant reduction of 
NREM sleep but not of REM sleep (Newman-Keuls test, 
wakefulness and NREM sleep: P <0.01; REM sleep: 
P >0.05). And the differences in the three behavioral 
states were significant between APV (10 nmol) + ACSF 
administration and ACSF + orexin A treatment (Newman-
Keuls test, P <0.01). In the presence of APV (10 nmol), 
application of orexin A (10 pmol) partially blocked the 
inhibitory action of APV on wakefulness by increasing the 
time spent in wakefulness and decreasing REM and NREM 
sleep (Newman-Keuls test, wakefulness and NREM sleep: 
P <0.01; REM sleep: P <0.05 versus APV followed by 
ACSF treatment), but there was no significant difference 
between ACSF + ACSF administration and APV + orexin A 
in the fi rst 3 h post-injection (Newman-Keuls test, P >0.05). 
And signifi cant differences in the time in wakefulness, REM 
and NREM sleep during the first 3 h-session were found 
between ACSF and APV followed by orexin A (Newman-
Keuls test, P <0.01).

Effect of Orexin A on Adenosine-induced Changes of 
Sleep and Wakefulness 
Recent behavioral experiments with adenosine antagonists 
in vivo have suggested that orexin neurons are another 
important target involved in the hypnotic action of 
adenosine[16, 17, 19, 27]. In this study, we further explored the 
role of exogenous adenosine in the regulation of sleep and 
wakefulness in the lateral hypothalamus. Analysis of the 

Fig. 3. Effects of glutamate and NMDA receptor antagonist APV 
on sleep and wakefulness. A: Normalized time spent in 
wakefulness, NREM, and REM sleep for the fi rst 3 h after 
microinjection of ACSF, 40 ng or 80 ng glutamate. One-way 
ANOVA, wakefulness: F(2,15) = 5.55, P <0.05; NREM sleep: 
F(2,15) = 7.98, P <0.01; REM sleep: one-way ANOVA, F(2,15) = 
3.39, P = 0.06. *P <0.05, **P <0.01, Newman-Keuls test. B: 
Pooled data showing the normalized time in behavioral 
states during the first 3 h after application of the NMDA 
receptor antagonist APV (10 nmol) and orexin A (10 pmol). 
One-way ANOVA, wakefulness: F(3,20) = 29.99, P <0.01; REM 
sleep: F(3,20) = 13.75, P <0.01; NREM sleep: F(3,20) = 31.10, 
P <0.01. *P <0.05, **P <0.01, Newman-Keuls test.
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EEG and EMG signals during the first 3 h post-injection 
of drugs revealed that, compared to the ACSF treatment, 
both 20 nmol and 10 nmol adenosine increased the time 
in NREM sleep but not in REM sleep with a concomitant 
reduction in the time in wakefulness (Newman-Keuls test, P < 
0.01), whereas no evident changes in the three behavioral 
states were observed after application of 1 nmol adenosine 
(Newman-Keuls test, P >0.05) (Fig. 4A). 

Whether the excitatory effect of orexin A on these 
orexin neurons could reverse the sleep propensity induced 
by adenosine was little known. During the first 3 h post-
injection, compared to ACSF microinjection, adenosine 
(10 nmol) administration induced an increase in REM and 
NREM sleep with a concomitant reduction of wakefulness 
(Newman-Keuls test, P <0.01). However, no significant 
changes in behavioral state were found after application of 
10 nmol adenosine followed by 10 pmol orexin A during the 
fi rst 3 h post-injection (Newman-Keuls test, P >0.05) (Fig. 
4B).

DISCUSSION

The main finding of this study was that exogenous 
application of orexin A into the lateral hypothalamus in vivo 
exerted an arousal-promoting effect through activation of 
orexin receptor 1. This excitatory action of orexin A may be 
realized by increasing glutamatergic transmission in the 
lateral hypothalamus. Furthermore, the excitatory effect of 
orexin A reversed the sleep-promoting effect of exogenous 
adenosine in the lateral hypothalamus.

The arousal-promoting action of the orexin system in 
the central nervous system (CNS) by activation of multiple 
subcortical arousal systems including the basal forebrain[28], 
tuberomammillary nucleus[23, 29] and locus coeruleus[30] 
has been well documented. In this study, we found that 
enhancement of wakefulness in rats was induced by 
microinjection of orexin A into the lateral hypothalamus 
where these orexin neurons are located. This suggests 
that orexins exert a strong excitatory effect in the lateral 
hypothalamus, and this is mediated by orexin receptor 
1, in that pretreatment with a selective orexin receptor 
1 antagonist completely blocked the arousal-promoting 
action of orexin A. In vitro electrophysiological studies have 
demonstrated that the exogenous application of orexin 
increases the firing rates of orexin neurons through the 
activation of glutamatergic input to these neurons[15, 16]. 
Consistently in this study, the arousal-promoting effect was 
not detected after blockade of glutamatergic transmission 
to these neurons using an NMDA receptor antagonist, 
strongly suggesting that the arousal-promoting action of 
orexin A is realized by directly exciting glutamatergic input 
to orexin neurons through the activation of orexin receptor 1. 
Thus, these fi ndings demonstrate that the positive feedback 

