Knock-down of PSD-95 expression by antisense oligonucleotides protects against apoptosis-like cell death induced by oxygen-glucose deprivation in vitro
1 Jiangsu Key Laboratory of Brain Disease Bioinformation
2 Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou 221002
Abstract
Objective
Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PSD-95 in tyrosine phosphorylation of NMDAR subunit 2A (NR2A) and in apoptosis-like cell death induced by oxygen-glucose deprivation (OGD) in cultured rat cortical neurons were investigated.
Methods
We used immunoprecipitation and immunoblotting to detect PSD-95 protein level, tyrosine phosphorylation level of NR2A, and the interaction between PSD-95 and NR2A or Src. Apoptosis-like cells were observed by 4,6-diamidino-2-phenylindole staining.
Results
Tyrosine phosphorylation of NR2A and apoptosis-like cell death were increased after recovery following 60-min OGD. The increases were attenuated by pretreatment with antisense oligonucleotides against PSD-95 before OGD, but not by missense oligonucleotides or vehicle. PSD-95 antisense oligonucleotides also inhibited the increased interaction between PSD-95 and NR2A or Src, while NR2A expression did not change under this condition.
Conclusion
PSD-95 may be involved in regulating NR2A tyrosine phosphorylation by Src kinase. Inhibition of PSD-95 expression can be neuroprotective against apoptosis-like cell death after recovery from OGD.
Keywords
postsynaptic density protein 95; N-methyl-D-aspartate receptor; oxygen-glucose deprivation; tyrosine phosphorylation; Src; cortical neurons