Monoclonal Antibody-Based Treatments for Neuromyelitis Optica Spectrum Disorders: From Bench to Bedside
Wenli Zhu 1,2 • Yaling Zhang 1 • Zhen Wang 1 • Ying Fu 1 • Yaping Yan 1
1 Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
2 Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
Abstract
Neuromyelitis optica (NMO)/NMO spectrum disorder (NMOSD) is a chronic, recurrent, antibody-mediated, inflammatory demyelinating disease of the central nervous system, characterized by optic neuritis and transverse myelitis. The binding of NMO-IgG with astrocytic aquaporin-4 (AQP4) functions directly in the pathogenesis of >60% of NMOSD patients, and causes astrocyte loss, secondary inflammatory infiltration, demyelination, and neuron death, potentially leading to paralysis and blindness. Current treatment options, including immunosuppressive agents, plasma exchange, and B-cell depletion, are based on small retrospective case series and open-label studies. It is noteworthy that monoclonal antibody (mAb) therapy is a better option for autoimmune diseases due to its high efficacy and tolerability. Although the pathophysiological mechanisms of NMOSD remain unknown, increasingly, therapeutic studies have focused on mAbs, which target B cell depletion, complement and inflammation cascade inactivation, blood-brain-barrier protection, and blockade of NMO-IgG-AQP4 binding. Here, we review the targets, characteristics, mechanisms of action, development, and potential efficacy of mAb trials in NMOSD, including preclinical and experimental investigations.
Keywords
Neuromyelitis optica spectrum disorders; Monoclonal antibody; AQP4-IgG Astrocyte; Central nervous system