Fig. 4. Effect of orexin A on sleep-promoting action of adenosine 
injected into the lateral hypothalamus. A: Pooled data 
showing the normalized time in behavioral states during 
the fi rst 3 h after application of adenosine and ACSF. One-
way ANOVA, wakefulness: F(3,24) = 14.76, P <0.01; NREM 
sleep: F(3,24) = 13.71, P <0.01; REM sleep: F(3,24) = 1.47, P = 
0.25. **P <0.01, Newman-Keuls test. B: Pooled data showing 
the comparison of normalized time in behavioral states 
during the fi rst 3 h after application of 10 nmol adenosine 
and 10 pmol orexin A. One-way ANOVA: wakefulness, F(2,17) 
=18.82, P <0.01; REM sleep, F(2,17) =14.59, P <0.01; NREM 
sleep, F(2,17) = 9.17, P <0.01. **P <0.01, Newman-Keuls test.
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from excitatory glutamatergic input to orexin neurons may 
function in keeping orexin neurons firing continuously 
in wakefulness, which is essential for orexins to excite 
subcortical systems to promote and maintain wakefulness.  

Consistent with the previous reports[31, 32], we also 
found that administration of glutamate into the lateral 
hypothalamus increased wakefulness in a dose-dependent 
manner. It should be noted that application of the NMDA 
receptor antagonist alone reduced wakefulness and 
increased sleep, whereas no changes were found after 
orexin receptor 1 antagonist administration alone. These 
findings suggest that in vivo, endogenous orexins are 
mainly released into other subcortical arousal systems 
including the basal forebrain, tuberomammillary nucleus, 
and locus coeruleus, where orexin could excite these 
neurons directly and eventually promote wakefulness; 
and the lateral hypothalamus, where orexin neurons are 
located is not the major target in the arousal-promoting 
action of these neuropeptides. We therefore speculated 
that the activation of orexin neurons needs other excitatory 
synaptic inputs in the CNS. Our data strongly support the 
idea that the excitatory effects of glutamatergic synaptic 
transmission on orexin neurons play a key role in exciting 
these neurons to promote wakefulness in vivo. In addition, 
the decreased time in wakefulness caused by the NMDA 
receptor antagonist nearly recovered after application of 
orexin A, indicating that besides NMDA receptors, AMPA 
receptors may also contribute to the excitatory action of 
glutamate on orexin neurons induced by orexin A. In fact, 
a previous experiment with glutamate receptor antagonists 
showed that microinjection of AMPA into the perifornical 
lateral hypothalamus of rats increases the number of orexin 
neurons immunoreactive for c-Fos[32]. 

In addition to the key role in promoting wakefulness, 
abundant evidence has demonstrated that orexin neurons 
are a potential target in the sleep-producing effect of 
endogenous adenosine, in which blockade of adenosine A1 
receptors in the lateral hypothalamus induces a signifi cant 
increase in wakefulness with a concomitant reduction in 
sleep[17, 19]. Consistently, we found that the exogenous 
application of adenosine into the lateral hypothalamus 
enhanced sleep. These data confirmed the involvement 
of orexin neurons in the regulation of sleep homeostasis 
by endogenous adenosine. Moreover, a study by Liu et al. 

revealed that the mechanism underlying this adenosine-
induced suppression may be through inhibition of excitatory 
glutamatergic synaptic input to orexin neurons via 
adenosine A1 receptors[27].  

Furthermore, we found no significant difference in 
sleep and wakefulness between control and orexin A 
following adenosine injection, which suggests that this 
sleep-promoting effect of exogenous adenosine can be 
blocked by application of orexin A into the same area. 
This suggests that the excitatory effect of orexin A on 
orexin neurons in the lateral hypothalamus reverses 
the sleep propensity induced by adenosine. Neuronal 
activity in wakefulness is associated with increased 
neuronal metabolism. As a product of cell metabolism and 
is ubiquity in the CNS, adenosine accumulates during 
wakefulness and progressively increases the propensity 
to sleep[33,34]. Indeed, our previous studies have provided 
evidence that under sustained or stronger synaptic 
transmission in orexin neurons, endogenous adenosine is 
generated and inhibits the excitability of orexin neurons via 
inhibiting glutamatergic transmission in acute hypothalamic 
slices[16]. Moreover, the previous study in vitro showed that 
orexin excites the orexin neurons via local glutamatergic 
transmission[15]. Thus, the indirect excitatory effect of 
orexin might offset the inhibitory action of adenosine 
on orexin neurons and consequently reverse the sleep-
promoting effect of adenosine. The modulation of orexin 
neurons plays an important role in regulating sleep and 
wakefulness, especially under prolonged wakefulness 
in which sleep pressure is enhanced rapidly due to the 
large release of endogenous adenosine[35]. Caffeine, a 
nonselective adenosine receptor antagonist, is a widely 
used stimulant that effectively reverses the depressant 
effects of increasing sleep propensity[36], although the side-
effect of drug-dependence has restricted its therapeutic use 
as an arousal-promoting agent[37]. It is therefore necessary 
to find other available drugs or measures to abolish the 
increase of sleep propensity. Our fi ndings of the reversal of 
the sleep-promoting effect by orexin A provides a possibility 
that orexins may be a potential candidate to reduce the 
sleep propensity induced by adenosine, independent of the 
blockade of adenosine receptors. 

In conclusion, we speculate that pharmacological 
manipulation of the orexin system including orexin neurons 
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and orexins may open up a new avenue for the regulation 
of sleep and wakefulness, especially under the condition of 
sleep propensity induced by adenosine. 

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science 
Foundation of China (81071074).

Received date: 2013-10-08; Accepted date: 2014-01-23

REFERENCES

[1] Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, 
Tanaka H, et al. Orexins and orexin receptors: a family of 
hypothalamic neuropeptides and G protein-coupled receptors 
that regulate feeding behavior. Cell 1998, 92: 573–585.

[2] Sakurai T. The neural circuit of orexin (hypocretin): 
maintaining sleep and wakefulness. Nat Rev Neurosci 2007, 
8: 171–181.

[3] Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, 
de Lecea L. Neural substrates of awakening probed with 
optogenetic control of hypocretin neurons. Nature 2007, 450: 
420–424.

[4] de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson 
PE, et al. The hypocretins: hypothalamus-specific peptides 
with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998, 
95: 322–327.

[5] Sakurai T, Mieda M, Tsujino N. The orexin system: roles in 
sleep/wake regulation. Ann N Y Acad Sci 2010, 1200: 149–
161.

[6] Xia J, Chen X, Song C, Ye J, Yu Z, Hu Z. Postsynaptic 
excitation of prefrontal cortical pyramidal neurons by 
hypocretin-1/orexin A through the inhibition of potassium 
currents. J Neurosci Res 2005, 82: 729–736.

[7] Xia JX, Fan SY, Yan J, Chen F, Li Y, Yu ZP, et al. Orexin 
A-induced extracellular calcium influx in prefrontal cortex 
neurons involves L-type calcium channels. J Physiol Biochem 
2009, 65: 125–136.

[8] Alexandre C, Andermann ML, Scammell TE. Control of 
arousal by the orexin neurons. Curr Opin Neurobiol 2013, 23: 
752–759.

[9] Li B, Chen F, Ye J, Chen X, Yan J, Li Y, et al. The modulation 
of orexin A on HCN currents of pyramidal neurons in mouse 
prelimbic cortex. Cereb Cortex 2010, 20: 1756–1767.

[10] Chen XW, Mu Y, Huang HP, Guo N, Zhang B, Fan SY, 
et al. Hypocretin-1 potentiates NMDA receptor-mediated 
somatodendritic secretion from locus ceruleus neurons. J 
Neurosci 2008, 28: 3202–3208.

[11] Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, 

Lee C, et al. Narcolepsy in orexin knockout mice: molecular 
genetics of sleep regulation. Cell 1999, 98: 437–451.

[12] Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. 
Pharmacogenetic modulation of orexin neurons alters sleep/
wakefulness states in mice. PLoS One 2011, 6: e20360.

[13] Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka 
KF, et al. Infl uence of inhibitory serotonergic inputs to orexin/
hypocretin neurons on the diurnal rhythm of sleep and 
wakefulness. Sleep 2013, 36: 1391–1404.

[14] Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central 
functions of the orexinergic system. Neurosci Bull 2013, 29: 
355–365.

[15] Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin 
excites hypocretin neurons via a local glutamate neuron-A 
potential mechanism for orchestrating the hypothalamic 
arousal system. Neuron 2002, 36: 1169–1181.

[16] Xia J, Chen F, Ye J, Yan J, Wang H, Duan S, et al. Activity-
dependent release of adenosine inhibits the glutamatergic 
synaptic transmission and plasticity in the hypothalamic 
hypocretin/orexin neurons. Neuroscience 2009, 162: 980–
988.

[17] Alam MN, Kumar S, Rai S, Methippara M, Szymusiak 
R, McGinty D. Role of adenosine A(1) receptor in the 
perifornical-lateral hypothalamic area in sleep-wake 
regulation in rats. Brain Res 2009, 1304: 96–104.

[18] Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, 
Alam MN. A1 receptor mediated adenosinergic regulation 
of perifornical-lateral hypothalamic area neurons in freely 
behaving rats. Neuroscience 2010, 167: 40–48.

[19] Thakkar MM, Engemann SC, Walsh KM, Sahota PK. 
Adenosine and the homeostatic control of sleep: effects of A1 
receptor blockade in the perifornical lateral hypothalamus on 
sleep-wakefulness. Neuroscience 2008, 153: 875–880.

[20] Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, 
McCarley RW. REM sleep changes in rats induced by siRNA-
mediated orexin knockdown. Eur J Neurosci 2006, 24: 2039–
2048.

[21] Jia X, Yan J, Xia J, Xiong J, Wang T, Chen Y, et al. Arousal 
effects of orexin A on acute alcohol intoxication-induced 
coma in rats. Neuropharmacology 2012, 62: 775–783.

[22] Paxinos G, Waston C. The Rat Brain in Stereotaxic 
Coordinates. San Diego, 1998.

[23] Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe 
T, et al. Arousal effect of orexin A depends on activation of 
the histaminergic system. Proc Natl Acad Sci U S A 2001, 98: 
9965–9970.

[24] Huang ZL, Sato Y, Mochizuki T, Okada T, Qu WM, 
Yamatodani A, et al. Prostaglandin E2 activates the 
histaminergic system via the EP4 receptor to induce 
wakefulness in rats. J Neurosci 2003, 23: 5975–5983.



Neurosci Bull     October 1, 2014, 30(5): 877–886886

[25] Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O. 
Adenosine in the tuberomammillary nucleus inhibits the 
histaminergic system via A1 receptors and promotes non-
rapid eye movement sleep. Proc Natl Acad Sci U S A 2008, 
105: 19992–19997.

[26] Kushikata T, Hirota K, Yoshida H, Kudo M, Lambert DG, 
Smart D, et al. Orexinergic neurons and barbiturate 
anesthesia. Neuroscience 2003, 121: 855–863.

[27] Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/
o rex in  neurons  by  the  A1 receptor  in  the  la te ra l 
hypothalamus: a possible sleep-promoting effect. J 
Neurophysiol 2007, 97: 837–848.

[28] Dong H, Niu J, Su B, Zhu Z, Lv Y, Li Y, et al. Activation of 
orexin signal in basal forebrain facilitates the emergence 
from sevofl urane anesthesia in rat. Neuropeptides 2009, 43: 
179–185.

[29] Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/
hypocretin excites the histaminergic neurons of the 
tuberomammillary nucleus. J Neurosci 2001, 21: 9273–9279.

[30] Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM, 
Basheer R, et al. Knockdown of orexin type 1 receptor in rat 
locus coeruleus increases REM sleep during the dark period. 
Eur J Neurosci 2010, 32: 1528–1536.

[31] Alam MA, Mallick BN. Glutamic acid stimulation of the 
perifornical-lateral hypothalamic area promotes arousal and 
inhibits non-REM/REM sleep. Neurosci Lett 2008, 439: 281–
286.

[32] Li FW, Deurveilher S, Semba K. Behavioural and neuronal 
activation after microinjections of AMPA and NMDA into the 
perifornical lateral hypothalamus in rats. Behav Brain Res 
2011, 224: 376–386.

[33] Rainnie DG, Grunze HC, McCarley RW, Greene RW. 
Adenosine inhibition of mesopontine cholinergic neurons: 
implications for EEG arousal. Science 1994, 263: 689–692.

[34] Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-
specifi city of extracellular adenosine concentration changes 
during sleep deprivation and spontaneous sleep: an in vivo 
microdialysis study. Neuroscience 2000, 99: 507–517.

[35] Zhang N, Liu HT. Effects of sleep deprivation on cognitive 
functions. Neurosci Bull 2008, 24: 45–48.

[36] Landolt HP, Retey JV, Tonz K, Gottselig JM, Khatami R, 
Buckelmuller I, et al. Caffeine attenuates waking and sleep 
electroencephalographic markers of sleep homeostasis in 
humans. Neuropsychopharmacology 2004, 29: 1933–1939.

[37] Daly JW, Fredholm BB. Caffeine--an atypical drug of 
dependence. Drug Alcohol Depend 1998, 51: 199–206.



Neurosci Bull  http://www.neurosci.cn

Brief Instructions to Authors

Neuroscience Bulletin (NB) is a SCI journal publishes Original Research Articles, Report and Reviews on basic and 
clinical neuroscience research bimonthly via Springer Science and Business Media. In addition, NB also publishes other 
types of articles such as Research Highlights, Perspectives, Brief Communications, and Methods.

Manuscript Submission
Manuscripts should be submitted through our online submission system, ScholarOne Manuscripts, at http://mc03.

maManuscripts should be submitted through our online submission system, ScholarOne Manuscripts, at http://mc03.
manuscriptcentral.com/nsb or http://www.neurosci.cn.

Manuscript file types that we accept for online submission include Word, WordPerfect, and TXT. For Figure 
submission, we accept JPEG, TIFF, or AI fi les. Required items differ for each article type and are specifi ed during the 
submission process.

The submitted manuscript should be accompanied with a signed “Neuroscience Bulletin copyright transfer statement 
and submission form” stating that all work is original, has not been published previously, and is not under consideration for 
publication elsewhere. The corresponding author responsible for the originality, legality and validity of the work must sign 
the form.

Manuscript Preparation
NB considers manuscripts of the following types:  

Research Article
A research article contains original research materials and presents compelling data on conceptual advances in any 

area of neuroscience. The total character count of all sections of the main text (including references and fi gure legends 
but excluding supplemental data) should not exceed 60,000, including spaces. Up to 8 fi gures and/or tables are allowed 
for the entire manuscript. The minimum requirement of a submitted research article is 40,000 characters total and at 
least 6 fi gures. The submitted manuscript should be a substantial novel research study, organizing a story with complex 
mechanisms elucidated using multiple techniques or approaches. It should provide mechanistic insights into a particular 
aspect of neuroscience fi eld. References are limited to 100. 

Report
In addition to research articles, NB also publishes short-format papers that report single exciting message in a 

particular fi eld of neuroscience. Research observations should contain enough novelty and demonstrate physiological/
functional significance. Manuscripts for reports can be up to approximately 30,000 characters (including spaces). The 
number of Figures in Reports should be limited to 4. Reports follow the same general organization as research articles 
except that the sections of Results and Discussion should be combined (denoted as Results and Discussion). References 
are limited to 50.

Review
Authoritative reviews contribute greatly to our journal and we are interested in comprehensive articles that are 

fairly and well written to describe recent development in any fi eld of neuroscience. The authors are expected to cover 
controversies in the fi eld and propose their own viewpoints in an unbiased and justifi able way. Reviews are typically at 
the similar length with research articles and schematic illustrations are strongly encouraged. In particular, the scope of the 
review should not be dominated by the authors’ own work.



Neurosci Bull  http://www.neurosci.cn

Others
All other types of articles including Research Highlight, Perspective, Brief Communication, and Method are also being 

considered upon enquiry. The article type should be specifi ed in the author’s cover letter. For Brief Communication and Method, 
the article should begin with an unreferenced abstract about 100 words. For Perspective, Brief Communication, and Method, 
the total character count should not exceed 20,000 and the display items should be limited to 2. Subheadings are discouraged. 
References are limited to 20. For Perspective, the article should contain discussion on recent primary research literature similarly 
as Review. Yet, Perspective is shorter in length and focuses on a narrower scope. It is possible that in Perspective authors 
advocate a position over a controversial issue or a speculative hypothesis. For Brief Communication, the article reports a concise 
message conveyed by primary research data of high quality and broad interest. In addition, please note that NB no longer 
accepts Method on neurosurgery pathway, surgical techniques, or any other clinical related technical studies. On the other hand, 
NB welcomes Method discussing new advances on research techniques in any fi eld of basic neuroscience (For a glance, please 
see our Special Issue on “new techniques and approaches for neuroscience”).

Please note that NB intends to publish high quality research articles as the major part of the journal. Short reports and 
articles of other formats are only considered if the research work provides a major scientifi c breakthrough. The number of these 
other articles is limited in every issue.

Accepted and published manuscripts are expected to comply with journal policies on these formats and NB editors reserve 
the right to return manuscripts that are not in accordance with the instructions. During initial submission, NB will consider 
manuscripts based on the scientifi c merit even if they slightly exceed the required length. Once accepted for publication, however, 
the authors will be asked to shorten the manuscript to fi t the journal’s format.

Manuscript Revision
Upon peer-reviews, the authors may be asked to revise the manuscript. If the authors have substantial reasons to believe 

that their manuscript was treated unfairly, they may appeal for reconsideration. Revision should be completed within four (minor 
revision) or eight weeks (major revision). The authors should provide a cover letter and a point-to-point response for addressing 
the reviewers’ comments. The editor will notify the corresponding author upon the acceptance of the manuscript. Accepted 
papers will be processed to advanced online publication as soon as possible.

Proofs
A PDF proof will be sent to the authors for them to correct last minute errors on the manuscript.

Page Charges
Page charges for the printed form are as follows: RMB400 for each text page, RMB500 for each page containing black-and-

white fi gures, RMB1500 for the fi rst page containing color fi gures, RMB1000 for the second color fi gure page, and RMB800 for 
the rest. The corresponding author will receive an invoice on all the publication-related charges once the manuscript is accepted 
for publication and enters the editing process.

If you are in China, make checks or money orders payable to:
Benefi ciary’s Name (帐户名称): Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (中国科学院上海生命

科学研究院)
Benefi ciary’s A/C NO. (帐号): 033924-00801048006
Benefi ciary’s Bank(开户行): Fenglin Branch of Xuhui District, Agricultural Bank of China (农行徐汇区枫林支行)

If you are in China, payment can also be mailed by Post Offi ce to the Editorial Offi ce of Neuroscience Bulletin.
Editorial Offi ce of Neuroscience Bulletin (《神经科学通报》编辑部收): 
Room 405, Building 31B, 319 YueYang Road, Shanghai 200031, China (200031, 上海市岳阳路319号31B楼405室).
Tel: +86-21-54922863; Fax: +86-21-54922833; E-mail: nsb@sibs.ac.cn

(Updated November, 2013)



Neuroscience Bulletin Copyright Transfer Statement and Submission Form

We submit this type of article (): •Research Article •Report •Review
  •Research Highlight •Perspective •Brief Communication •Method
Title of article:

Words:                  ;   fi gures:     (color fi gures:    );         tables:      ;

A signature below certifi es compliance with the following statements
Copyright Transfer Statement: The copyright to this article is transferred to Neuroscience Bulletin, Shanghai Insti-
tutes for Biological Sciences, CAS and Springer (respective to owner if other than Shanghai Institutes for Biological 
Sciences, CAS and Springer and for U.S. government employees: to the extent transferable) effective if and when 
the article is accepted for publication. The author warrants that his/her contribution is original and that he/she has 
full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of 
any and all co-authors. The copyright transfer covers the exclusive right and license to reproduce, publish, distribute 
and archive the article in all forms and media of expression now known or developed in the future, including re-
prints, translations, photographic reproductions, microform, electronic form (offl ine, online) or any other reproduc-
tions of similar nature.
An author may self-archive an author-created version of his/her article on his/her own website. He/she may also 
deposit this version on his/her institution’s and funder’s (funder designated) repository at the funder’s request or 
as a result of a legal obligation, including his/her fi nal version, provided it is not made publicly available until 
after 12 months of offi cial publication. He/she may not use the publisher’s PDF version which is posted on www.
springerlink.com for the purpose of self-archiving or deposit. Furthermore, the author may only post his/her version 
provided acknowledgement is given to the original source of publication and a link is inserted to the published 
article on Springer’s website. The link must be accompanied by the following text: “The original publication is 
available at www.springerlink.com”.
The author is requested to use the appropriate DOI for the article. Articles disseminated via www.springerlink.com 
are indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, sub-
scription agencies, library networks, and consortia.
After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the 
authors listed will not be accepted by Neuroscience Bulletin, Shanghai Institutes for Biological Sciences of Chinese 
Academy of Sciences and Springer.
Authorship responsibilities
I/We confi rm that:
(1) The work described has not been published before in any language or in any journal or media; that it is not un-
derconsideration for publication elsewhere; that its publication has been approved by all the co-authors, if any, as 
well as (tacitly or explicitly) by the responsible authorities at the institution where the work was carried out.
(2) We also give an assurance that the material will not be submitted for publication elsewhere until a decision has been 
made as to its acceptability for Neuroscience Bulletin in 2 months, and then declare this statement becomes null and 
void.
(3) I am/We are responsible for obtaining permission for the use of any material in the manuscript that may be under 
copyright to my/our employer(s) or other party(ies).
(4) I have read the complete manuscript and accept responsibility for the content and completeness.
(5) I have made a signifi cant contribution to this work and am familiar with the contents.

Author (1) signed: Date: Author (2) signed: Date: 
Author (3) signed: Date: Author (4) signed: Date:     
Author (5) signed: Date: Author (6) signed: Date:
Author (7) signed: Date: Author (8) signed: Date:
Author (9) signed: Date: Author (10) signed: Date:
Corresponding author signed:                         Date:                 
Corresponding author address:
Tel:                                Fax:                         E-mail:

(Updated on Nov, 2013)



NEUROSCIENCE BULLETIN

Editor-in-Chief         
Shumin Duan 
(Zhejiang University, Hangzhou, China)

Consulting Editors
Yizhang Chen
(Second Military Medical University, Shanghai, China)
Muming Poo
(Institute of Neuroscience, CAS, Shanghai, China)
Larry R. Squire
(University of California-San Diego, USA)
Charles F. Stevens
(The Salk Institute, San Diego, USA)
Xiongli Yang
(Fudan University, Shanghai, China)

Executive Associate Editor
Iain C. Bruce (Zhejiang University, Hangzhou, China)

Associate Editors
Zhong Chen (Zhejiang University, Hangzhou, China)
Tianming Gao (South Medical University, Guangzhou, China)
Shihui Han (Peking University, Beijing, China)

Cheng He (Second Military Medical University, Shanghai,              
    China) 
Margaret S. Ho (Tongji University, Shanghai, China)
Ru-Rong Ji (Duke University, Durham, USA)
Tianzi Jiang (Institute of Automation, CAS, Beijing, China)
Tao Li (West China Hospital, Sichuan University, 
    Chengdu, China)
Mengsheng Qiu (Hangzhou Normal University, 
    Hangzhou, China)
Fu-Dong Shi (St. Joseph’s Hospital and Medical Center, 
    Phoenix, USA)
You Wan (Peking University, Beijing, China)
Jian-Zhi Wang (Huazhong University of Science and 
    Technology, Wuhan, China)
Zhi-Ying Wu (Huashan Hospital, Shanghai Medical
    College, Fudan Universtiy, Shanghai, China)
Tianle Xu (Shanghai Jiaotong University, Shanghai, 
    China)
Dai Zhang (Peking University, Beijing, China)
Zhi-Jun Zhang (Southeast University, Nanjing, China)
Chunjiu Zhong (Fudan University, Shanghai, China)
Yimin Zou (University of California-San Diego, USA)

Editorial Board 

Philippe Ascher (Pairs Diderot University, Paris, France)
Ben A. Barres (Stanford University, San Francisco, USA)  
Guo-Qiang Bi (University of Science and Technology 
    of China, Hefei, China)
Ying-Shing Chan (The Univeristy of Hong Kong, Hong 
    Kong, China)
Jun Chen (The Fourth Military Medical University, Xi’an,     
    China)
Sheng-Di Chen (Shanghai Jiaotong University, Shanghai, 
    China)
Yiping Du (Zhejiang University, Hangzhou, China)
Ming Fan (Academy of Military Medicine, Beijing, China)
Richard S. Frackowiak (University of Lausanne, 
    Lausanne, Switzerland)
Tamás F. Freund (Institute of Experimental Medicine  
    of the Hungarian Academy of Sciences, Budapest, 
    Hungary)
Charles Gilbert (The Rockefeller University, New York, 
    USA)
Xiaosong Gu (Nantong Universtiy, Nantong, China)

Aike Guo (Institute of Neuroscience, CAS, Shanghai, 
    China)
Philip G. Haydon (Tufts University, Boston, USA)
Joe Herbert (University of Cambridge, Cambridge, UK)
Zhi-An Hu (Third Military Medical University, Chongqing, 
    China)
Kazuhide Inoue (Kyushu University, Fukuoka, Japan)
Yong-Hua Ji (Shanghai University, Shanghai, China)
Kai-Da Jiang (Shanghai Mental Health Center, Shanghai 
    Jiaotong University School of Medicine, Shanghai, China)
Yu-Wu Jiang (Peking University First Hospital, Beijing,  
    China)
Helmut Kettenmann (Max-Delbrück Center for Molecular     
    Medicine, Berlin, Germany) 
O.A. Krishtal (Bogomoletz Institute of Physiology, Kiev, 
    Ukraine) 
Robert H. LaMotte (Yale University School of Medicine, 
    New Haven, USA)
Pierre Lavenex  (University of Fribourg, Fribourg,     
    Switzerland) 



Juan Lerma (Instituto de Neurociencias de Alicante,      
    Alicante, Spain)
Bao-Ming Li (Nanchang University, Nanchang, China)
Yun-Qing Li (The Fourth Military Medical University, 
    Xi’an, China)
David J. Linden (Johns Hopkins University, Baltimore, 
    USA)
Stuart A. Lipton (Sanford-Burnham Medical Research 
    Institute and University of California at San Diego,  
    San Diego, USA)
Bai Lu (GlaxoSmithKline [China] Investment Co., Ltd., 
    Shanghai, China)
Yi-Cheng Lu (Changzheng Hospital, Second Military 
    Medical University, Shanghai, China)
Bridget Lumb (University of Bristol, Bristol, UK)
Jian-Hong Luo (Zhejiang University, Hangzhou, China)
Zhen-Ge Luo (Institute of Neuroscience, CAS, Shanghai, 
    China)
Lan Ma (Fudan University, Shanghai, China)
Robert C. Malenka (Stanford University, Stanford, USA) 
Manuel S. Malmierca (Universidad de Salamanca,     
    Salamanca, Spain)
John H.R. Maunsell (Harvard Medical School, Houston, 
    USA)
Lin Mei (Georgia Regents University, Augusta, USA)
Earl K. Miller (Massachusetts Institute of Technology, 
    Cambridge, USA)
Enrico Mugnaini (Northwestern University, Feinberg     
    School of Medicine, Chicago, USA) 
Vladimir Parpura (University of Alabama at Birmingham,           
    Birmingham, USA)
Bruce R. Ransom (University of Washington, Seattle, 
    USA) 
Yi Rao (Peking University, Beijing, China)
Ferdinando Rossi (Università di Torino, Torino, Italy) 
Huai-Zhen Ruan (Third Military Medical University, 
    Chongqing, China)
Tom E. Salt (University College London, London, UK) 

Joshua R. Sanes (Harvard University, Boston, USA)
Michael N. Shadlen (Columbia University, New York,  
    USA)
Morgan Sheng (Genentech, Inc., South San Francisco, 
    USA)
Sangram S. Sisodia (The University of Chicago, Chicago,     
    USA)
Peter Somogyi (University of Oxford, Oxford, UK)
Feng-Yan Sun (Fudan University, Shanghai, China)
Dick F. Swaab (Netherlands Institute for Neuroscience, 
    Amsterdam, Netherlands)
Keiji Tanaka (RIKEN Brain Science Institute, Tokyo,   
    Japan)
Alexej Verkhratsky (The University of Manchester, 
    Manchester, UK)
Steven R. Vincent (University of British Columbia, 
    Vancouver, Canada) 
Jian-Jun Wang (Nanjing University, Nanjing, China)
Wei Wang (Huazhong University of Science and 
    Technology, Wuhan, China)
Wei Wang (Zhejiang University, Hangzhou, China)
Xu-Chu Weng (Hangzhou Normal University, Hangzhou, 
    China)
William Wisden (Imperial College London, London, UK) 
Jun-Xia Xie (Qingdao University, Qingdao, China)
Lin Xu (Kunming Institute of Zoology, CAS, Kunming, 
    China)
Albert Cheung Hoi Yu (Peking University, Beijing, China) 
Xu Zhang (Institute of Neuroscience, CAS, Shanghai, 
    China)
Yu-Qiu Zhang (Fudan University, Shanghai, China)
Zhong-Xin Zhao (Changzheng Hospital, Second     
    Military Medical University, Shanghai, China)
Ping Zheng (Fudan University, Shanghai, China)
Jiang-Ning Zhou (University of Science and Technology 
    of China, Hefei, China) 
Richard E. Zigmond (Case Western Reserve University, 
    Cleveland, USA)



Copyright

Submission of a manuscript implies: that the work described 
has not been published before (except in the form of an abstract 
or as part of a published lecture, review, or thesis); that it is not 
under consideration for publication elsewhere; that its publication 
has been approved by all co-authors, if any, as well as – tacitly 
or explicitly – by the responsible authorities at the institution 
where the work was carried out. The author warrants that his/
her contribution is original and that he/she has full power to 
make this grant. The author signs for and accepts responsibility 
for releasing this material on behalf of any and all co-authors. 
Transfer of copyright to Shanghai Institutes for Biological 
Sciences of Chinese Academy of Sciences and Springer 
becomes effective if and when the article is accepted for 
publication. After submission of the Copyright Transfer Statement 
signed by the corresponding author, changes of authorship 
or in the order of the authors listed will not be accepted by 
Shanghai Institutes for Biological Sciences of Chinese Academy 
of Sciences and Springer. The copyright covers the exclusive 
right (for U.S. government employees: to the extent transferable) 
to reproduce and distribute the article, including reprints, 
translations, photographic reproductions, microform, electronic 
form (offl ine, online) or other reproductions of similar nature.
    An author may self-archive the English language version of 
his/her article on his/her own website and his/her institution’s 
repository; however he/she may not use the publisher’s 
PDF version which is posted on www.springerlink.com. 
Furthermore, the author may only post his/her version provided 
acknowledgement is given to the original source of publication 
and a link must be accompanied by the following text: “The 
original publication is available at springerlink.com”.
    All articles published in this journal are protected by copyright, 
which covers the exclusive rights to reproduce and distribute 
the article (e.g., as offprints), as well as all translation rights. 
No material published in this journal may be reproduced 
photographically or stored on microfi lm, in electronic data bases, 
video disks, etc., without first obtaining written permission from 
the publishers. The use of general descriptive names, trade 
names, trademarks, etc., in this publication, even if not specifi cally 
identified, does not imply that these names are not protected 
by the relevant laws and regulations. While the advice and 
information in this journal is believed to be true and accurate at 
the date of its going to press, neither the authors, the editors, nor 
the publishers can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein. 
    Special regulations for photocopies in the USA:Photocopies 
may be made for personal or in-house use beyond the limitations 
stipulated under Section 107 or 108 of U.S. Copyright Law, 
provided a fee is paid. All fees should be paid to the Copyright 
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 
USA, Tel.: +1-978-7508400, Fax: +1-978-6468600, http://www.
copyright.com, stating the ISSN of the journal, the volume, and the 
fi rst and last page numbers of each article copied. The copyright 
owner’s consent does not include copying for general distribution, 
promotion, new works, or resale. In these cases, specifi c written 
permission must fi rst be obtained from the publishers.

Subscription information 

ISSN print edition: 1673-7067
ISSN electronic edition: 1995-8218

Volume 30 (6 issues) will appear in 2014

Subscription rates

For information on subscription rates please contact:
Customer Service

North and South America: journals-ny@springer.com
Outside North and South America:
subscriptions@springer.com

Orders and inquiries:

North and South America:
Springer New York, Inc.
Journal Fulfi llment
P.O. Box 2485
Secaucus, NJ 07096 USA
Tel: 1-800-SPRINGER or 1-201-348-4033
Fax: 1-201-348-4505
Email: journals-ny@springer.com

Outside North and South America: 
Springer Distribution Center 
Customer Service Journals
Haberstr. 7
69126 Heidelberg, Germany
Tel: +49-6221-345-0, Fax: +49-6221-345-4229
Email: subscriptions@springer.com

Cancellations must be received by September 30 to take 
effect at the end of the same year.

Changes of address: Allow for six weeks for all changes to 
become effective. All communications should include both 
old and new addresses (with postal codes) and should be 
accompanied by a mailing label from a recent issue.  According 
to § 4 Sect. 3 of the German Postal Services Data Protection 
Regulations, if a subscriber’s address changes, the German 
Federal Post Offi ce can inform the publisher of the new address 
even if the subscriber has not submitted a formal application 
for mail to be forwarded. Subscribers not in agreement with this 
procedure may send a written complaint to Customer Service 
Journals within 14 days of publication of this issue.

Microform editions are available from: ProQuest. Further 
information available at http://www.il.proquest.com/uni

Electronic edition
An electronic version is available at springerlink.com.

Production
Printed in People’s Republic of China

Springer-Verlag is part of Springer Science+Business Media




	cover

	Contents
	Special issue on neuro-molecular imaging
	Editorial: Neuro-molecular imaging
	PET imaging in ischemic cerebrovascular disease: currentstatus and future directions
	Recent advances in parametric neuroreceptor mapping withdynamic PET: basic concepts and graphical analyses
	Neurostatistical imaging for diagnosing dementia: translationalapproach from laboratory neuroscience to clinical routine
	Brain dopaminergic system changes in drug addiction: a reviewof positron emission tomography fi ndings
	Development of 18F-labeled radiotracers for neuroreceptor imagingwith positron emission tomography
	Role of cortical spreading depression in the pathophysiology ofmigraine
	Brain network markers of abnormal cerebral glucose metabolismand blood fl ow in Parkinson’s disease
	Small-animal PET demonstrates brain metabolic change afterusing bevacizumab in a rat model of cerebral ischemic injury
	Paradoxical reduction of cerebral blood fl ow after acetazolamideloading: a hemodynamic and metabolic study with 15O PET
	CBF/CBV maps in normal volunteers studied with 15O PET: apossible index of cerebral perfusion pressure

	research highlight
	The medial preoptic area and the regulation of parental behavior

	Original articles
	Activation of extrasynaptic GABAA receptors inhibits cyclothiazideinducedepileptiform activity in hippocampal CA1 neurons
	Orexin A attenuates the sleep-promoting effect of adenosine inthe lateral hypothalamus of rats

	Brief Instructions to Authors
	NB copyright transfer form
	editorial board
	springer copyright
	NB impact factor 1.832



